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Chapter 1

Moving Frames and

Exterior Differential

Systems

In this chapter we motivate the use of differential forms to study problems
in geometry and partial differential equations. We begin with familiar ma-
terial: the Gauss and mean curvature of surfaces in E

3 in §1.1, and Picard’s
Theorem for local existence of solutions of ordinary differential equations in
§1.2. We continue in §1.2 with a discussion of a simple system of partial dif-
ferential equations, and then in §1.3 rephrase it in terms of differential forms,
which facilitates interpreting it geometrically. We also state the Frobenius
Theorem.

In §1.4, we review curves in E
2 in the language of moving frames. We

generalize this example in §§1.5–1.6, describing how one studies subman-
ifolds of homogeneous spaces using moving frames, and introducing the
Maurer-Cartan form. We give two examples of the geometry of curves in ho-
mogeneous spaces: classifying holomorphic mappings of the complex plane
under fractional linear transformations in §1.7, and classifying curves in E

3

under Euclidean motions (i.e., rotations and translations) in §1.8. We also
include exercises on plane curves in other geometries.

In §1.9, we define exterior differential systems and integral manifolds.
We prove the Frobenius Theorem, give a few basic examples of exterior dif-
ferential systems, and explain how to express a system of partial differential
equations as an exterior differential system using jet bundles.
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2 1. Moving Frames and Exterior Differential Systems

Throughout this book we use the summation convention: unless other-
wise indicated, summation is implied whenever repeated indices occur up
and down in an expression.

1.1. Geometry of surfaces in E3 in coordinates

Let E3 denote Euclidean three-space, i.e., the affine space R3 equipped with
its standard inner product.

Given two smooth surfaces S, S′ ⊂ E
3, when are they “equivalent”? For

the moment, we will say that two surfaces are (locally) equivalent if there
exist a rotation and translation taking (an open subset of) S onto (an open
subset of) S′.

Figure 1. Are these two surfaces equivalent?
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It would be impractical and not illuminating to try to test all possible
motions to see if one of them maps S onto S′. Instead, we will work as
follows:

Fix one surface S and a point p ∈ S. We will use the Euclidean motions
to put S into a normalized position in space with respect to p. Then any
other surface S′ will be locally equivalent to S at p if there is a point p′ ∈ S′

such that the pair (S′, p′) can be put into the same normalized position as
(S, p).

The implicit function theorem implies that there always exist coordinates
such that S is given locally by a graph z = f(x, y). To obtain a normalized
position for our surface S, first translate so that p = (0, 0, 0), then use a
rotation to make TpS the xy-plane, i.e., so that zx(0, 0) = zy(0, 0) = 0. We
will call such coordinates adapted to p. At this point we have used up all
our freedom of motion except for a rotation in the xy-plane.

If coordinates are adapted to p and we expand f(x, y) in a Taylor series
centered at the origin, then functions of the coefficients of the series that
are invariant under this rotation are differential invariants.

In this context, a (Euclidean) differential invariant of S at p is a function
I of the coefficients of the Taylor series for f at p, with the property that,
if we perform a Euclidean change of coordinates



x̃
ỹ
z̃


 = A



x
y
z


+



a
b
c


 ,

where A is a rotation matrix and a, b, c are arbitrary constants, after which
S is expressed as a graph z̃ = f̃(x̃, ỹ) near p, then I has the same value

when computed using the Taylor coefficients of f̃ at p. Clearly a necessary
condition for (S, p) to be locally equivalent to (S′, p′) is that the values
of differential invariants of S at p match the values of the corresponding
invariants of S′ at p′.
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For example, consider the Hessian of z = z(x, y) at p:

(1.1.1) Hessp =

(
zxx zyx

zxy zyy

)∣∣∣∣
p

.

Assume we are have adapted coordinates to p. If we rotate in the xy plane,
the Hessian gets conjugated by the rotation matrix. The quantities

(1.1.2)
K0 = det(Hessp) = (zxxzyy − z2

xy) |p,
H0 = 1

2trace(Hessp) = 1
2(zxx + zyy) |p .

are differential invariants because the determinant and trace of a matrix are
unchanged by conjugation by a rotation matrix. Thus, if we are given two
surfaces S, S′ and we normalize them both at respective points p and p′ as
above, a necessary condition for there to be a rigid motion taking p′ to p
such that the Taylor expansions for the two surfaces at the point p coincide
is that K0(S) = K0(S

′) and H0(S) = H0(S
′).

The formulas (1.1.2) are only valid at one point, and only after the sur-
face has been put in normalized position relative to that point. To calculate
K and H as functions on S it would be too much work to move each point
to the origin and arrange its tangent plane to be horizontal. But it is pos-
sible to adjust the formulas to account for tilted tangent planes (see §2.10).
One then obtains the following functions, which are differential invariants
under Euclidean motions of surfaces that are locally described as graphs
z = z(x, y):

(1.1.3)

K(x, y) =
zxxzyy − z2

xy

(1 + z2
x + z2

y)2
,

H(x, y) =
1

2

(1 + z2
y)zxx − 2zxzyzxy + (1 + z2

x)zyy

(1 + z2
x + z2

y)
3

2

,

respectively giving the Gauss and mean curvature of S at p = (x, y, z(x, y)).

Exercise 1.1.0.1: By locally describing each surface as a graph, calculate
the Gauss and mean curvature functions for a sphere of radius R, a cylinder
of radius r (e.g., x2+y2 = r2) and the smooth points of the cone x2+y2 = z2.

Once one has found invariants for a given submanifold geometry, one
may ask questions about submanifolds with special invariants. For surfaces
in E

3, one might ask which surfaces have K constant or H constant. These
can be treated as questions about solutions to certain partial differential
equations (PDE). For example, from (1.1.3) we see that surfaces with K ≡ 1
are locally given by solutions to the PDE

(1.1.4) zxxzyy − z2
xy = (1 + z2

x + z2
y)2.
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We will soon free ourselves of coordinates and use moving frames and dif-
ferential forms. As a provisional definition, a moving frame is a smoothly
varying basis of the tangent space to E

3 defined at each point of our sur-
face. In general, using moving frames one can obtain formulas valid at every
point analogous to coordinate formulas valid at just one preferred point. In
the present context, the Gauss and mean curvatures will be described at all
points by expressions like (1.1.2) rather than (1.1.3); see §2.1.

Another reason to use moving frames is that the method gives a uniform
procedure for dealing with diverse geometric settings. Even if one is origi-
nally only interested in Euclidean geometry, other geometries arise naturally.
For example, consider the warp of a surface, which is defined to be (k1−k2)

2,
where the kj are the eigenvalues of (1.1.1). It turns out that this quantity
is invariant under a larger change of coordinates than the Euclidean group,
namely conformal changes of coordinates, and thus it is easier to study the
warp in the context of conformal geometry.

Regardless of how unfamiliar a geometry initially appears, the method of
moving frames provides an algorithm to find differential invariants. Thus we
will have a single method for dealing with conformal, Hermitian, projective
and other geometries. Because it is familiar, we will often use the geometry
of surfaces in E

3 as an example, but the reader should keep in mind that
the beauty of the method is its wide range of applicability. As for the use
of differential forms, we shall see that when we express a system of PDE as
an exterior differential system, the geometric features of the system—i.e.,
those which are independent of coordinates—will become transparent.

1.2. Differential equations in coordinates

The first questions one might ask when confronted with a system of differ-
ential equations are: Are there any solutions? If so, how many?

In the case of a single ordinary differential equation (ODE), here is the
answer:

Theorem 1.2.0.2 (Picard1). Let f(x, u) : R
2 → R be a function with f and

fu continuous. Then for all (x0, u0) ∈ R
2, there exist an open interval I ∋ x0

and a function u(x) defined on I, satisfying u(x0) = u0 and the differential
equation

(1.2.1)
du

dx
= f(x, u).

Moreover, any other solution of this initial value problem must coincide with
this solution on I.

1See, e.g., [?], p.423



6 1. Moving Frames and Exterior Differential Systems

In other words, for a given ODE there exists a solution defined near x0

and this solution is unique given the choice of a constant u0. Thus for an
ODE for one function of one variable, we say that solutions depend on one
constant. More generally, Picard’s Theorem applies to systems of n first-
order ODE’s involving n unknowns, where solutions depend on n constants.

The graph in R
2 of any solution to (1.2.1) is tangent at each point to

the vector field X = ∂
∂x + f(x, u) ∂

∂u . This indicates how determined ODE
systems generalize to the setting of differentiable manifolds (see ). If M is a
manifold and X is a vector field on M , then a solution to the system defined
by X is an immersed curve c : I → M such that c′(t) = Xc(t) for all t ∈ I.
(This is also referred to as an integral curve of X.) Away from singular
points, one is guaranteed existence of local solutions to such systems and
can even take the solution curves as coordinate curves:

Theorem 1.2.0.3 (Flowbox coordinates2). Let M be an m-dimensional C∞

manifold, let p ∈ M , and let X ∈ Γ(TM) be a smooth vector field which
is nonzero at p. Then there exists a local coordinate system (x1, . . . , xm),
defined in a neighborhood U of p, such that ∂

∂x1 = X.

Consequently, there exists an open set V ⊂ U × R on which we may
define the flow of X, φ : V → M , by requiring that for any point q ∈ U ,
∂
∂tφ(q, t) = X|φ(q,t) The flow is given in flowbox coordinates by

(x1, . . . , xm, t) 7→ (x1 + t, x2, . . . , xm).

With systems of PDE, it becomes difficult to determine the appropriate
initial data for a given system (see for examples). We now examine a simple
PDE system, first in coordinates, and then later (in §??) using differential
forms.

Example 1.2.0.4. Consider the system for u(x, y) given by

(1.2.2)
ux = A(x, y, u),

uy = B(x, y, u),

where A,B are given smooth functions. Since (1.2.2) specifies both partial
derivatives of u, at any given point p = (x, y, u) ∈ R

3 the tangent plane to
the graph of a solution passing through p is uniquely determined.

In this way, (1.2.2) defines a smoothly-varying field of two-planes on R
3,

just as the ODE (1.2.1) defines a field of one-planes (i.e., a line field) on R
2.

For (1.2.1), Picard’s Theorem guarantees that the one-planes “fit together”
to form a solution curve through any given point. For (1.2.2), existence of
solutions amounts to whether or not the two-planes “fit together”.

2See, e.g., [?] vol. I, p.205
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We can attempt to solve (1.2.2) in a neighborhood of (0, 0) by solving
a succession of ODE’s. Namely, if we set y = 0 and u(0, 0) = u0, Picard’s
Theorem implies that there exists a unique function ũ(x) satisfying

(1.2.3)
dũ

dx
= A(x, 0, ũ), ũ(0) = u0.

After solving (1.2.3), hold x fixed and use Picard’s Theorem again on the
initial value problem

(1.2.4)
du

dy
= B(x, y, u), u(x, 0) = ũ(x).

This determines a function u(x, y) on some neighborhood of (0, 0). The
problem is that this function may not satisfy our original equation.

