323 Honors homework due 4/15

April 5, 2014

Let \mathfrak{S}_{n} denote the set of permutations of $\{1, \ldots, n\}$. This set is a group, i.e., there is a well defined multiplication: given $\sigma, \tau \in \mathfrak{S}_{n}$, the composition $\sigma \circ \tau$ (performing τ then σ on a set) is also a permutation, every permutation has an inverse permutation and there is an identity permutation. For each $\sigma \in \mathfrak{S}_{n}$, let $P_{\sigma}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ denote the corresponding permutation matrix.

1. There is a special line in \mathbb{R}^{n} that is an eigenline for every P_{σ}. Find the line and the corresponding eigenvalue.
2. Show that every eigenvalue λ of a permutation matrix P_{σ} is such that $|\lambda|:=$ $\lambda \bar{\lambda}=1$.
3. Find the eigenvalues of the permutation $(1,2, \ldots, n)$ (we did this in class).
4. I mentioned in class that every permutation σ can be decomposed into a product of disjoint cycles. Say those cycles have lengths $p_{1}, p_{2}, \ldots, p_{t}$ where if an element is fixed by σ it gets its own cycle of length one, a transposition, e.g. $(1,2)$ has length two etc... Order the cycles such that $p_{1} \geq p_{2} \geq \cdots \geq p_{t}$. Note that we must have $p_{1}+p_{2}+\cdots+p_{t}=n$ as every element of $\{1, \ldots, n\}$ must be accounted for. Determine the eigenvalues of P_{σ} in terms of the integers p_{1}, \ldots, p_{t}.
5. Note that the previous exercise implies that any two permutations with the same p_{1}, \ldots, p_{t} have the same eigenvalues. We also saw that two non-defective matrices with the same eigenvalues are conjugate to one another (recall that $A=X B X^{-1}$ for some X implies A, B have the same eigenvalues). Show that two permutations have the same p_{1}, \ldots, p_{t} if and only if they are conjugate.
