323 HONORS SPRING 2014, HOMEWORK DUE 2/18

1. How to recover a polynomial from samples

Problem : Let $P(x)$ be a polynomial of degree at most n, presented in some indirect or inefficient manner, such that our computer can, for any (say rational) number λ, compute $P(\lambda)$ for us. How can we obtain an expression of $P(x)$ of the form $P(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots a_{n} x^{n}$ for some constants a_{j} ?
Answer : Sample P at $n+1$ points $\lambda_{0}, \cdots, \lambda_{n}$ (e.g., in practice you could take these to be $0,1,2, \cdots, n)$. We obtain $n+1$ linear equations for the $n+1$ unknowns a_{0}, \cdots, a_{n}. Explicitly:

$$
\left(\begin{array}{ccccc}
1 & \lambda_{0} & \lambda_{0}^{2} & \cdots & \lambda_{0}^{n} \tag{1}\\
& & \vdots & & \\
1 & \lambda_{n} & \lambda_{0}^{2} & \cdots & \lambda_{n}^{n}
\end{array}\right)\left(\begin{array}{c}
a_{0} \\
\vdots \\
a_{n}
\end{array}\right)=\left(\begin{array}{c}
P\left(\lambda_{0}\right) \\
\vdots \\
P\left(\lambda_{n}\right)
\end{array}\right)
$$

So taking the inverse of this size $(n+1)$ Vandermonde matrix we obtain the coefficients.
Remark 1.1. Note that if we wanted to do this calculation for a collection of polynomials, after the initial overhead of computing once and for all the inverse of a size $(n+1)$ Vandermonde matrix of our choosing, it is very cheap computationally to recover the coefficients of the polynomial. We will see several applications taking advantage of this.

Exercise 1.2: Find the cofficients of the degree three polynomial $p(x)$ such that $p(0)=1, p(1)=$ $7, p(2)=23, p(3)=61$.

2. A FASt algorithm for evaluating elementary symmetric functions

Write

$$
\begin{equation*}
e_{k}(x)=e_{k}\left(x_{1}, \cdots, x_{n}\right)=\sum_{1 \leq i_{1}<\cdots<i_{k} \leq n} x_{i_{1}} \cdots x_{i_{k}} \tag{2}
\end{equation*}
$$

for the k-th elementary symmetric function in n variables. Note that this expression involves $\binom{n}{k}$ monomials, so to evaluate it on a given n-tuple of numbers in this form involves a large number of arithmetic operations (think of the case $k=\left\lfloor\frac{n}{2}\right\rfloor$ and recall that $\left.\binom{2 m}{m} \simeq \frac{4^{m}}{\sqrt{\pi m}}\right)$.

The first step will be to note the following polynomial $E(x, t):=\prod_{i=1}^{n}\left(x_{i}+t\right)$ is such that the coefficient of t^{k} is $e_{n-k}(x)$, where by convention we set $e_{0}(x)=1$. (Such a function is called a generating function.)
Exercise 2.1: Show that the Taylor series expansion of $P(x, t):=\sum_{i=1}^{n} \frac{x_{i}}{1-t x_{i}}$ is a generating function for the power sum functions $p_{k}(x):=x_{1}^{k}+\cdots+x_{n}^{k}$.

We think of $E(x, t)$ as a polynomial in t whose coefficients we would like to recover. Write

$$
\left(\begin{array}{ccccc}
1 & \lambda_{0} & \lambda_{0}^{2} & \cdots & \lambda_{0}^{n} \tag{3}\\
1 & & \vdots & & \\
1 & \lambda_{n} & \lambda_{0}^{2} & \cdots & \lambda_{n}^{n}
\end{array}\right)\left(\begin{array}{c}
e_{0} \\
\vdots \\
e_{n}
\end{array}\right)=\left(\begin{array}{c}
E\left(x, \lambda_{0}\right) \\
\vdots \\
E\left(x, \lambda_{n}\right)
\end{array}\right)
$$

Note that each $E\left(x, \lambda_{i}\right)=\left(x_{1}-\lambda_{i}\right) \cdots\left(x_{n}-\lambda_{i}\right)$ is just a product of n linear forms and hence is easy to evaluate on any given x. (More precisely, one only needs to perform n additions and
$n-1$ multiplications.) Thus, even $e_{\left\lfloor\frac{n}{2}\right\rfloor}$ can be evaluated using just on the order of n^{2} arithmetic operations compared with $O\left(2^{n}\right)$ using the naive formula.

E-mail address: jml@math.tamu.edu