Whether or not (1.2.4) actually gives a solution to (1.2.2) depends on
whether or not the equations (1.2.2) are “compatible” as differential equa-
tions. For smooth solutions to a system of PDE, compatibility conditions
arise because mixed partials must commute, i.e., (ux)y = (uy)x. In our
example,

(ux)y =
∂

∂y
A(x, y, u) = Ay(x, y, u) +Au(x, y, u)

∂u

∂y
= Ay +BAu,

(uy)x = Bx +ABu,

so setting (ux)y = (uy)x reveals a “hidden equation”, the compatibility
condition

(1.2.5) Ay +BAu = Bx +ABu.

We will prove in §1.9 that the commuting of second-order partials in this case
implies that all higher-order mixed partials commute as well, so that there
are no further hidden equations. In other words, if (1.2.5) is an identity
in x, y, u, then solving the ODE’s (1.2.3) and (1.2.4) in succession gives a
solution to (1.2.2), and solutions depend on one constant.

Exercise 1.2.0.5: Show that, if (1.2.5) is an identity, then one gets the
same solution by first solving for ũ(y) = u(0, y).

If (1.2.5) is not an identity, there are several possibilities. If u appears in
(1.2.5), then it gives an equation which every solution to (1.2.2) must satisfy.
Given a point p = (0, 0, u0) at which (1.2.5) is not an identity, and such that
the implicit function theorem may be applied to (1.2.5) to determine u(x, y)
near (0, 0), then only this solved-for u can be the solution passing through
p. However, it still may not satisfy (1.2.2), in which case there is no solution
through p.

If u does not appear in (1.2.5), then it gives a relation between x and y,
and there is no solution defined on an open set around (0, 0).
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Remark 1.2.0.6. For more complicated systems of PDE, it is not as easy
to determine if all mixed partials commute. The Cartan-Kähler Theorem
(see Chapters 5 and 7) will provide an algorithm which tells us when to stop
checking compatibilities.

Exercises 1.2.0.7:
1. Consider this special case of Example 1.2.0.4:

ux = A(x, y),

uy = B(x, y),

where A and B satisfy A(0, 0) = B(0, 0) = 0. Verify that solving
the initial value problems (1.2.3)–(1.2.4) gives

(1.2.6) u(x, y) = u0 +

∫ x

s=0
A(s, 0)ds +

∫ y

t=0
B(x, t)dt.

Under what condition does this function u satisfy (1.2.2)? Verify
that the resulting condition is equivalent to (1.2.5) in this special
case.

2. Rewrite (1.2.6) as a line integral involving the 1-form

ω := A(x, y)dx +B(x, y)dy,

and determine the condition which ensures that the integral is in-
dependent of path.

3. Determine the space of solutions to (1.2.2) in the following special
cases:
(a) A = −x

u , B = − y
u .

(b) A = B = x
u .

(c) A = −x
u , B = y.

1.3. Introduction to differential equations without

coordinates

Example 1.2.0.4 revisited. Instead of working on R
2×R with coordinates

(x, y)× (u), we will work on the larger space R
2 × R × R

2 with coordinates
(x, y) × (u) × (p, q), which we will denote J1(R2,R), or J1 for short. This
space, called the space of 1-jets of mappings from R

2 to R, is given additional
structure and generalized in §1.9.

Let u : U → R be a smooth function defined on an open set U ⊂ R
2.

We associate to u the surface in J1 given by

(1.3.1) u = u(x, y), p = ux(x, y), q = uy(x, y).

which we will refer to as the lift of u. The graph of u is the projection of
the lift (1.3.1) in J1 to R

2 × R.
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We will eventually work on J1 without reference to coordinates. As a
step in that direction, consider the differential forms

θ := du− pdx− qdy, Ω := dx ∧ dy
defined on J1. Suppose i : S →֒ J1 is a surface such that i∗Ω 6= 0 at each
point of S. Since dx, dy are linearly independent 1-forms on S, we may use
x, y as coordinates on S, and the surface may be expressed as

u = u(x, y), p = p(x, y), q = q(x, y).

Suppose i∗θ = 0. Then

i∗du = pdx+ qdy.

On the other hand, since u restricted to S is a function of x and y, we have

du = uxdx+ uydy.

Because dx, dy are independent on S, these two equations imply that p = ux

and q = uy on S. Thus, surfaces i : S →֒ J1 such that i∗θ = 0 and i∗Ω is
nonvanishing correspond to lifts of maps u : U → R.

Now consider the 3-fold j : Σ →֒ J1 defined by the equations

p = A(x, y, u), q = B(x, y, u).

Let i : S →֒ Σ be a surface such that i∗θ = 0 and i∗Ω is nonvanishing. Then
the projection of S to R

2×R is the graph of a solution to (1.2.2). Moreover,
all solutions to (1.2.2) are the projections of such surfaces, by taking S as
the lift of the solution.

Thus we have a correspondence

solutions to (1.2.2) ⇔ surfaces i : S →֒ Σ such that i∗θ ≡ 0 and i∗Ω 6= 0.

On such surfaces, we also have i∗dθ ≡ 0, but

dθ = −dp ∧ dx− dq ∧ dy,
j∗dθ = −(Axdx+Aydy +Audu) ∧ dx− (Bxdx+Bydy +Budu) ∧ dy,
i∗dθ = (Ay −Bx +AuB −BuA)i∗(Ω).

(To obtain the second line we use the defining equations of Σ and to obtain
the third line we use i∗(du) = Adx+Bdy.) Because i∗Ω 6= 0, the equation

(1.3.2) Ay −Bx +AuB −BuA = 0

must hold on S. This is precisely the same as the condition (1.2.5) obtained
by checking that mixed partials commute.

If (1.3.2) does not hold identically on Σ, then it gives another equation
which must hold for any solution. But since dimΣ = 3, in that case (1.3.2)
already describes a surface in Σ. If there is any solution surface S, it must
be an open subset of the surface in Σ given by (1.3.2). This surface will only
be a solution if θ pulls back to be zero on it. If (1.3.2) is an identity, then we



10 1. Moving Frames and Exterior Differential Systems

may use the Frobenius Theorem (see below) to conclude that through any
point of Σ there is a unique solution S (constructed, as in §1.2, by solving
a succession of ODE’s). In this sense, (1.3.2) implies that all higher partial
derivatives commute.

We have now recovered our observations from §1.2.

The general game plan for treating a system of PDE as an exterior
differential system (EDS) will be as follows:

One begins with a “universal space” (J1 in the above example) where the
various partial derivatives are represented by independent variables. Then
one restricts to the subset Σ of the universal space defined by the system of
PDE by considering it as a set of equations among independent variables.
Solutions to the PDE correspond to submanifolds of Σ on which the vari-
ables representing what we want to be partial derivatives actually are partial
derivatives. These submanifolds are characterized by the vanishing of certain
differential forms.

These remarks will be explained in detail in §1.9.
Picard’s Theorem revisited. On R

2 with coordinates (x, u), consider θ =
du−f(x, u)dx. Then there is a one-to-one correspondence between solutions
of the ODE (1.2.1) and curves c : R → R

2 such that c∗(θ) = 0 and c∗(dx) is
nonvanishing.

More generally, the flowbox coordinate theorem 1.2.0.3 implies:

Theorem 1.3.0.8. Let M be a C∞ manifold of dimension m, and let
θ1, . . . , θm−1 ∈ Ω1(M) be pointwise linearly independent in some open neigh-
borhoodU ⊂M . Then through p ∈ U there exists a curve c : R → U , unique
up to reparametrization, such that c∗(θj) = 0 for 1 ≤ j ≤ m− 1.

(For a proof, see [?].)

The Frobenius Theorem. In §1.9 we will prove the following result, which
is a generalization, both of Theorem 1.3.0.8 and of the asserted existence of
solutions to Example 1.2.0.4 when (1.2.5) holds, to an existence theorem for
certain systems of PDE:

Theorem 1.3.0.9 (Frobenius Theorem, first version). Let Σ be a C∞ man-
ifold of dimension m, and let θ1, . . . , θm−n ∈ Ω1(Σ) be pointwise linearly

independent. If there exist 1-forms αi
j ∈ Ω1(Σ) such that dθj = αj

i ∧ θi for
all j, then through each p ∈ Σ there exists a unique n-dimensional manifold
i : N →֒ Σ such that i∗(θj) = 0 for 1 ≤ j ≤ m− n.

In order to motivate our study of exterior differential systems, we re-
word the Frobenius Theorem more geometrically as follows: Let Σ be an
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m-dimensional manifold such that through each point x ∈ Σ there is an
n-dimensional subspace Ex ⊂ TxΣ which varies smoothly with x (such a
structure is called a distribution). We consider the problem of finding sub-
manifolds X ⊂ Σ such that TxX = Ex for all x ∈ X.

Consider Ex
⊥ ⊂ T ∗

xΣ. Let θa
x, 1 ≤ a ≤ m − n, be a basis of Ex

⊥. We
may choose the θa

x to vary smoothly to obtain m − n linearly independent
forms θa ∈ Ω1(Σ). Let I = {θ1, . . . , θm−n} denote the differential ideal they
generate in Ω∗(Σ) (see §??). The submanifoldsX tangent to the distribution
E are exactly the n-dimensional submanifolds i : N →֒ Σ such that i∗(α) = 0
for all α ∈ I. Call such a submanifold an integral manifold of I.

To find integral manifolds, we already know that if there are any, their
tangent space at any point x ∈ Σ is already uniquely determined, namely
it is Ex. The question is whether these n-planes can be “fitted together” to
obtain an n-dimensional submanifold. This information is contained in the
derivatives of the θa’s, which indicate how the n-planes “move” infinitesi-
mally.

If we are to have i∗(θa) = 0, we must also have d(i∗θa) = i∗(dθa) = 0. If
there is to be an integral manifold through x, or even an n-plane Ex ⊂ TxΣ
on which α |Ex

= 0, ∀α ∈ I, the equations i∗(dθa) = 0 cannot impose any
additional conditions, i.e., we must have dθa|Ex

= 0 because we already have
a unique n-plane at each point x ∈ Σ. To recap, for all a we must have

(1.3.3) dθa = αa
1 ∧ θ1 + . . .+ αa

m−n ∧ θm−n

for some αa
b ∈ Ω1(Σ), because the forms θa

x span Ex
⊥.

Notation 1.3.0.10. Suppose I is an ideal and φ and ψ are k-forms. Then
we write φ ≡ ψmodI if φ = ψ + β for some β ∈ I.

Let {θ1, . . . , θm−n} ⊂ Ω∗(Σ) denote the algebraic ideal generated by
θ1, . . . , θm−n (see §??). Now (1.3.3) may be restated as

(1.3.4) dθa ≡ 0 mod {θ1, . . . , θm−n}.

The Frobenius Theorem states that this necessary condition is also sufficient:

Theorem 1.3.0.11 (Frobenius Theorem, second version). Let I be a dif-
ferential ideal generated by the linearly independent 1-forms θ1, . . . , θm−n

on an m-fold Σ, i.e., I = {θ1, . . . , θm−n}. Suppose I is also generated al-
gebraically by θ1, . . . , θm−n, i.e., I = {θ1, . . . , θm−n}. Then through any
p ∈ Σ there exists an n-dimensional integral manifold of I. In fact, in a suf-
ficiently small neighborhood of p there exists a coordinate system y1, . . . , ym

such that I is generated by dy1, . . . , dym−n.

