Section 13.4 Polar Coordinates

Some relations in \(x \) and \(y \) are simpler to graph if we use polar coordinates.

For example: \(x^2 + y^2 - \sqrt{x^2 + y^2} = x \)

We substitute \(x = r \cos \theta \), \(y = r \sin \theta \)

\[x^2 + y^2 = r^2 \]

The equation in \(r \) and \(\theta \) is

\[r^2 - r = r \cos \theta \]

\[r - 1 = \cos \theta \]

\[r = 1 + \cos \theta \]

We can graph this in the \((0, r)\) plane and transfer to the \((x, y)\) plane.

\[
\begin{array}{c}
\theta = \frac{\pi}{2} \\
r = 1 \\
p(x, y)
\end{array}
\]

\[
\begin{array}{c}
\theta = 0 \\
r = 2
\end{array}
\]

\[
\begin{array}{c}
\theta = \pi \\
r = 2
\end{array}
\]

\[
\begin{array}{c}
\theta = -\frac{\pi}{2} \\
r = 1 \\
p(x, y)
\end{array}
\]

The arrows indicate the direction around the curve as \(\theta \) increases.

\[
\theta = \frac{\pi}{2} \\
r = 1 \\
p(x, y)
\]

\[
\begin{array}{c}
\theta = 0 \\
r = 2
\end{array}
\]

\[
\begin{array}{c}
\theta = \pi \\
r = 2
\end{array}
\]

\[
\begin{array}{c}
\theta = -\frac{\pi}{2} \\
r = 1 \\
p(x, y)
\end{array}
\]

\[
\begin{array}{c}
\theta = 0 \\
r = 2
\end{array}
\]

\[
\begin{array}{c}
\theta = \pi \\
r = 2
\end{array}
\]

\[
\begin{array}{c}
\theta = -\frac{\pi}{2} \\
r = 1 \\
p(x, y)
\end{array}
\]

\[
\begin{array}{c}
\theta = 0 \\
r = 2
\end{array}
\]

\[
\begin{array}{c}
\theta = \pi \\
r = 2
\end{array}
\]

\[
\begin{array}{c}
\theta = -\frac{\pi}{2} \\
r = 1 \\
p(x, y)
\end{array}
\]

\[
\begin{array}{c}
\theta = 0 \\
r = 2
\end{array}
\]

\[
\begin{array}{c}
\theta = \pi \\
r = 2
\end{array}
\]

\[
\begin{array}{c}
\theta = -\frac{\pi}{2} \\
r = 1 \\
p(x, y)
\end{array}
\]

\[
\begin{array}{c}
\theta = 0 \\
r = 2
\end{array}
\]

\[
\begin{array}{c}
\theta = \pi \\
r = 2
\end{array}
\]

\[
\begin{array}{c}
\theta = -\frac{\pi}{2} \\
r = 1 \\
p(x, y)
\end{array}
\]

\[
\begin{array}{c}
\theta = 0 \\
r = 2
\end{array}
\]

\[
\begin{array}{c}
\theta = \pi \\
r = 2
\end{array}
\]

\[
\begin{array}{c}
\theta = -\frac{\pi}{2} \\
r = 1 \\
p(x, y)
\end{array}
\]

\[
\begin{array}{c}
\theta = 0 \\
r = 2
\end{array}
\]

\[
\begin{array}{c}
\theta = \pi \\
r = 2
\end{array}
\]

\[
\begin{array}{c}
\theta = -\frac{\pi}{2} \\
r = 1 \\
p(x, y)
\end{array}
\]

\[
\begin{array}{c}
\theta = 0 \\
r = 2
\end{array}
\]

\[
\begin{array}{c}
\theta = \pi \\
r = 2
\end{array}
\]

\[
\begin{array}{c}
\theta = -\frac{\pi}{2} \\
r = 1 \\
p(x, y)
\end{array}
\]

\[
\begin{array}{c}
\theta = 0 \\
r = 2
\end{array}
\]

\[
\begin{array}{c}
\theta = \pi \\
r = 2
\end{array}
\]

\[
\begin{array}{c}
\theta = -\frac{\pi}{2} \\
r = 1 \\
p(x, y)
\end{array}
\]

\[
\begin{array}{c}
\theta = 0 \\
r = 2
\end{array}
\]

\[
\begin{array}{c}
\theta = \pi \\
r = 2
\end{array}
\]

\[
\begin{array}{c}
\theta = -\frac{\pi}{2} \\
r = 1 \\
p(x, y)
\end{array}
\]

\[
\begin{array}{c}
\theta = 0 \\
r = 2
\end{array}
\]

\[
\begin{array}{c}
\theta = \pi \\
r = 2
\end{array}
\]

\[
\begin{array}{c}
\theta = -\frac{\pi}{2} \\
r = 1 \\
p(x, y)
\end{array}
\]

\[
\begin{array}{c}
\theta = 0 \\
r = 2
\end{array}
\]

\[
\begin{array}{c}
\theta = \pi \\
r = 2
\end{array}
\]

\[
\begin{array}{c}
\theta = -\frac{\pi}{2} \\
r = 1 \\
p(x, y)
\end{array}
\]

\[
\begin{array}{c}
\theta = 0 \\
r = 2
\end{array}
\]

\[
\begin{array}{c}
\theta = \pi \\
r = 2
\end{array}
\]

\[
\begin{array}{c}
\theta = -\frac{\pi}{2} \\
r = 1 \\
p(x, y)
\end{array}
\]

\[
\begin{array}{c}
\theta = 0 \\
r = 2
\end{array}
\]

\[
\begin{array}{c}
\theta = \pi \\
r = 2
\end{array}
\]

\[
\begin{array}{c}
\theta = -\frac{\pi}{2} \\
r = 1 \\
p(x, y)
\end{array}
\]

\[
\begin{array}{c}
\theta = 0 \\
r = 2
\end{array}
\]

\[
\begin{array}{c}
\theta = \pi \\
r = 2
\end{array}
\]

\[
\begin{array}{c}
\theta = -\frac{\pi}{2} \\
r = 1 \\
p(x, y)
\end{array}
\]

\[
\begin{array}{c}
\theta = 0 \\
r = 2
\end{array}
\]

\[
\begin{array}{c}
\theta = \pi \\
r = 2
\end{array}
\]

\[
\begin{array}{c}
\theta = -\frac{\pi}{2} \\
r = 1 \\
p(x, y)
\end{array}
\]

\[
\begin{array}{c}
\theta = 0 \\
r = 2
\end{array}
\]

\[
\begin{array}{c}
\theta = \pi \\
r = 2
\end{array}
\]
Graph \(r = \sin(3\theta) \)

Start with a rectangular \(\theta-r \) graph.

Each time \(r \) is 0, we are back at the origin in the \(x-y \) plane.

As \(\theta \) increases between 0 and \(\frac{\pi}{6} \), the radius increases from 0 to 1. Then the radius decreases back to 0 as \(\theta \) increases to \(\frac{\pi}{3} \).

For \(0 \leq \theta \leq \frac{\pi}{3} \), the graph is:

For \(\frac{\pi}{3} \leq \theta \leq \frac{2\pi}{3} \), \(r \) is negative so these points are reflected through the origin.

For \(\frac{\pi}{3} \leq \theta \leq \frac{2\pi}{3} \), the graph is
The graph from 0 to π is

3rd loop
$\frac{2\pi}{3} \leq \theta \leq \pi$

1st loop
$0 \leq \theta \leq \frac{\pi}{3}$

2nd loop
$\frac{\pi}{3} \leq \theta \leq \frac{2\pi}{3}$

Increasing beyond π repeats these loops.