323 HONORS SPRING 2014, HOMEWORK DUE 2/4

These problems are in addition to the assigned problems from Leon.

- (1) Prove that the determinant of an $n \times n$ skew-symmetric matrix is zero when n is odd.
- (2) Let x^i , $1 \le i \le n$ be variables, and let A be the $n \times n$ matrix with $A^i_{i+1} = x_i$, for i < n, $A^n_1 = x_n$, and all other entries zero. Show that $\det(I_n + A + A^2 + \dots + A^{n-1}) = (1 x_1 x_2 \dots x_n)^{n-1}$. Hint: recall the identity $(1 + t + t^2 + \dots + t^{n-2})(1 - t) = 1 - t^n$.
- (3) Let $x^i, y_j, 1 \le i, j \le n$ be variables, and let A be the $n \times n$ matrix with $A_j^i = \frac{1}{1-x^i y_j}$. Compute det A. Hint: use the Cauchy determinant for inspiration.
- (4) Let A be an $n \times n$ matrix and λ a variable. Prove that $\det(A + \lambda I_n) = \lambda^n + \sum_{k=1}^n s_k \lambda^{n-k}$ where s_k is the sum of all $\binom{n}{k}$ principal minors of size k of A.

(5) Prove that the inverse of an upper triangular matrix is also upper triangular. *E-mail address*: jml@math.tamu.edu