We postpone the proof until §1.9.
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Definition 1.3.0.12. We will say a subbundle I ⊂ T ∗Σ is Frobenius if the
ideal generated algebraically by sections of I is also a differential ideal. We
will say a distribution ∆ ⊂ Γ(TΣ) is Frobenius if ∆⊥ ⊂ T ∗Σ is Frobenius.
Equivalently (see Exercise 1.3.0.13.2 below), ∆ is Frobenius if ∀X,Y ∈ ∆,
[X,Y ] ∈ ∆, where [X,Y ] is the Lie bracket.

If {θa} fails to be Frobenius, not all hope is lost for an n-dimensional
integral manifold, but we must restrict ourselves to the subset j : Σ′ →֒ Σ
on which (1.3.4) holds, and see if there are n-dimensional integral manifolds
of the ideal generated by j∗(θa) on Σ′. (This was what we did in the special
case of Example 1.2.0.4.)

Exercises 1.3.0.13:
1. Which of the following ideals are Frobenius?

I1 = {dx1, x2dx3 + dx4}
I2 = {dx1, x1dx3 + dx4}

2. Show that the differential forms and vector field conditions for being
Frobenius are equivalent, i.e., ∆ ⊂ Γ(TΣ) satisfies [∆,∆] ⊆ ∆ if
and only if ∆⊥ ⊂ T ∗Σ satisfies dθ ≡ 0mod ∆⊥ for all θ ∈ Γ(∆⊥).

3. On R
3 let θ = Adx+Bdy+Cdz, where A = A(x, y, z), etc. Assume

the differential ideal generated by θ is Frobenius, and explain how
to find a function f(x, y, z) such that the differential systems {θ}
and {df} are equivalent.

1.4. Introduction to geometry without coordinates:

curves in E2

We will return to our study of surfaces in E
3 in . To see how to use moving

frames to obtain invariants, we begin with a simpler problem.

Let E
2 denote the oriented Euclidean plane. Given two parametrized

curves c1, c2 : R → E
2, we ask two questions: When does there exist a

Euclidean motion A : E
2 → E

2 (i.e., a rotation and translation) such that
A(c1(R)) = c2(R)? And, when do there exist a Euclidean motion A : E

2 →
E

2 and a constant c such that A(c1(t)) = c2(t+ c) for all t?

Figure 2. Are these two curves equivalent?
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Instead of using coordinates at a point, we will use an adapted frame
, i.e., for each t we take a basis of Tc(t)E

2 that is “adapted” to Euclidean
geometry. This geometry is induced by the group of Euclidean motions—the
changes of coordinates of E

2 preserving the inner product and orientation—
which we will denote by ASO(2).

In more detail, the group ASO(2) consists of transformations of the form

(1.4.1)

(
x1

x2

)
7→
(
t1

t2

)
+R

(
x1

x2

)
,

where R ∈ SO(2) is a rotation matrix. It can be represented as a matrix
Lie group by writing

(1.4.2) ASO(2) =

{
M ∈ GL(3,R)

∣∣∣∣M =

(
1 0
t R

)
, t ∈ R

2, R ∈ SO(2)

}
.

Then its action on E
2 is given by x 7→Mx, where we represent points in E

2

by x = ⊤
(
1 x1 x2

)
.

We may define a mapping from ASO(2) to E
2 by

(1.4.3)

(
1 0
x R

)
7→ x =

(
x1

x2

)
,

which takes each group element to the image of the origin under the trans-
formation (1.4.1). The fiber of this map over every point is a left coset of
SO(2) ⊂ ASO(2), so E

2, as a manifold, is the quotient ASO(2)/SO(2). Fur-
thermore, ASO(2) may be identified with the bundle of oriented orthonormal
bases of E

2 by identifying the columns of the rotation matrix R = (e1, e2)
with an oriented orthonormal basis of TxE

2, where x is the basepoint given
by (1.4.3). (Here we use the fact that for a vector space V , we may identify
V with TxV for any x ∈ V .)

Returning to the curve c(t), we choose an oriented orthonormal basis
of Tc(t)E

2 as follows: A natural element of Tc(t)E
2 is c′(t), but this may

not be of unit length. So, we take e1(t) = c′(t)/|c′(t)|, and this choice also
determines e2(t). Of course, to do this we must assume that the curve is
regular:

Definition 1.4.0.14. A curve c(t) is said to be regular if c′(t) never van-
ishes. More generally, a map f : M → N between differentiable manifolds
is regular if df is everywhere defined and of rank equal to dimM .

What have we done? We have constructed a map to the Lie group
ASO(2) as follows:

C : R → ASO(2),

t 7→
(

1 0
c(t) (e1(t), e2(t))

)
.
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We will obtain differential invariants of our curve by differentiating this
mapping, and taking combinations of the derivatives that are invariant under
Euclidean changes of coordinates.

Consider v(t) = |c′(t)|, called the speed of the curve. It is invariant under
Euclidean motions and thus is a differential invariant. However, it is only an
invariant of the mapping, not of the image curve (see Exercise 1.4.0.15.2).
The speed measures how much (internal) distance is being distorted under
the mapping c.

Consider de1

dt . We must have de1

dt = λ(t)e2(t) for some function λ(t) be-
cause |e1(t)| ≡ 1 (see Exercise 1.4.0.15.1 below). Thus λ(t) is a differential
invariant, but it again depends on the parametrization of the curve. To de-
termine an invariant of the image alone, we let c̃(t) be another parametriza-

tion of the same curve. We calculate that λ̃(t) = ṽ(t)
v(t)λ(t), so we set κ(t) =

λ(t)
v(t) . This κ(t), called the curvature of the curve, measures how much c is

infinitesimally moving away from its tangent line at c(t).

A necessary condition for two curves c, c̃ to have equivalent images is that
there exists a diffeomorphism ψ : R → R such that κ(t) = κ̃(ψ(t)). It will
follow from Corollary 1.6.0.31 that the images of curves are locally classified
up to congruence by their curvature functions, and that parametrized curves
are locally classified by κ, v.

Exercises 1.4.0.15:
1. Let V be a vector space with a nondegenerate inner product 〈, 〉.

Let v(t) be a curve in V such that F (t) := 〈v(t), v(t)〉 is constant.
Show that v′(t) ⊥ v(t) for all t. Show the converse is also true.

2. Suppose that c is regular. Let s(t) =
∫ t
0 |c′(τ)|dτ and consider c

parametrized by s instead of t. Since s gives the length of the
image of c : [0, s] → E

2, s is called an arclength parameter. Show

that in this preferred parametrization, κ(s) = |de1

ds |.
3. Show that κ(t) is constant iff the curve is an open subset of a line

(if κ = 0) or circle of radius 1
κ .

4. Let c(t) = (x(t), y(t)) be given in coordinates. Calculate κ(t) in
terms of x(t), y(t) and their derivatives.

5. Calculate the function κ(t) for an ellipse. Characterize the points
on the ellipse where the maximum and minimum values of κ(t)
occur.

6. Can κ(t) be unbounded if c(t) is the graph of a polynomial?

[Osculating circles]
(a) Calculate the equation of a circle passing through three points in

the plane.
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(b) Calculate the equation of a circle passing through two points in the
plane and having a given tangent line at one of the points.

Parts (a) and (b) may be skipped; the exercise proper starts
here:

(c) Show that for any curve c ⊂ E
2, at each point x ∈ c one can define

an osculating circle by taking the limit of the circle through the
three points c(t), c(t1), c(t2) as t1, t2 → t. (A line is defined to be a
circle of infinite radius.)

(d) Show that one gets the same circle if one takes the limit as t → t1
of the circle through c(t), c(t1) that has tangent line at c(t) parallel
to c′(t).

(e) Show that the radius of the osculating circle is 1/κ(t).
(f) Show that if κ(t) is monotone, then the osculating circles are nested.

⊚

1.5. Submanifolds of homogeneous spaces

Using the machinery we develop in this section and §1.6, we will answer the
questions about curves in E

2 posed at the beginning of §1.4. The quotient
E

2 = ASO(2)/SO(2) is an example of a homogeneous space, and our answers
will follow from a general study of classifying maps into homogeneous spaces.

Definition 1.5.0.16. Let G be a Lie group, H a closed Lie subgroup, and
G/H the set of left cosets of H. Then G/H is naturally a differentiable
manifold with the induced differentiable structure coming from the quotient
map (see [?], Theorem II.3.2). The space G/H is called a homogeneous
space.

Definition 1.5.0.17 (Left and right actions). Let G be a group that acts on
a set X by x 7→ σ(g)(x). Then σ is called a left action if σ(a)◦σ(b) = σ(ab),
or a right action if σ(a) ◦ σ(b) = σ(ba),

For example, the action of G on itself by left-multiplication is a left
action, while left-multiplication by g−1 is a right action.

A homogeneous space G/H has a natural (left) G-action on it; the sub-
group stabilizing [e] is H, and the stabilizer of any point is conjugate to
H. Conversely, a manifold X is a homogeneous space if it admits a smooth
transitive action by a Lie group G. If H is the isotropy group of a point
x0 ∈ X, then X ≃ G/H, and x0 corresponds to [e] ∈ G/H, the coset of
the identity element. (See [?, ?] for additional facts about homogeneous
spaces.)
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In the spirit of Klein’s Erlanger Programm (see [?, ?] for historical ac-
counts), we will consider G as the group of motions of G/H. We will
study the geometry of submanifolds M ⊂ G/H, where two submanifolds
M,M ′ ⊂ G/H will be considered equivalent if there exists a g ∈ G such that
g(M) = M ′.

To determine necessary conditions for equivalence we will find differential
invariants as we did in §1.1 and §1.4. (Note that we need to specify whether
we are interested in invariants of a mapping or just of the image.) After
finding invariants, we will then interpret them as we did in the exercises in
§1.4.

We will derive invariants for maps f : M → G/H by constructing lifts
F : M → G as we did for curves in E

2.

Definition 1.5.0.18. A lift of a mapping f : M → G/H is defined to be a
map F : M → G such that the following diagram commutes:

M G/H

G

�
���

?
-
f

F

Given a lift F of f , any other lift F̃ : M → G must be of the form

(1.5.1) F̃ (x) = F (x)a(x)

for some map a : M → H.

By associating the value of the lift F (x) with its action on G/H, we
may think of choosing a lift to G as analogous to putting a point p in a
normalized position, as we did in §1.1.

Given f : M → G/H, we will choose lifts adapted to the infinitesimal
geometry. To explain what this statement means, we first remark that
in the situations we will be dealing with, the fiber at x ∈ G/H of the
fibration π : G → G/H admits the interpretation of being a subset of the
space of framings or bases of TxG/H. Since H fixes the point [e] ∈ G/H,
its infinitesimal action on tangent vectors gives a representation ρ : H →
GL(T[e]G/H), called the isotropy representation [?]. Now fix a reference
basis (v1, . . . , vn) of T[e]G/H. We identify the H-orbit of this basis with

π−1([e]). Similarly, at other points x ∈ G/H we have a group conjugate to
H acting on TxG/H.

