323 Honors homework due 4/15

April 5, 2014

Let \mathfrak{S}_n denote the set of permutations of $\{1, \ldots, n\}$. This set is a group, i.e., there is a well defined multiplication: given $\sigma, \tau \in \mathfrak{S}_n$, the composition $\sigma \circ \tau$ (performing τ then σ on a set) is also a permutation, every permutation has an inverse permutation and there is an identity permutation. For each $\sigma \in \mathfrak{S}_n$, let $P_{\sigma} : \mathbb{R}^n \to \mathbb{R}^n$ denote the corresponding permutation matrix.

- 1. There is a special line in \mathbb{R}^n that is an eigenline for every P_{σ} . Find the line and the corresponding eigenvalue.
- 2. Show that every eigenvalue λ of a permutation matrix P_{σ} is such that $|\lambda| := \lambda \overline{\lambda} = 1$.
- 3. Find the eigenvalues of the permutation (1, 2, ..., n) (we did this in class).
- 4. I mentioned in class that every permutation σ can be decomposed into a product of disjoint cycles. Say those cycles have lengths p_1, p_2, \ldots, p_t where if an element is fixed by σ it gets its own cycle of length one, a transposition, e.g. (1,2) has length two etc... Order the cycles such that $p_1 \ge p_2 \ge \cdots \ge p_t$. Note that we must have $p_1+p_2+\cdots+p_t = n$ as every element of $\{1,\ldots,n\}$ must be accounted for. Determine the eigenvalues of P_{σ} in terms of the integers p_1,\ldots,p_t .
- 5. Note that the previous exercise implies that any two permutations with the same p_1, \ldots, p_t have the same eigenvalues. We also saw that two non-defective matrices with the same eigenvalues are conjugate to one another (recall that $A = XBX^{-1}$ for some X implies A, B have the same eigenvalues). Show that two permutations have the same p_1, \ldots, p_t if and only if they are conjugate.