323 HONORS SPRING 2014, HOMEWORK DUE 2/11: PLEASE HAND IN SEPARATE FROM LEON HW

These problems are in addition to the assigned problems from Leon.
(1) A convex linear combination of vectors $\mathbf{v}_{1}, \cdots, \mathbf{v}_{m}$ is a vector of the form $\mathbf{w}=c_{1} \mathbf{v}_{1}+\cdots+$ $c_{m} \mathbf{v}_{m}$ where $c_{j} \geq 0$ and $\sum_{j} c_{j}=1$. Prove that any convex linear combination of m vectors $\mathbf{v}_{1}, \cdots, \mathbf{v}_{m}$ in \mathbb{R}^{n} is also a convex linear combination of no more than $n+1$ of the vectors $\mathbf{v}_{1}, \cdots, \mathbf{v}_{m}$.
(2) A function $f: \mathbb{R} \rightarrow \mathbb{R}$ is periodic with period p if $f(x+p)=f(x)$ for all $x \in \mathbb{R}$. Show that the space of periodic functions with period 2π is a linear subspace of the space of all functions $\mathbb{R} \rightarrow \mathbb{R}$.
(3) Let $C^{0}(\mathbb{R})_{2 \pi}$ denote the vector space of continuous functions of period 2π. Show that the functions $\sin (x), \sin (2 x), \sin (3 x)$ are linearly independent elements of $C^{0}(\mathbb{R})_{2 \pi}$. What about $\sin (x), \sin (2 x), \cdots, \sin (k x)$ for any k ?
(4) Show that the functions $1, \cos (x), \cos ^{2}(x), \cos ^{3}(x)$ are linearly independent vectors in $C^{0}(\mathbb{R})_{2 \pi}$. Show that the function $\sin \left(\frac{x}{2}\right)$ lies in their span.
E-mail address: jml@math.tamu.edu