Thus, a choice of lift may be considered as a choice of framing of G/H
along M , and we will make choices that reflect the geometry of M . For
example, if dimM = n, we may require the first n basis vectors of TxG/H
to be tangent toM . In the above example of curves in E

2, we also normalized
the length of the first basis vector e1 to be constant.
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Once a unique lift is determined, differentiating that lift will provide
differential invariants. This is because we can classify maps into G, up to
equivalence under left multiplication, using the Maurer-Cartan form.

1.6. The Maurer-Cartan form

If you need to brush up on matrix Lie groups and Lie algebras, this would
be a good time to consult §?? and §??.

Definition 1.6.0.19. Let G ⊆ GL(n,R) be a matrix Lie group with Lie
algebra g ⊂ gl(n,R), and let g = (gi

j) be the matrix-valued function which
embedsG into the vector spaceMn×n of n×nmatrices with real entries, with
differential dga : TaG→ Tg(a)Mn×n ≃Mn×n. We define the Maurer-Cartan
form of G as

ωa = g(a)−1dga.

This is often written

ω = g−1dg.

The Maurer-Cartan form is Mn×n-valued. In fact, in Exercise 1.6.0.23
you will show that it takes values in g ⊂ Mn×n, i.e., ωa(v) ∈ g for all
v ∈ TaG.

Example 1.6.0.20. ConsiderG = SO(2) ⊂ GL(2,R). We may parametrize
SO(2) by

g(θ) =

(
cos θ − sin θ
sin θ cos θ

)
, θ ∈ R.

Then

ω = g−1dg =

(
0 −dθ
dθ 0

)
.

Definition 1.6.0.21. A differential form α ∈ Ωk(G) is left-invariant if for
all a ∈ G, we have L∗

a(αg) = αa−1g, where La : G→ G is the diffeomorphism
g 7→ ag. (We similarly define left-invariant vector fields and k-vector fields.)

Note that a left-invariant form α is uniquely determined by αg for any
g ∈ G. In this way, the set of left-invariant k-forms may be identified with
ΛkT ∗

gG.

Given an arbitrary Lie groupG, we will let g denote its Lie algebra, which
may be identified with TeG or with the space of left-invariant vector fields.
We generalize the definition of the Maurer-Cartan form to this situation as
follows:
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Definition 1.6.0.22. The Maurer-Cartan form ω of G is the unique left-
invariant g-valued 1-form on G such that ω|e : TeG → g is the identity
map.

Exercise 1.6.0.23: Show that the two definitions agree when G is a matrix
Lie group. In particular, the Maurer-Cartan form of a matrix Lie group is
g-valued.

Remark 1.6.0.24. When F : M → G is a lift of a map f : M → G/H, and
G is a matrix Lie group, the change in the pullback of the Maurer-Cartan
form resulting from a change of lift (1.5.1) is

(1.6.1) F̃ ∗(ω) = a−1F ∗(ω)a+ a−1da.

For an abstract Lie group, the analogous formula is

F̃ ∗(ω) = Ada−1(F ∗ω) + a∗ω.

Definition 1.6.0.25. Let ω = (ωi
k) and η = (ηi

k) be matrices whose entries
are elements of a vector space V , so that ω, η ∈ V ⊗Mn×n. Define their
matrix wedge product ω ∧ η ∈ Λ2V ⊗Mn×n by

(ω ∧ η)ij := ωi
k ∧ ηk

j .

More generally, for ω ∈ ΛkV ⊗Mn×n, η ∈ ΛjV ⊗Mn×n the same formula
yields ω ∧ η ∈ Λk+jV ⊗Mn×n.

One thing that makes the Maurer-Cartan form ω especially useful to
work with is that its exterior derivative may be computed algebraically as
follows: If G is a matrix Lie group, then

dω = d(g−1) ∧ dg.
To compute d(g−1), consider the identity matrix e = (δi

j) as a constant map
G→Mn×n and note that it is the product of two nonconstant functions:

0 = d(e) = d(g−1g) = d(g−1)g + g−1dg.

So, d(g−1) = −g−1(dg)g−1 and

dω = −g−1(dg)g−1 ∧ dg = −(g−1dg) ∧ (g−1dg) = −ω ∧ ω.

Summary 1.6.0.26. On a matrix Lie group G, the Maurer-Cartan form
ω defined by ω = g−1dg is a left-invariant g-valued 1-form and satisfies the
Maurer-Cartan equation:

(1.6.2) dω = −ω ∧ ω.

Definition 1.6.0.27. If ω, θ are two g-valued 1-forms, define the g-valued
2-form [ω, θ] by

[ω, θ](X,Y ) = [ω(X), θ(Y )] + [ω(Y ), θ(X)].
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The Maurer-Cartan equation holds on an abstract Lie group G in the fol-
lowing form:

(1.6.3) dω = −1

2
[ω, ω].

As mentioned above, the Maurer-Cartan form will be our key to classi-
fying maps into homogeneous spaces of G. We first show how it classifies
maps into G:

Theorem 1.6.0.28 (Cartan). Let G be a matrix Lie group with Lie algebra
g and Maurer-Cartan form ω. Let M be a manifold on which there exists a
g-valued 1-form φ satisfying dφ = −φ ∧ φ. Then for any point x ∈M there
exist a neighborhood U of x and a map f : U → G such that f∗ω = φ.
Moreover, any two such maps f1, f2 must satisfy f1 = La ◦ f2 for some fixed
a ∈ G.

Corollary 1.6.0.29. Given maps f1, f2 : M → G, then f∗1ω = f∗2ω if and
only if f1 = La ◦ f2 for some fixed a ∈ G.

Proof of Corollary. Let φ = f∗1ω. �

Proof of Theorem 1.6.0.28. This is a good opportunity to use the Frobe-
nius Theorem.

On Σ = Mn × G, let π, ρ denote the projections to each factor and
let θ = π∗(φ) − ρ∗(ω). Write θ = (θi

j), and let I ⊂ T ∗Σ be the sub-

bundle spanned by the forms θi
j . Submanifolds of dimension n to which

these forms pull back to be zero are graphs of maps f : M → G such
that φ = f∗ω. We check the conditions given in the Frobenius Theorem.
Calculating derivatives (and omitting the pullback notation), we have

dθ = −φ ∧ φ+ ω ∧ ω
= −φ ∧ φ+ (θ − φ) ∧ (θ − φ)

≡ 0mod I.

Thus, the system is Frobenius and there is a unique n-dimensional integral
manifold through any (x, g) ∈ Σ.

Suppose f1, f2 are two different solutions. Say f1(x) = g. Let a =
gf2(x)

−1. Then the graph of f = La ◦f2 passes through (x, g) and f∗ω = φ.
By uniqueness, it follows that f1 = La ◦ f2. �

Remark 1.6.0.30. If we assume in Theorem 1.6.0.28 that M is connected
and simply-connected, then the desired map f may be extended to all of M
[?].
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We may apply Theorem 1.6.0.28 to classify curves in E
2. In this case,

the pullback of the Maurer-Cartan form of ASO(2) ⊂ GL(3,R) under the
lift constructed in §1.4 takes the simple form

(1.6.4) F ∗ω =




0 0 0
dt 0 −κdt
0 κdt 0


 ,

where t is an arclength parameter.

Corollary 1.6.0.31. For curves c, c̃ ⊂ E
2, if κ(t) = κ̃(t + a) for some con-

stant a, then c, c̃ are congruent.

Exercises 1.6.0.32:
1. Let CO(2) be the matrix Lie group parametrized by

g(θ, t) =

(
t cos θ −t sin θ
t sin θ t cos θ

)
, t ∈ (0,∞).

Explicitly compute the Maurer-Cartan form and verify the Maurer-
Cartan equation for CO(2).

2. Verify (1.6.1).
3. Verify (1.6.4) and complete the proof of Corollary 1.6.0.31.
4. Show that (1.6.3) coincides with (1.6.2) when G is a matrix Lie

group.
5. Let g be a vector space with basis XB , 1 ≤ B ≤ dim g, and a mul-

tiplication given by [XA,XB ] = cCABXC on the basis and extended
linearly. Determine necessary and sufficient conditions on the con-
stants cABC implying that, with this bracket, g is a Lie algebra.

6. On a Lie group G with Maurer-Cartan form ω, show that

dωe(X,Y ) = [X,Y ].

Conclude that dω = 0 iff G is abelian.
7. On a Lie group G with Lie algebra g, let {eA} be a basis of g

and write ω = ωAeA. (Note that each 1-form ωA is left-invariant.)

Write dωA = −C̃A
BCω

B ∧ ωC , where C̃A
BC = −C̃A

CB . Show that the

coefficients C̃A
BC are constants, and determine the set of equations

that these constants must satisfy because d2 = 0. Relate these
equations to your answer to problem 5.

1.7. Plane curves in other geometries

Equivalence of holomorphic mappings under fractional linear
transformations. Here is an example of a study of curves in a less famil-
iar homogeneous space, the complex projective line CP

1. To find differential
invariants in such situations, we generally seek a uniquely defined lift that
renders the pullback of the Maurer-Cartan form as simple as possible. Then,
after finding differential invariants, we interpret them.



1.7. Plane curves in other geometries 21

Definition 1.7.0.33. A fractional linear transformation (FLT) is a map
CP

1 → CP
1 given in terms of homogeneous coordinates ⊤[x, y] by

[
x
y

]
7→
[(
a b
c d

)(
x
y

)]
, with ad− bc = 1.

The group of FLT’s is PSL(2,C) = SL(2,C)/{± Id}, which acts transi-
tively on CP

1. Thus, CP
1 is a homogeneous space PSL(2,C)/P , where

P =

[(
a b
0 a−1

)]
∈ PSL(2,C)

is the stabilizer of ⊤[1, 0]. Although PSL(2,C), as presented, is not a matrix
Lie group, we may avoid problems by localizing as follows:

If ∆ ⊂ C ⊂ CP
1 is a domain, then PSL(2,C) acts on maps f : ∆ → C

by

f 7→ af + b

cf + d
.

(Since we will be working locally, there is no harm in considering f as a
map to C; then to think of f as a map to CP

1, write it as ⊤[f, 1].) Suppose
f, g : ∆ → C are two holomorphic maps with nonzero first derivatives. When
are these locally equivalent via a fractional linear transformation, i.e., when
does g = A ◦ f for some FLT A? (One can ask the same question in the real
category for analytic maps f, g : (0, 1) → RP

1, and the answer will be the
same.)

Note that in this example the target is of the same dimension as the
source of the mapping, so we cannot expect an analogue of curvature, but
there will be an analogue of speed.

The coordinate approach to getting invariants would be to use an FLT to
normalize the map at some point z0, say by requiring f(z0) = 0, f ′(z0) = 1
and f ′′(z0) = 0. Since this is exactly the extent of normalization that
PSL(2,C) can achieve, then f ′′′(z0) must be an invariant. Of course, this
is valid only at the point z0.

