If three masses \(m_1, m_2, m_3 \) are located at the points \((x_i, y_i) \quad i = 1, 2, 3 \) then the center of mass is at \((x, y)\) where \(x \) the weighted average of the \(x \) - values and \(y \) is the weighted average of the \(y \) - values.

\[
x = \frac{1}{M} \sum_{i=1}^{3} x_i m_i, \quad y = \frac{1}{M} \sum_{i=1}^{3} y_i m_i, \quad M = m_1 + m_2 + m_3.
\]

In general, for a lamina in the shape of region \(D \) with continuous density function \(\rho(x, y) \),

the center of mass is \((x, y)\) with

\[
x = \frac{1}{M} \iint_D x \rho(x, y) \, dA, \quad y = \frac{1}{M} \iint_D y \rho(x, y) \, dA, \quad M = \iint_D \rho(x, y) \, dA
\]

Examples

Find the center of mass for the lamina described by the region \(D \) with density function \(\rho(x, y) \).

1. \(D \) is the rectangle \((0,0)\) and \((2,3)\) as opposite corners, \(\rho(x, y) = y \).

2. \(D \) is the triangle with corners \((0,0)\), \((1,1)\) and \((4,0)\), \(\rho(x, y) = x \).

3. \(D \) is the unit disk \(x^2 + y^2 \leq 1 \), \(\rho(x, y) = K(x^2 + y^2) \), \(K \) a constant

4. Find the moment of inertia about the \(x \)-axis which is \(I_x = \iint_D y^2 \rho(x, y) \, dA \) for

\(D \) bounded by \(y = \sin x \), \(y = 0 \), \(0 \leq x \leq \pi \) and constant density function, \(\rho \).