323 HONORS SPRING 2014, HOMEWORK DUE 5/2

Let \mathfrak{S}_n denote the set (group) of permutations of $\{1, \dots, n\}$. We saw that for each $\sigma \in \mathfrak{S}_n$ we get a linear map $P_{\sigma} : \mathbb{R}^n \to \mathbb{R}^n$ given by $P_{\sigma}(e_j) = e_{\sigma(j)}$. We also saw that there is a common eigenvector for all $\sigma \in \mathfrak{S}_n$, namely $e_1 + \dots + e_n$. Let $L \subset \mathbb{R}^n$ be the corresponding eigenline. We also saw that the matrices P_{σ} are orthogonal with respect to the standard inner product on \mathbb{R}^n , so $\langle P_{\sigma}v, P_{\sigma}w \rangle = \langle v, w \rangle$ for all $v, w \in \mathbb{R}^n$.

- (1) Let $L^{\perp} \subset \mathbb{R}^n$ be the orthogonal complement to L. Show that for all $\sigma \in \mathfrak{S}_n$, and $u \in L^{\perp}$, that $P_{\sigma}u \in L^{\perp}$. (One says that \mathfrak{S}_n preserves L^{\perp} .) Hint: show that $e_1 e_2, e_1 e_3, \dots, e_1 e_n$ is a basis of L^{\perp} and compute with this basis.
- (2) Let $\mathbb{R}^n \otimes \mathbb{R}^n$ denote the space of bilinear maps $\mathbb{R}^{n*} \times \mathbb{R}^{n*} \to \mathbb{R}$. Since we have the standard inner product on \mathbb{R}^n , this may be identified with the space of bilinear maps $\mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$, and we will do so. In bases, given an $n \times n$ matrix A one obtains the bilinear map B_A where $B_A(v,w) = v^T A w$. Show that if A is a symmetric matrix then $B_A(v,w) = B_A(w,v)$ for all $v, w \in \mathbb{R}^n$ and if A is a skew-symmetric matrix (i.e., $A^T = -A$) that $B_A(v,w) = -B_A(w,v)$ for all $v, w \in \mathbb{R}^n$.
- (3) Given $\sigma \in \mathfrak{S}_n$ define a linear map $P_{\sigma}^{\otimes 2} : \mathbb{R}^n \otimes \mathbb{R}^n \to \mathbb{R}^n \otimes \mathbb{R}^n$, given by $(P_{\sigma}^{\otimes 2}B)(v,w) = B(P_{\sigma}^{-1}v, P_{\sigma}^{-1}w)$. Show that in matrices this is $P_{\sigma}^{\otimes 2}(A) = P_{\sigma}AP_{\sigma}^{-1}$ and that for permutations σ, τ , on has $P_{\sigma \circ \tau}^{\otimes 2} = P_{\sigma}^{\otimes 2}P_{\tau}^{\otimes 2}$. (Here $\sigma \circ \tau$ denotes the composition of permutations.) This latter equality explains why one inserts the inverse in the definition of $P_{\sigma}^{\otimes 2}$: so composition of linear maps is compatible with composition of permutations.
- (4) Recall that any $n \times n$ matrix A can be uniquely written as the sum of a symmetric matrix plus a skew symmetric matrix. Write $S^2 \mathbb{R}^n$ and $\Lambda^2 \mathbb{R}^n$ respectively for the spaces of symmetric and skew-symmetric matrices. So in other words, $\mathbb{R}^n \otimes \mathbb{R}^n = S^2 \mathbb{R}^n \oplus \Lambda^2 \mathbb{R}^n$, where $S^2 \mathbb{R}^n$ is the space of symmetric bilinear maps and $\Lambda^2 \mathbb{R}^n$ is the space of skew-symmetric bilinear maps.

Show that \mathfrak{S}_n preserves this decomposition, i.e., for all $A \in S^2 \mathbb{R}^n$, $P_{\sigma}^{\otimes 2}(A) \in S^2 \mathbb{R}^n$ and for all $A \in \Lambda^2 \mathbb{R}^n$, $P_{\sigma}^{\otimes 2}(A) \in \Lambda^2 \mathbb{R}^n$.

- (5) We can refine the above decomposition by using the decomposition $\mathbb{R}^n = L \oplus L^{\perp}$, to obtain $\Lambda^2 \mathbb{R}^n = \Lambda^2 L^{\perp} \oplus (L^{\perp} \otimes L)$ and $S^2 \mathbb{R}^n = S^2 L^{\perp} \oplus (L^{\perp} \otimes L) \oplus S^2 L$. Show that \mathfrak{S}_n also preserves this refined decomposition. (Recall that for vector spaces A, B with inner products, $A \otimes B$ is the space of the bilinear maps $A \times B \to \mathbb{R}$.) Hints: for $x, y \in \mathbb{R}^n$, the matrix of $B_{x \otimes y}$ is xy^T . Show that $B_{x \otimes y-y \otimes x} \in \Lambda^2 \mathbb{R}^n$ and $B_{x \otimes y+y \otimes x} \in S^2 \mathbb{R}^n$. Now use your bases to get induced bases of these spaces.
- (6) Show that the space $S^2 L^{\perp}$ also has a proper subspace that is invariant under the action of \mathfrak{S}_n (and the orthogonal complement of this subspace is invariant as well).

E-mail address: jml@math.tamu.edu