Instead we construct a lift to PSL(2,C), which we will treat as SL(2,C)
in order to be working with a matrix Lie group. As a first try, let

F =

(
f −1
1 0

)
.

where the projection to CP
1 is the equivalence class of the first column. Any

other lift F̃ of f must be of the form F̃ (z) = F (z)A(z), where

A(z) =

(
a(z) b(z)
0 a−1(z)

)
, a(z) 6= 0.
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We want to pick functions a, b to obtain a new lift whose Maurer-Cartan
form is as simple as possible. We have

F̃−1dF̃ = A−1F−1dFA+A−1dA

=

{(
a−1 −b
0 a

)(
0 0

−f ′ 0

)(
a b
0 a−1

)
+

(
a−1 −b
0 a

)(
a′ b′

0 −a′a−2

)}
dz

=

(
abf ′ + a−1a′ a−2ba′ + a−1b′ + b2f ′

−a2f ′ −(abf ′ + a−1a′)

)
dz.

Choose a(z) = ±1/
√

|f ′(z)| with the same sign as f ′(z). Then F̃−1dF̃ takes
the form (

∗ ∗
∓1 ∗

)
dz.

(This is the analogue of setting f ′(z0) = 1 in the coordinate approach.) The
function b is still free. We use it to set the diagonal term in the pullback of
the Maurer-Cartan form to zero, i.e., to set abf ′ + a−1a′ = 0. This implies

b = − a′

a2f ′
= ± f ′′

2|f ′|3/2
.

Now our lift is unique and of the form
(

0 1
2Sf (z)

∓1 0

)
dz,

where

Sf (z) =
f ′′′

f ′
− 3

2

(
f ′′

f ′

)2

is a differential invariant, called the Schwarzian derivative [?]. The ambigu-
ity of the ± is due to the fact that G = PSL(2,C), not SL(2,C).

Exercises 1.7.0.34:
1. Show that if f is an FLT then Sf ≡ 0. So, just as the curvature of

a curve in R
2 measures the failure of a curve to be a line, Sf (z) is

an infinitesimal measure of the failure of a holomorphic map to be
an FLT. Since FLT’s map circles to circles, Sf may be thought of
as measuring how much circles are being distorted under f .

2. Calculate Sf for f = aebz, and f = xn. How to these compare
asymptotically? What does this say about how circles are distorted
as one goes out to infinity?

Exercises on curves in other plane geometries.

Exercises 1.7.0.35:
1. (Curves in the special affine plane) We consider the geometry of

curves that are equivalent up to translations and area-preserving
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linear transformations of R
2. These transformations are given by

the matrix group

ASL(2,R) =

{(
1 0
x A

)∣∣∣∣ x ∈ R
2, A ∈ SL(2,R)

}
,

acting on R
2 in the same way as ASO(2) acts in §1.4. Since the

origin is fixed by the subgroup SL(2,R), in this context we will
relabel R

2 as the special affine plane SA
2 = ASL(2,R)/SL(2,R).

(a) Find differential invariants for curves in SA
2. (As with the

Euclidean case, one can consider invariants of a parametrized
curve or invariants of just the image curve.)

(b) What are the image curves with invariants zero? The image
curves with constant invariants?

(c) Let κA denote the differential invariant that distinguishes im-
age curves. Interpret κA(t) in terms of an osculating curve, as
we did with the osculating circles to a curve in §1.4.

(d) The preferred frame will lead to a unique choice of e2. Give a
geometric interpretation of e2. ⊚

2. (Curves in the projective plane) Carry out the analogous exercise
for curves in the projective plane P

2 = GL(3)/P , where P is the
subgroup preserving a line. Show that the curves with zero invari-
ants are the projective lines and plane conics. Derive the Monge

equation ((y′′)
−2

3 )′′′ = 0, characterizing plane conics, by working
in a local adapted coordinate system. Note that one may do this
exercise over R or C.

3. Carry out the analogous exercise for curves in the conformal plane
ACO(2)/CO(2), where equivalence is up to translations, rotations
and dilations.

4. Carry out the analogous exercise for curves in L
2 = ASO(1, 1)/SO(1, 1),

where SO(1, 1) is the subgroup of GL(2,R) preserving the qua-
dratic form Q =

(
−1 0
0 1

)
. Note that there will be three distinct

types of curves: spacelike curves, where Q(c′(t), c′(t)) > 0; time-
like curves, where Q(c′(t), c′(t)) < 0; and lightlike curves, where
Q(c′(t), c′(t)) = 0. What are the curves with constant invariants?

1.8. Curves in E3

The group ASO(3) and its Maurer-Cartan form. The group ASO(3)
is the set of transformations of E

3 of the form x 7→ t +Rx, i.e.,



x1

x2

x3


 7→



t1

t2

t3


+R



x1

x2

x3


 ,
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where R ∈ SO(3) is a rotation matrix. Like ASO(2), it may be represented
as a matrix Lie group by writing

(1.8.1) ASO(3) =

{
M ∈ GL(4,R)

∣∣∣∣M =

(
1 0
t R

)
, t ∈ R

3, R ∈ SO(3)

}
.

The action on E
3 is given by x 7→ Mx, where we represent points in E

3 by
x = t

(
1 x1 x2 x3

)
.

Having expressed ASO(3) as in (1.8.1), we may express an arbitrary
element of its Lie algebra aso(3) as




0 0 0 0
x1 0 −x2

1 −x3
1

x2 x2
1 0 −x3

2

x3 x3
1 x3

2 0


 , xi, xi

j ∈ R.

In this presentation, the Maurer-Cartan form of ASO(3) is

(1.8.2) ω =




0 0 0 0
ω1 0 −ω2

1 −ω3
1

ω2 ω2
1 0 −ω3

2

ω3 ω3
1 ω3

2 0


 ,

where ωi, ωi
j ∈ Ω1(ASO(3)). Recall from §1.6 that the forms ωi, ωi

j are left-

invariant, and are a basis for the space of left-invariant 1-forms on ASO(3).

We identify ASO(3) with the space of oriented orthonormal frames of
E

3, as follows. Denote g ∈ ASO(3) by a 4-tuple of vectors (warning: this is
not a presentation as a matrix Lie group),

(1.8.3) g = (x, e1, e2, e3),

where x ∈ E
3 corresponds to translation by x, and {e1, e2, e3} is an ori-

ented orthonormal basis of TxE
3 which corresponds to the rotation R =

(e1, e2, e3) ∈ SO(3).

With this identification, we obtain geometric interpretations of the left-
invariant forms. Substituting (1.8.3) and (1.8.2) into dg = g ω, and consid-
ering the first column, gives

(1.8.4) dx = eiω
i.

Thus, ωi has the geometric interpretation of measuring the infinitesimal
motion of the point x in the direction of ei. More precisely, if x(t) ∈ E

3 lifts
to

C(t) = (x(t), e1(t), e2(t), e3(t)) ∈ ASO(3),

then ωi(C ′(t)) = 〈x′(t), ei〉. Similarly, ωi
j measures the infinitesimal motion

of ej toward ei, because the other columns of dg = g ω show that

(1.8.5) dej = eiω
i
j.
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That these motions are infinitesimal rotations is reflected in the relation
ωi

j = −ωj
i , as illustrated by the following picture:

Recall from that a form α ∈ Ω1(P ) on a bundle π : P →M is semi-basic
for π if α(v) = 0 for all v ∈ kerπ∗.

Proposition 1.8.0.36. The forms ωi, 1 ≤ i ≤ 3, are semi-basic for the
projection ASO(3) → E

3.

Proof. Let C(t) = (x(t), e1(t), e2(t), e3(t)) ⊂ ASO(3) be a curve in a fiber.
We need to show that ωi(C ′(t)) = 0. If C(t) stays in one fiber, then dx

dt = 0,

but equation (1.8.5) shows dx
dt = C ′(t) dx = ωj(C ′(t))ej(t). The result

follows because the ej are linearly independent. �

Differential invariants of curves in E
3. We find differential invariants

of a regular curve c : R → E
3. For simplicity, we only consider the image

curve, so we can and will assume |c′(t)| ≡ 1. Consequently, we have c′′ ⊥ c′

(see Exercise 1.4.0.15.1). To obtain a lift C : R → ASO(3) we may take
e1(t) = c′(t), e2(t) = c′′(t)/|c′′(t)| and this determines e3(t). Our adaptations
have the effect that C∗(ω1) is nonvanishing and C∗(ω2) = C∗(ω3) = 0. In
terms of the Maurer-Cartan form, we have:

(1.8.6)

d(x(t), e1(t), e2(t), e3(t))

= (x(t), e1(t), e2(t), e3(t)) C
∗




0 0 0 0
ω1 0 −ω2

1 −ω3
1

0 ω2
1 0 −ω3

2

0 ω3
1 ω3

2 0


 .

Exercise 1.8.0.37: Show that C∗(ω3
1) = 0.

All forms pulled back to R will be multiples of ω1, as ω1 = dt furnishes
a basis of T ∗

R
1 at each point. (We continue our standard abuse of notation,

writing ω1 instead of C∗(ω1).) So, we may write ω2
1 = κ(t)ω1 and ω3

2 =
τ(t)ω1, where κ(t), τ(t) are functions called the curvature and torsion of the
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curve. Traditionally one writes e1 = T, e2 = N, e3 = B; then (1.8.6) yields
the Frenet equations

d(T,N,B) = (T,N,B)




0 −κ 0
κ 0 τ
0 −τ 0


 dt.

Curves with κ ≡ 0 are lines, and we may think of κ as a measurement of
the failure of the curve to be a line. Curves with τ ≡ 0 lie in a plane, and
we may think of τ as measuring the failure of a curve to lie in a plane. In
contrast to the example of plane curves, we needed a third-order invariant
(the torsion) to determine a unique lift in this case.

Theorem 1.3.0.8 implies that one can specify any functions (κ(t), τ(t)),
and there will be a curve having these as curvature and torsion (because on
ASO(3)× R the forms ω1 − d(t), ω3, ω2, ω2

1 − κ(t)ω1, ω3
1 , ω

3
2 + τ(t)ω1 satisfy

the hypotheses of the theorem). If the functions are nowhere vanishing the
curve will be unique up to congruence (see the exercises below).

Remark 1.8.0.38. Defining N as the unit vector in the direction of c′′(t)
means that κ cannot be negative, and N (along with the binormal B and
the torsion) is technically undefined at inflection points along the curve (i.e.,
points where c′′(t) = 0). However, it is still possible to smoothly extend the
frame (T,N,B) across inflection points, while satisfying the Frenet equa-
tions for smooth functions (κ(t), τ(t)) where κ is allowed to change sign (see
the discussion in [?]). Such frames are sometimes called generalized Frenet
frames, and it is in this sense that ODE existence theorems provide a framed
curve with given curvature and torsion functions.

Exercises 1.8.0.39:
1. Using Corollary 1.6.0.29, show that if c, c̃ are curves with κ(t) =
κ̃(t), τ(t) = τ̃(t), then c, c̃ differ by a rigid motion.

2. Show that a curve c ⊂ R
3 has constant κ and τ if and only if there

exists a line l ⊂ E
3 with the property that every normal line of c

intersects l orthogonally. (A normal line is the line through c(t) in
the direction of N(t).)

