Section 14.9 The Divergence Theorem

Recall the 2nd statement of Green’s Theorem:

\[\oint_{C} F \cdot n \, ds = \iint_{D} \text{div} F \, dA \]

where \(C \) is a simple closed curve enclosing the region \(D \), and the components of the vector field, \(F \), have continuous partial derivatives on an open region containing \(C \) and \(D \).

The Divergence Theorem extends this to \(\mathbb{R}^3 \).

We assume: \(E \) is a simple solid region with boundary surface \(S \). \(S \) is a closed surface with outward orientation. The components of the vector field, \(F \), have continuous partial derivatives on an open region containing \(E \) and \(S \).

Then

\[\iiint_{E} \text{div} F \, dV = \oiint_{S} F \cdot n \, dS \]

Examples:

1. \(\vec{F} (x, y, z) = ax \vec{i} + by \vec{j} + cz \vec{k} \) \(S \) is the surface of the sphere of radius \(A \).

Use the Divergence Theorem to find the flux of \(F \) across \(S \).

2. Find the flux of \(\vec{F} = x \vec{i} + y \vec{j} + 4 \vec{k} \) across the surface of the region bounded by \(x^2 + z^2 = 1, \ y = 0, \) and \(x + y = 3 \).

3. Find the flux of \(\vec{F} = x^3 \vec{i} + 2xz^2 \vec{j} + 3y^2 z \vec{k} \) across surface of the region bounded by \(z = 4 - x^2 - y^2, \) and \(z = 0 \).