Math 151 Exam 2 Review

1. Evaluate each limit as a number, infinity, or -infinity or state DN E.

 a) \(\lim_{x \to \frac{\pi}{2}} \frac{\cos x}{x - \frac{\pi}{2}} \)
 b) \(\lim_{x \to 0} \frac{\sin(\frac{\pi}{6} + x) - \frac{1}{2}}{x} \)
 c) \(\lim_{x \to 2^-} \frac{1}{\sin(x - 2)} \)
 d) \(\lim_{x \to 2} \frac{x^2 - 2x}{\sin(x - 2)} \)
 e) \(\lim_{x \to 0} \frac{e^{x+2} - e^2}{x} \)
 f) \(\lim_{t \to 0} \frac{\tan^2(4t)}{\tan(5t) \sin t} \)

2. Find \(f'(x) \). For b you can do it with the chain rule or the product rule. Compare the answers.

 a) \(f(x) = \sin(x^2) \)
 b) \(f(x) = \sin(2x) = 2 \sin x \cos x \)
 c) \(f(x) = \sqrt{\tan(3x)} \)
 d) \(f(x) = \sec^n(x) \)

3. a) Show that the tangent to a circle is perpendicular to a radial line through the center and the point of tangency using implicit differentiation on the equation for the unit circle.

 b) Is the same true for the ellipse \(\frac{x^2}{4} + \frac{y^2}{9} = 1 \)?

4. A curve is described by \(\tan x \sec y + xy = A \). Use implicit differentiation to find \(y' \).

5. A curve has equation \(x^2 = \frac{x + 2y}{x - 2y} \). Find the tangent line to the curve at the point (1, 0).

6. \(x = 2 \cos^2 t + \sin(4t) \quad y = \tan^2 t \quad -\frac{\pi}{2} < t < \frac{\pi}{2} \) Find the equations of the tangent lines to this curve at the point (1, 1).

7. Find the 127th derivative with respect to \(x \) of \(f(x) = \cos(5x) \).

8. Show that \(y = Ae^{-x} + Bxe^{-x} \) solves the differential equation \(y'' + 2y' + y = 0 \)

9. For what values of \(a \) does \(y = e^{ax} \) solve the differential equation \(y'' = y' + y \)?

10. \(f(x) = p(x)e^x \) where \(p(x) \) is differentiable three times. Find the third derivative of \(f(x) \) with respect to \(x \).
11. A tank is in the shape of an inverted cone having height 16 ft. and top radius of 4 ft. Water is filling the tank at the rate of 2 cubic feet per minute. How fast is the depth of the water rising when the water is 5 feet deep?

12. Car A is traveling due east toward an intersection at 40 mph. Car B is traveling due north toward the same intersection at 30 mph. How fast is the distance between them decreasing when car A is 300 feet away and car B is 400 feet away from the intersection. Note, the conversion from feet to miles will cancel out.

13. \(h(x) = f(g(x)) \). \(L_1(x) = 5x-3 \) is the linear approximation to \(g(x) \) near \(x=1 \). \(L_2(u) = 4u+5 \) is the linear approximation to \(f(u) \) near \(u=2 \). Find the linear approximation to \(h(x) \) near \(x=1 \).

14. Use linear approximation to approximate \(\sqrt[3]{30} \).

15. Find the inverse function to \(f(x) = \frac{x+1}{x-2} \). Find the asymptotes of \(f \) and the asymptotes of the inverse.

16. \(f(x) = e^x \) Find the derivative of \(f^{-1}(u) \) at any \(u \).

17. The tangent line to a function, \(f \), at \(x=1 \) is \(y = -3x + 5 \). \(f \) is one to one near \(x = 1 \). Find the tangent line to the inverse function at \(x=f(1) \).

18. The path of an object is a curve with the given vector equation. Find the velocity, speed and acceleration.

\[\vec{r}(t) = \sqrt{t^2 + 1} \hat{i} + te^t \hat{j} \]

\[\vec{r}(t) = \frac{t}{e^t} \hat{i} + e^{2t} \hat{j} \]

19. \(f(x) = e^{-x^2} \) a) Find an equation of the tangent line at \(x=0 \).

b) Find the 2nd derivative of \(f(x) \).

20. Find a formula for the nth derivative of \(f(x) \).

\[a) \quad f(x) = xe^{-x} \quad b) \quad f(x) = xe^x \quad c) \quad g(x) = 2xe^{2x} \]

21. A curve is given parametrically by \(x(t) = t^2e^{t+2} \quad y(t) = t^2e^{-t^2} \).

Find the points where the tangent line is horizontal and the points where it is vertical.
22. Find the two tangent lines to \(y = x^2 - x \) that pass through the point (5, 19).

23. Evaluate each limit.

\[a) \lim_{x \to 0^+} \frac{1}{e^x} \quad b) \lim_{x \to 0^-} \frac{1}{e^x} \quad c) \lim_{x \to \infty} \frac{7e^x + 2}{14e^x + 3} \quad d) \lim_{x \to -\infty} \frac{7e^x + 2}{14e^x + 3} \]

24. Determine the values of \(a \) and \(b \) so that the function is continuous and differentiable for all \(x \).

\[a) \quad f(x) = \begin{cases} x^2 + 5x + 7 & x < 1 \\ ax + b & 1 \leq x \end{cases} \quad b) \quad f(x) = \begin{cases} x^3 - bx & x < 1 \\ ax^2 + bx & 1 \leq x \end{cases} \]