3. (Bertrand curves) In the previous exercise we characterized curves
with constant invariants. Here we study the next simplest case,
when there is a linear relation among the curvature and torsion,
i.e., constants a, b, c such that aκ(t) + bτ(t) = c for all t.
(a) Show that if such a linear relation holds, then there exists a

second curve c(t) with the same normal line as c(t) for all t.
(b) Show moreover that the distance between the points c(t) and

c(t) is constant. ⊚

(c) Characterize the curves c where there exists more than one
curve c with this property.
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4. Derive invariants for curves in E
n. How many derivatives does one

need to take to obtain a complete set of invariants?
5. (Curves on spheres) Show that a curve c with κ, τ 6= 0 is contained

in a sphere if and only if ρ2 + σ2 is constant, where ρ = 1/κ and
σ = ρ′/τ . ⊚

6. Let L
3 = ASO(2, 1)/SO(2, 1), where SO(2, 1) is the subgroup of

GL(3,R) preserving

Q =



−1

1
1


 .

Find differential invariants of curves in L
3. (As before, curves may

be spacelike, timelike, or lightlike.) What are the curves with con-
stant invariants?

1.9. Exterior differential systems and jet spaces

In §1.3, we saw how a system of ODE or PDE could be replaced by an ideal
of differential forms, and solutions became submanifolds on which the forms
pulled back to be zero. We now formalize this perspective, defining exterior
differential systems with and without independence condition.

Exterior differential systems with independence condition.

Definition 1.9.0.40. An exterior differential system with independence
condition on a manifold Σ consists of a differential ideal I ⊂ Ω∗(Σ) and
a differential n-form Ω ∈ Ωn(Σ) defined up to scale. This Ω, or its equiva-
lence class [Ω] up to scale, is called the independence condition.

(See §?? for a discussion of differential ideals.)

Definition 1.9.0.41. An integral manifold (or solution) of the system (I,Ω)
is an immersed n-fold f : Mn → Σ such that f∗(α) = 0 ∀α ∈ I and
f∗(Ω) 6= 0 at each point of M .

We also define the notion of an infinitesimal solution:

Definition 1.9.0.42. Let V be a vector space, and let G(n, V ) denote the
Grassmannian of n-planes through the origin in V (see ). We say E ∈
G(n, TxΣ) is an integral element of (I,Ω) if Ω|E 6= 0 and α|E = 0 ∀α ∈ I.
We let Vn(I,Ω)x denote the space of integral elements of (I,Ω) at x ∈ Σ.

Integral elements are the potential tangent spaces to integral manifolds,
in the sense that the integral manifolds of an exterior differential system are
the immersed submanifolds M ⊂ Σ such that TxM is an integral element
for all x ∈M .
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Exercise 1.9.0.43: Let In = I ∩ Ωn(Σ). Show that Vn(I,Ω)x = {E ∈
Gn(TxΣ) | α|E = 0 ∀α ∈ In}.

We now explain how to rephrase any system of PDE as an exterior
differential system with independence condition using the language of jet
bundles.

Jets.

Definition 1.9.0.44. Let t be a coordinate on R and let k ≥ 0. Two
differentiable maps f, g : R → R with f(0) = g(0) = 0 are said to have the
same k-jet at 0 if

df

dt
(0) =

dg

dt
(0),

d2f

dt2
(0) =

d2g

dt2
(0), . . . ,

dkf

dtk
(0) =

dkg

dtk
(0).

Let M,N are differentiable manifolds and f, g : M → N be two maps.
Then f and g are said to have the same k-jet at p ∈M if

i.f(p) = g(p) = q, and

ii. for all maps u : R → M and v : N → R with u(0) = p, the
differentiable maps v ◦ f ◦ u and v ◦ g ◦ u have the same k-jet at 0.

Exercise 1.9.0.45: Show that to determine if f, g : M → N have the same
k-jet at p, it is sufficient to check derivatives up to order k with respect to
coordinate directions in any pair of local coordinate systems around p and
q.

Having the same k-jet at p is an equivalence relation on smooth maps.
We denote the equivalence class of f by jkp (f), the space k-jets where p maps

to q by Jk
pq(M,N) and the space of all k-jets of all maps from M to N by

Jk(M,N). This is a smooth manifold, with local coordinates as follows:

Suppose M has local coordinates xi and N local coordinates ua. Then
Jk(M,N) has coordinates xi, ua, pa

i , p
a
ij , , . . . ,, p

a
i1,...,ik

. We will abbreviate

this as (xi, ua, pa
I), where I is a multi-index of length up to k whose en-

tries range between 1 and dim N . Then the point jkx0
(f) ∈ Jk(M,N) has

coordinates xi
0, u

a = fa(x0) and pa
I = ∂|I|fa

∂xI (x0) for 1 ≤ |I| ≤ k.

Furthermore, because we assume f is smooth, we may take the entries
in I to be nondecreasing. For example, coordinates on J2(R2,R) would be
x1, x2,u1, p1

1, p
1
2, p

1
11, p

1
12 and p1

22.

Exercise 1.9.0.46: Calculate the dimensions of (a) J2(R3,R), (b) J3(R2,R2),
(c) Jk(Rn,Rn).
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Note that T ∗
xM = J1

x,0(M,R), TxM = J1
0,x(R,M), and, in general,

Jk(M,N) is a bundle over M (as well as over M×N). Any map f : M → N
induces a section p 7→ jkp (f) of this bundle, called the lift of the graph of f .

Canonical contact systems. On Jk(M,N) there is a canonical EDS with
independence condition, called the contact system, whose integral manifolds
are the lifts of graphs of maps f : M → N to Jk(M,N). We now describe
this system in the local coordinates used above.

Let Ω := dx1 ∧ . . . ∧ dxn and let I be the ideal generated differentially
by the 1-forms

(1.9.1)

θa := dua − pa
i dx

i,

θa
i := dpa

i − pa
ijdx

j ,

...

θa
i1,...,ik−1

:= dpa
i1,...,ik−1

− pa
i1,...,ik

dxik ,

which we will call contact forms. (Note the summation on ik.) We will use
multi-index notation to abbreviate the forms in (1.9.1) as

θa
I := dpa

I − pa
Ijdx

j .

The system (I,Ω) on Jk(M.N) is defined globally and is independent
of the coordinates chosen. It is called the canonical contact system on
Jk(M,N). Its integral manifolds are exactly the lifts of graphs Γf =

{(x, f(x)) | x ∈ M} ⊂ M × N of mappings f : M → N to Jk(M,N).
To see this, let i : X →֒ Jk be an n-dimensional integral manifold with
local coordinates x1, . . . , xn. On X, u = u(x1, . . . , xn), pa

i = pa
i (x

1, . . . , xn),

etc., and i∗(θa) = 0 implies that pa
i = ∂ua

∂xi for all 1 ≤ i ≤ n. Similarly, the
vanishing of the other forms in the ideal force the other jet coordinates to
be the higher derivatives of u.

How to express any PDE system as an EDS with independence condition.
Given a kth-order system of PDE for maps f : R

n → R
s,

(1.9.2) F r

(
xi, ua,

∂|I|ua

∂xI

)
= 0, 1 ≤ r ≤ R, 1 ≤ |I| ≤ k,

we define a submanifold Σ ⊂ Jk by the equations F r(xi, ua, pa
I ) = 0. The

lifts of solutions of (1.9.2) are precisely the integral manifolds of the pullback
of the contact system to Σ. Note that Ω tells us what the independent
variables should be.

Standard abuse of notation. Given an inclusion i : M →֒ Σ, instead of
writing i∗(θ) = 0 or i∗(Ω) 6= 0 we will often simply say respectively “θ = 0
on M”or “Ω 6= 0 on M”.
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Exterior differential systems. We generalize our notion of exterior dif-
ferential systems with independence condition as follows:

Definition 1.9.0.47. An exterior differential system on a manifold Σ is
a differential ideal I ⊂ Ω∗(Σ). An integral manifold of the system I is an
immersed submanifold f : M → Σ such that f∗(α) = 0 ∀α ∈ I.

Note that for an exterior differential system, not only do we do not
specify the analog of independent variables, but we do not even specify a
required dimension for integral manifolds.

We define a k-dimensional integral element of I at x ∈ Σ to be an
E ∈ G(k, TxΣ) such that α|E = 0 ∀α ∈ I. Let Vk(I)x denote the space of
k-dimensional integral elements to I at x.

Exercise 1.9.0.48: Let I = {x1dx2, dx3} be an exterior differential system
on R

3. Calculate V1(I)(1,1,1), V1(I)(0,0,0), V2(I)(1,1,1) and V2(I)(0,0,0).

Let Ω = adx1 + bdx2 + edx3, where a, b, c are constants, not all zero.
Calculate V1(I,Ω)(1,1,1) and V1(I,Ω)(0,0,0).

Proof of the Frobenius Theorem. We now prove Theorem 1.3.0.11,
which we restate as follows:

Theorem 1.9.0.49 (Frobenius Theorem, second version). Let I be a dif-
ferential ideal generated by the linearly independent 1-forms θ1, . . . , θm−n

on an m-fold Σ, i.e., I = {θ1, . . . , θm−n}. Suppose I is also generated al-
gebraically by θ1, . . . , θm−n, i.e., I = {θ1, . . . , θm−n}. Then through any
p ∈ Σ there exists an n-dimensional integral manifold of I. In fact, in a suf-
ficiently small neighborhood of p there exists a coordinate system y1, . . . , ym

such that I is generated by dy1, . . . , dym−n.

Proof. We follow the proof in [?], as that proof will get us used to calcula-
tions with differential forms.

We proceed by induction on n. If n = 1, then the distribution defines a
line field and we are done by Theorem 1.3.0.8. Assume that the theorem is
true up to n− 1, and we will show that it is true for n.

Let x : M → R be a smooth function such that θ1 ∧ . . .∧ θm−n ∧ dx 6= 0
on a neighborhood U of p, and consider the ideal I ′ = {θ1, . . . , θm−n, dx}.
Since I = {θ1, . . . , θm−n} is Frobenius, I ′ is also Frobenius. By our induc-
tion hypothesis, there exist local coordinates (y1, . . . , ym) such that I ′ =
{dy1, . . . , dym−n+1}.

At this point we have an (n − 1)-dimensional integral manifold of I ′

(hence, also of I) passing through p, obtained by setting y1, . . . , ym−n+1

equal to the appropriate constants. We want to enlarge it to an n-dimension-
al integral manifold.
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Let 1 ≤ i, j ≤ n−m. We may write

dx = aidy
i + am−n+1dy

m−n+1,

θi = cijdy
j + cim−n+1dy

m−n+1,

where ai, am−n+1, c
i
j , c

i
m−n+1 are smooth functions. Without loss of gener-

ality, we may assume ∂x/∂ym−n+1 6= 0, so we may rewrite the second line
as

θi = c̃ijdy
j + f idx

for some smooth functions c̃ij , f
i. The matrix of functions c̃ij is invertible at

each point in a (possibly smaller) neighborhood Ũ of p, so locally we may
take a new set of generators for I, of the form

θ̃i = dyi + eidx

for some smooth functions ei, and with θi = c̃ij θ̃
j. Then dθ̃i = dei ∧ dx and,

since I is Frobenius,

dei ∧ dx ≡ 0mod{θ̃i}.
Hence

dei = adx+ bijdy
j

for some functions a, bij . In particular, the ei are functions of the yj and

x only, and it follows that the θ̃i are defined in terms of the variables
y1, . . . , ym−n+1 only.

