1. Plot some vectors in each quadrant for each vector field.

\[a) \mathbf{F}(x, y) = \frac{y \mathbf{i} - x \mathbf{j}}{\sqrt{x^2 + y^2}} \quad b) \mathbf{F}(x, y) = x \mathbf{i} - y \mathbf{j} \]

\[c) \mathbf{F}(x, y) = \nabla f(x, y) \quad f(x, y) = \ln \sqrt{x^2 + y^2} \]

2. Evaluate \(\int_C f(x, y) \, ds \).

\[a) \quad f(x, y) = \sqrt{x^2 + y^2} \quad x = t \cos t, \quad y = t \sin t, \quad 0 \leq t \leq \pi \]

\[b) \quad f(x, y) = e^{x+y} \quad C \text{ is the triangle with vertices } (0,0), (1,0) \text{ and } (0,1) \]

3. Evaluate each line integral.

\[a) \int_C \sin y \, dy \quad C : y = x^2, \quad 0 \leq x \leq \sqrt{\pi} \]

\[b) \int_C x \sqrt{y} \, dx + 2y \sqrt{x} \, dy \quad C : \quad y = \sqrt{1-x^2} \quad \text{from } (1,0) \text{ to } (0,1) \]

\[c) \oint_C \mathbf{F} \cdot d\mathbf{r} \quad \mathbf{F} = \langle x^2, xy, z^2 \rangle \quad C : \quad \mathbf{r}(t) = \langle \sin t, \cos t, t^2 \rangle \quad 0 \leq t \leq \pi/2 \]

4. Find the work done if the force \(\mathbf{F}(x, y) = \langle x^2, xy \rangle \) is applied once counterclockwise

a) around the circle \(x^2 + y^2 = 4 \).

b) around the boundary of the triangle from (0,0) to (2,0) to (0,2) and back to (0,0)
5. Evaluate each line integral.

a) \[\int_{C} \nabla f \cdot dr \] \quad f(x, y) = (x - y)e^{x^2+y^2} \quad C : x = 4 \cos t \quad y = 4 \sin t \quad 0 \leq t \leq \pi/2 \]

b) \[\int_{C} \vec{F} \cdot dr \] \quad \vec{F}(x, y) = -y \sin xy \vec{i} + x \cos xy \vec{j} \quad C \text{ is the line segment from } (0,0) \text{ to } (1, \pi/3). \]

c) \[\int_{C} \vec{F} \cdot dr \] \quad \vec{F}(x, y) = (-y \sin(xy) + y) \vec{i} - (x \sin(xy)) \vec{j} \quad C \text{ is the line segment from } (0,0) \text{ to } (1, \pi/3). \]

6. Find a potential function if possible or show the force function is not conservative.

a) \[\vec{F}(x, y) = (ye^{xy} + 4x^3y) \vec{i} + (xe^{xy} + x^4) \vec{j} \]

b) \[\vec{F}(x, y) = xye^{xy} \vec{i} + x^2e^{xy} \vec{j} \]

c) \[\vec{F}(x, y) = (y \cos x - \cos y) \vec{i} + (\sin x + x \sin y) \vec{j} \]

d) \[\vec{F}(x, y) = (e^{2x} + x \sin y) \vec{i} + x^2 \cos y \vec{j} \]

7. Show \(\vec{F} \) is independent of path and evaluate \[\int_{C} \vec{F} \cdot dr \].

a) \[\vec{F}(x, y, z) = 2x y^3 z^4 \vec{i} + 3x^2 y^2 z^4 \vec{j} + 4x^2 y^3 z^3 \vec{k} \] \quad C : \quad \{t, t^2, t^3\} \quad 0 \leq t \leq 2 \]

b) \[\vec{F}(x, y) = (2y^2 - 12x^3y^3 + 3x^2) \vec{i} + (4xy - 9x^4y^2 + 4y^3) \vec{j} \] \quad C \text{ is the line segment from } (0,0) \text{ to } (2,3) \]

c) \[\vec{F}(x, y) = -\frac{y}{x^2} \vec{i} + \frac{1}{x} \vec{j} \] \quad C \text{ is any path, not crossing the y-axis, from } (1,1) \text{ to } (2,6). \text{ Does the Fundamental Theorem apply for the line segment from } (-2,3) \text{ to } (2,5)?
8. Evaluate

\[\int_C \mathbf{F} \cdot d\mathbf{r} \quad \mathbf{F} = ye^{x^2+y^2} \mathbf{i} + xe^{x^2+y^2} \mathbf{j} \]
\(C \) is the line segment from (0,0) to (1,0) followed by the quarter of the unit circle from (1,0) to (0,1) followed by the line segment from (0,1) to (0,0).

9. Evaluate

\[\int_C (3x^2y^4 - xy) \, dx + 4x^3y^3 \, dy \]
\(C \) is the boundary of the quarter circle of radius 1 from (1,0) to (0,1). Note that \(C \) is not closed but the integrals on the line segments (0,1) to (0,0) and (0,0) to (1,0) are 0.

10. Evaluate using Green’s Theorem.

a) \[\int_C \mathbf{F} \cdot d\mathbf{r} \quad \mathbf{F} = ye^{x^2+y^2} \mathbf{i} + xe^{x^2+y^2} \mathbf{j} \]
\(C \) is the boundary of the sector of the unit circle \(0 \leq \theta \leq \frac{\pi}{4}, \quad 0 \leq r \leq 1. \)

b) \[\int_C (y^2 - \arctan x) \, dx + (3x + \sin y) \, dy \]
\(C \) is the curve \(y = x^2 \) from (-2,4) to (2,4) followed by the line segment from (2,4) to (-2,4).

c) \[\int_C \mathbf{F} \cdot d\mathbf{r} \quad \mathbf{F} = xy^2 \mathbf{i} + y \arcsin x \mathbf{j} \]
\(C \) is the boundary of the quarter of the unit circle from (1,0) to (0,1). Note: \(C \) is not closed.