323 HONORS SPRING 2014, HOMEWORK DUE 2/4

These problems are in addition to the assigned problems from Leon.
(1) Prove that the determinant of an $n \times n$ skew-symmetric matrix is zero when n is odd.
(2) Let $x^{i}, 1 \leq i \leq n$ be variables, and let A be the $n \times n$ matrix with $A_{i+1}^{i}=x_{i}$, for $i<n, A_{1}^{n}=$ x_{n}, and all other entries zero. Show that $\operatorname{det}\left(I_{n}+A+A^{2}+\cdots+A^{n-1}\right)=\left(1-x_{1} x_{2} \cdots x_{n}\right)^{n-1}$. Hint: recall the identity $\left(1+t+t^{2}+\cdots+t^{n-2}\right)(1-t)=1-t^{n}$.
(3) Let $x^{i}, y_{j}, 1 \leq i, j \leq n$ be variables, and let A be the $n \times n$ matrix with $A_{j}^{i}=\frac{1}{1-x^{i} y_{j}}$. Compute $\operatorname{det} A$. Hint: use the Cauchy determinant for inspiration.
(4) Let A be an $n \times n$ matrix and λ a variable. Prove that $\operatorname{det}\left(A+\lambda I_{n}\right)=\lambda^{n}+\sum_{k=1}^{n} s_{k} \lambda^{n-k}$ where s_{k} is the sum of all $\binom{n}{k}$ principal minors of size k of A.
(5) Prove that the inverse of an upper triangular matrix is also upper triangular.

E-mail address: jm1@math.tamu.edu