Let V ⊂ Ũ be the submanifold through p obtained by setting ym−n+2

through ym constant. Then I|V is a codimension-one Frobenius system.
Hence there are coordinates (ỹ1, . . . , ỹm−n+1) on V that are functions of
the y1, . . . , ym−n+1, such that I|V is generated by dỹ1, . . . , dỹm−n. These

relationships extend to Ũ , so that

(ỹ1, . . . , ỹm−n+1, ym−n+2, . . . , ym)

is the desired coordinate system. �

Symplectic manifolds, contact manifolds and their EDS’s. What
follows are two examples of classical exterior differential systems and a com-
plete local description of their integral manifolds.

Symplectic manifolds. Let Σ = R
2n with coordinates (x1, . . . , xn, y1, . . . , yn)

and let

(1.9.3) φ =
n∑

i=1

dxi ∧ dyi.

Consider the exterior differential system I = {φ}.
Exercises 1.9.0.50:

1. Show that at any point ∂
∂x1 ∧ . . . ∧ ∂

∂xn is an integral element of I.
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2. Show that any graph yj = f j(x1, . . . , xn) of the form yj = f j(xj)
for each j is an integral manifold.

We claim there are no (n+1)-dimensional integral elements for I. First,
it is easy to check that φ is nondegenerate, i.e., φ(v,w) = 0 for all vectors
w ∈ TpΣ only if v = 0. Now suppose E = {v1, . . . , vn+1} were an integral
element at some point p ∈ Σ. Then the nondegeneracy of φ implies that
the forms αj = vj φ ∈ T ∗

p Σ are linearly independent. However, this is
impossible since αi|E = 0 for every αi.

Exercise 1.9.0.51: Alternatively, show that there are no (n+1)-dimensional
integral elements to I by relating φ to the standard inner product 〈, 〉 on
R

2n. Namely, let φ(v,w) = 〈v, Jw〉, where J is the standard complex struc-
ture defined in Exercise ??. Then, if E is a integral element, show that 〈, 〉
must be degenerate on E ∩ J(E).

An even-dimensional manifold with closed nondegenerate 2-form is called
a symplectic manifold, and the 2-form is called a symplectic form. The
following theorem shows that the above example on R

2n is quite general.

Notation 1.9.0.52. For ω ∈ Ω2(M), we will write ωr for the r-fold wedge
product ω ∧ ω ∧ · · · ∧ ω of ω with itself.

Theorem 1.9.0.53 (Darboux). Suppose a closed 2-form ω ∈ Ω2(Mn) is
such that ωr 6= 0 but ωr+1 = 0 in some neighborhood U ⊂ M . Then there
exists a coordinate system w1, . . . , wn, possibly in a smaller neighborhood,
such that

ω = dw1 ∧ dw2 + . . .+ dw2r−1 ∧ dw2r .

In particular, ω takes the form (1.9.3) when n = 2r.

Darboux’s Theorem implies that all symplectic manifolds are locally
equivalent, in contrast to Riemannian manifolds (see 2.6.0.88). Globally this
is not at all the case, and the study of the global geometry of symplectic
manifolds is an active area of research (see [?], for example).

Example 1.9.0.54. Given any differentiable manifold M , the cotangent
bundle T ∗M is canonically a symplectic manifold.

Let π : T ∗M → M be the projection and let α ∈ Ω1(T ∗M) be the
canonical 1-form defined as follows: α(v)(x,u) = u (π∗(v)), where x ∈ M

and u ∈ T ∗
xM . If M has local coordinates xi, then T ∗M has local coordi-

nates (xi, yj) such that if u ∈ T ∗
xM then u =

∑
j yj(x, u)dx

j . So, in these

coordinates α =
∑

j yjdx
j . Hence, ω = dα is a symplectic form on T ∗M .

Contact manifolds.
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Exercise 1.9.0.55: Consider the contact system on J1(Rn,R) = R
2n+1

with coordinates (z, x1, . . . , xn, y1, . . . , yn). Here θ = dz−Σiy
idxi generates

the contact system I = {θ}
(a) Show that at any point ∂

∂x1 ∧ . . . ∧ ∂
∂xn is an integral element.

(b) Show that any graph z = h(x1, . . . , xn), yj = f j(x1, . . . , xn)
such that f j = ∂h/∂xj is an integral manifold. (In fact, all n-
dimensional integral manifolds are locally of this form.)

(c) Show that there are no (n+1)-dimensional integral elements for
I.

Again, this example is general:

Theorem 1.9.0.56 (Pfaff). Let M be a manifold of dimension n + 1, let
θ ∈ Ω1(M) and I = {θ}. Let r ∈ N be such that (dθ)r ∧θ 6= 0 but (dθ)r+1∧
θ = 0 in some neighborhood U ⊂ M . Then there exists a coordinate
system w0, . . . , wn, possibly in a smaller neighborhood, such that I is locally
generated by

θ̃ = dw0 + wr+1dw1 + . . .+ w2rdwr

(i.e., θ is a nonzero multiple of θ̃ on U). In fact, there exist coordinates
y0, . . . , yn such that

θ =

{
y0dy1 + y2dy3 + . . .+ y2rdy2r+1 if (dθ)r+1 6= 0,
dy1 + y2dy3 + . . . + y2rdy2r−1 if (dθ)r+1 = 0,

on U .

If n = 2r + 1, then the Pfaff Theorem implies that M is locally diffeo-
morphic to the jet bundle J1(Rr,R) and θ̃ is the pullback of the standard
contact form. Thus, r-dimensional integral manifolds of I are given in the
coordinates w0, . . . , wn by

w0 = f(w1, . . . , wr),

wr+1 =
∂f

∂w1
,

...

w2r =
∂f

∂wr
.

A 1-form θ on a (2n+ 1)-dimensional manifold Σ is called a contact form if
it is as nondegenerate as possible, i.e., if θ ∧ (dθ)n is nonvanishing.

Since we use the one form θ to define an EDS, we really only care about
it up to multiplication by a nonvanishing function. A contact manifold
is defined to be a manifold with a contact form, defined up to scale. This
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generalizes the contact structure on J1(M,R), our first example of a contact
manifold.

Example 1.9.0.57. The projectivized tangent bundle PTM may be given
the structure of a contact manifold, by taking the distribution α⊥ ⊂ T (TM)
and projecting to PTM .

Exercise 1.9.0.58 (Normal form for degenerate contact forms): On R
3,

consider a 1-form θ such that θ ∧ dθ = fΩ, where Ω is a volume form and
f is a function such that df |p 6= 0 whenever f(p) = 0. Show that there
are coordinates (x, y, z), in a neighborhood of any such point, such that
θ = dz − y2dx.





Chapter 2

Euclidean Geometry

and Riemannian

Geometry

In this chapter we return to the study of surfaces in Euclidean space E
3 =

ASO(3)/SO(3). Our goal is not just to understand Euclidean geometry, but
to develop techniques for solving equivalence problems for submanifolds of
arbitrary homogeneous spaces. We begin with the problem of determining
if two surfaces in E

3 are locally equivalent up to a Euclidean motion. More
precisely, given two immersions f, f̃ : U → E

3, where U is a domain in
R

2, when do there exist a local diffeomorphism φ : U → U and a fixed
A ∈ ASO(3) such that f̃ ◦ φ = A ◦ f? Motivated by our results on curves
in 1, we first try to find a complete set of Euclidean differential invariants
for surfaces in E

3, i.e., functions I1, . . . , Ir that are defined in terms of the
derivatives of the parametrization of a surface, with the property that f(U)

differs from f̃(U) by a Euclidean motion if and only if (f̃ ◦ φ)∗Ij = f∗Ij for
1 ≤ j ≤ r.

In §2.1 we derive the Euclidean differential invariants Gauss curvature
K and mean curvature H using moving frames. Unlike with curves in E

3,
for surfaces in E

3 there is not always a unique lift to ASO(3), and we are led
to define the space of adapted frames. (Our discussion of adapted frames for
surfaces in E

3 is later generalized to higher dimensions and codimensions in
§2.5.) We calculate the functions H,K for two classical classes of surfaces
in §2.2; developable surfaces and surfaces of revolution, and discuss basic
properties of these surfaces.

37
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Scalar-valued differential invariants turn out to be insufficient (or at least
not convenient) for studying equivalence of surfaces and higher-dimensional
submanifolds, and we are led to introduce vector bundle valued invariants.
This study is motivated in §2.4 and carried out in §2.5, resulting in the
definitions of the first and second fundamental forms, I and II. In §2.5 we
also interpret II and Gauss curvature, define the Gauss map and derive the
Gauss equation for surfaces.

Relations between intrinsic and extrinsic geometry of submanifolds of
Euclidean space are taken up in §2.6, where we prove Gauss’s theorema
egregium, derive the Codazzi equation, discuss frames for C∞ manifolds and
Riemannian manifolds, and prove the fundamental lemma of Riemannian
geometry. We include many exercises about connections, curvature, the
Laplacian, isothermal coordinates and the like. We conclude the section
with the fundamental theorem for hypersurfaces.

In §2.7 and §2.8 we discuss two topics we will need later on, space forms
and curves on surfaces. In §2.9 we discuss and prove the Gauss-Bonnet and
Poincaré-Hopf theorems. We conclude this chapter with a discussion of non-
orthonormal frames in §2.10, which enables us to finally prove the formula
(1.1.3) and show that surfaces with H identically zero are minimal surfaces.

The geometry of surfaces in E
3 is studied further in §?? and throughout

Chapters 5–7. Riemannian geometry is discussed further in .

2.1. Gauss and mean curvature via frames

Guided by Cartan’s Theorem 1.6.0.29, we begin our search for differential
invariants of immersed surfaces f : U2 → E

3 by trying to find a lift F : U →
ASO(3) which is adapted to the geometry of M = f(U). The most näıve
lift would be to take

F (p) =

(
1 0

f(p) Id

)
.

Any other lift F̃ is of the form

F̃ = F

(
1 0
0 R

)

for some map R : U → SO(3).

Let x = f(p); then TxE
3 has distinguished subspaces, namely f∗(TpU)

and its orthogonal complement. We use our rotational freedom to adapt
to this situation by requiring that e3 always be normal to the surface, or
equivalently that {e1, e2} span TxM . This is analogous to our choice of
coordinates at our preferred point in 1, but is more powerful since it works
on an open set of points in U .
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We will call a lift such that e3 is normal to TxM a first-order adapted
lift, and continue to denote such lifts by F . Our adaptation implies that

F ∗(ω3) = 0,(2.1.1)

F ∗(ω1 ∧ ω2) 6= 0 at each point.(2.1.2)

The equation dx = ω1e1 + ω2e2 + ω3e3 (see (1.8.4)) shows that (2.1.1) can
be interpreted as saying that x does not move in the direction of e3 to first
order, and (2.1.2) implies that to first order x may move independently
towards e1 and e2.

Let π : F1 → U denote the bundle whose fiber over x ∈ U is the set
of oriented orthonormal bases (e1, e2, e3) of Tf(x)E

3 such that e3 ⊥ Tf(x)M .

