323 HONORS SPRING 2014, HOMEWORK DUE 2/11: PLEASE HAND IN SEPARATE FROM LEON HW

These problems are in addition to the assigned problems from Leon.

- (1) A convex linear combination of vectors $\mathbf{v}_1, \dots, \mathbf{v}_m$ is a vector of the form $\mathbf{w} = c_1 \mathbf{v}_1 + \dots + c_m \mathbf{v}_m$ where $c_j \ge 0$ and $\sum_j c_j = 1$. Prove that any convex linear combination of m vectors $\mathbf{v}_1, \dots, \mathbf{v}_m$ in \mathbb{R}^n is also a convex linear combination of no more than n + 1 of the vectors $\mathbf{v}_1, \dots, \mathbf{v}_m$.
- (2) A function $f : \mathbb{R} \to \mathbb{R}$ is *periodic* with period p if f(x+p) = f(x) for all $x \in \mathbb{R}$. Show that the space of periodic functions with period 2π is a linear subspace of the space of all functions $\mathbb{R} \to \mathbb{R}$.
- (3) Let $C^0(\mathbb{R})_{2\pi}$ denote the vector space of continuous functions of period 2π . Show that the functions $\sin(x), \sin(2x), \sin(3x)$ are linearly independent elements of $C^0(\mathbb{R})_{2\pi}$. What about $\sin(x), \sin(2x), \cdots, \sin(kx)$ for any k?
- (4) Show that the functions $1, \cos(x), \cos^2(x), \cos^3(x)$ are linearly independent vectors in $C^0(\mathbb{R})_{2\pi}$. Show that the function $\sin(\frac{x}{2})$ lies in their span.

E-mail address: jml@math.tamu.edu