The first-order adapted lifts are exactly the sections of F1. By fixing a refer-
ence frame at the origin in E

3, ASO(3) may be identified as the bundle of all
oriented orthonormal frames of E

3, and F1 is a subbundle of f∗(ASO(3)).
Throughout this chapter we will not distinguish between U and M when
the distinction is unimportant. In particular, we will usually consider F1 as
a bundle over M .

Consequences of our adaptation. Thanks to the Maurer-Cartan equation
(1.6.2), we may calculate the derivatives of the left-invariant forms on
ASO(3) algebraically:

d




0 0 0 0
ω1 0 −ω2

1 −ω3
1

ω2 ω2
1 0 −ω3

2

ω3 ω3
1 ω3

2 0




= −




0 0 0 0
ω1 0 −ω2

1 −ω3
1

ω2 ω2
1 0 −ω3

2

ω3 ω3
1 ω3

2 0


 ∧




0 0 0 0
ω1 0 −ω2

1 −ω3
1

ω2 ω2
1 0 −ω3

2

ω3 ω3
1 ω3

2 0


 .

Write i : F1 →֒ ASO(3) for the inclusion map. By our definition of F1,
i∗ω3 = 0, and hence

(2.1.3) 0 = i∗(dω3) = −i∗(ω3
1 ∧ ω1 + ω3

2 ∧ ω2).

By (2.1.2), i∗ω1 and i∗ω2 are independent, and we can apply the Cartan
Lemma ?? to the right hand side of (2.1.3). We obtain

(2.1.4) i∗
(
ω3

1

ω3
2

)
=

(
h11 h12

h21 h22

)
i∗
(
ω1

ω2

)
,

where hij = hji are some functions defined on F1. This h = (hij) is anal-
ogous to the Hessian at the origin in (1.1.1), but it has the advantage of
being defined on all of F1.
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Given an adapted lift F : U → F1, we have

F ∗

(
ω3

1

ω3
2

)
= hF F

∗

(
ω1

ω2

)
,

where hF = F ∗(h). We now determine the invariance of hF . Since F
is uniquely defined up to a rotation in the tangent plane to M , all other
possible adapted lifts are of the form

(2.1.5) F̃ = F




1
R

1


 = Fr,

where R : U → SO(2) is an arbitrary smooth function.

We compare F̃ ∗(ω) = F̃−1dF̃ with F ∗(ω) = F−1dF :

F̃−1dF̃ = (Fr)−1d(Fr) = r−1(F−1dF )r + r−1F−1Fdr

=




1
R−1

1


F ∗




0 0 0 0
ω1 0 −ω2

1 −ω3
1

ω2 ω2
1 0 −ω3

2

ω3 ω3
1 ω3

2 0







1
R

1




+




0
R−1dR

0


 .

In particular,

F̃ ∗

(
ω1

ω2

)
= R−1F ∗

(
ω1

ω2

)
, F̃ ∗(ω3

1 , ω
3
2) = F ∗(ω3

1, ω
3
2)R.

Since R−1 = tR, we conclude that

(2.1.6) hF̃ = R−1hFR.

Thus, the properties of hF that are invariant under conjugation by a
rotation matrix are invariants of the mapping f . The functions 1

2 trace(hF )
and det(hF ) generate the ideal of functions on hF that are invariant under
(2.1.6). They are respectively called the mean curvature (first defined by
Sophie Germain), denoted by H, and the Gauss curvature (first defined by
a mathematician with better p.r.), denoted by K. We see immediately that
for two surfaces to be congruent it is necessary that they must have the
same Gauss and mean curvature functions at corresponding points, thus
recovering our observations of §1.1.
Another perspective. Instead of working with lifts to F1, one could
work with h : F1 → S2

R
2 directly, calculating how h varies as one moves in

the fiber.
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Let k1, k2 denote the eigenvalues of h; for the sake of definiteness, say
k1 ≥ k2. These are called the principal curvatures of M ⊂ E

3, and are also
differential invariants. However, H,K are more natural invariants, because,
e.g., the Gauss curvature plays a special role in the intrinsic geometry of the
surface; see for example Theorem 2.6.0.78 below.

Note also that if M is smooth, then H,K are smooth functions on M
while k1 and k2 may fail to be differentiable at points where k1 = k2, which
are called umbilic points.

Exercises 2.1.0.59:

1. Let F̃ be as in (2.1.5) and let R =

(
cos θ sin θ
− sin θ cos θ

)
. Calculate

F̃ ∗ω2
1 in terms of θ and F ∗ω2

1.
2. Show that H,K are invariants of the image of f . ⊚

3. Express k1, k2 in terms of H and K. ⊚

Example 2.1.0.60 (Surfaces with H = K = 0). If H = K = 0, then
the matrix h is zero and ω3

1 , ω
3
2 vanish. So, on Σ = ASO(3) define I =

{ω3, ω3
1 , ω

3
2} with independence condition Ω = ω1 ∧ ω2.

Suppose f : U → E
3 gives a surface M with H,K identically zero.

Such a surface is (as you may already have guessed) a subset of a plane.
For, if F : U → ASO(3) is a first-order adapted frame for a surface with
H = K = 0, then F (U) will be an integral surface of (I,Ω). Note that
de3 = −ω3

1e1 − ω3
2e2 = 0, so e3 is constant for such lifts. Therefore, for

all x ∈ M there is a fixed vector e3 such that e3 ⊥ TxM , and thus M is
contained in a plane perpendicular to e3.

2.2. Calculation of H and K for some examples

The Helicoid. Let R
2 have coordinates (s, t), fix a constant a > 0 and con-

sider the mapping f : R
2 → E

3 defined by

f(s, t) = (s cos t, s sin t, at).

The image surface is called the helicoid.

Exercise 2.2.0.61: Draw the helicoid. Note that the z-axis is contained
in the surface, as is a horizontal line emanating out from each point on the
z-axis, and this line rotates as we move up the z-axis.

We compute a first-order adapted frame for the helicoid. Note that

fs = (cos(t), sin(t), 0),

ft = (−s sin(t), s cos(t), a).
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so 〈fs, ft〉 = 0 and we may take

(2.2.1)

e1 =
fs

|fs|
= (cos(t), sin(t), 0),

e2 =
ft

|ft|
=

1√
s2 + a2

(−s sin(t), s cos(t), a),

e3 = e1 × e2 =
1√

s2 + a2
(a sin(t),−a cos(t), s).

Since df = fsds + ftdt = f∗(ω1)e1 + f∗(ω2)e2, we obtain (omitting the f∗

from the notation here and in what follows)

(2.2.2)
ω1 = ds,

ω2 = (s2 + a2)
1

2dt.

Next, we calculate

de3 =
(
−s(s2 + a2)−3/2(a sin(t),−a cos(t), s) + ((s2 + a2)−1/2(0, 0, 1)

)
ds

+ (s2 + a2)−1/2(a cos(t), a sin(t), 0)dt.

So, using (2.2.1), (2.2.2), we obtain

ω3
1 = −a(s2 + a2)−1ω2,

ω3
2 = −a(s2 + a2)−1ω1,

and conclude that H(s, t) ≡ 0 and K(s, t) = − a2

(s2+a2)2
.

Surfaces with H identically zero are called minimal surfaces and are
discussed in more detail in §2.10 and §??.

Developable surfaces. A surface M2 ⊂ E
3 is said to be developable if it is de-

scribable as (a subset of) the union of tangent rays to a curve. (Developable
surfaces are also called tangential surfaces.)

Let c : R → E
3 be a regular parametrized curve, and consider the surface

f : R
2 → E

3 defined by (u, v) 7→ c(u) + vc′(u). Since

df = (c′(u) + vc′′(u))du + c′(u)dv,

we see that f is regular, i.e., df is of maximal rank, when c′′(u) is linearly
independent from c′(u) and v 6= 0. (We will assume v > 0.) Note that the
tangent space, spanned by c′(u), c′′(u), is independent of v.

Assume that c is parametrized by arclength. Then 〈c′(u), c′′(u)〉 = 0,
and we can take

e1(u, v) = c′(u),

e2(u, v) = c′′(u)/||c′′(u)||.
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Using df = ω1e1 + ω2e2, we calculate

ω1 = du+ dv,

ω2 = vκ(u)du,

where κ(u) is the curvature of c.

Note that our frame is the same as if we were to take an adapted framing
of c (as in §1.8), so we have

de3 = (−τ(u)e2)du.
Thus,

ω3
1 = 0, ω3

2 =
τ(u)

κ(u)v
ω2,

showing that H(u, v) = τ(u)
2κ(u)v and K ≡ 0.

Surfaces with K identically zero are called flat, and we study their ge-
ometry more in §2.4.

Developable surfaces are also examples of ruled surfaces (as is the heli-
coid). A surface is ruled if through any point of the surfaces there passes a
straight line (or line segment) contained in the surface.

Surfaces of revolution. Let U ⊂ R
2 be an open set with coordinates u, v and

let f : U → E
3 be a map of the form

x(u, v) = r(v) cos(u),

y(u, v) = r(v) sin(u),

z(u, v) = t(v),

where r, t are smooth functions. The resulting surface is called a surface of
revolution because it is constructed by rotating a generating curve (e.g., in
the xz-plane) about the z-axis. Call the image M .

Assuming that the generating curve is regular, we can choose v to be an
arclength parameter, so that (r′(v))2 + (t′(v))2 = 1. Let

(2.2.3)
e1 = (− sinu, cos u, 0),

e2 = (r′(v) cos u, r′(v) sin u, t′(v)).

Note that ej ∈ Γ(U, f∗(TE
3)).

Exercises 2.2.0.62:
1. (a) Show that e1, e2 in (2.2.3) is an orthonormal basis of Tf(u,v)M .

(b) Calculate e3 such that e1, e2, e3 is an orthonormal basis of
Tf(u,v)E

3.

2. Considering this frame as a lift F : U → F1, calculate the pullback
of the Maurer-Cartan forms in terms of du, dv.

3. Calculate the Gauss and mean curvature functions of M .
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4. Consider the surfaces of revolution generated by the following data.
In each case, describe the surface geometrically. (Take time out to
draw some pictures and have fun!) Calculate H,K and describe
their asymptotic behavior.
(a) r(v) = constant, t(v) = v.
(b) r(v) = av, t(v) = bv, where a2 + b2 = 1.
(c) r(v) = cos v, t = sin v.
(d) The generating curve in the xz plane is a parabola, e.g. x −

bz2 = c.
(e) The generating curve is a hyperbola, e.g. x2 − bz2 = c.

(f) The generating curve is an ellipse, e.g. x2

a2 + z2

b2
= 1.

5. Find all surfaces of revolution with K ≡ 0. Give a geometric con-
struction of these surfaces. ⊚

6. Find all surfaces of revolution with K ≡ 1 that intersect the x− y
plane perpendicularly. (Your answer should involve an integral and
the choice of one arbitrary constant.) Which of these are complete?
⊚

2.3. Darboux frames and applications

Recall that k1 ≥ k2 are the eigenvalues of the second fundamental form
matrix h. Away from umbilic points (points where k1 = k2), k1 and k2 are
smooth functions, and we may further adapt frames by putting h in the
form

h =

(
k1 0
0 k2

)
,

because a real symmetric matrix is always diagonalizable by a rotation ma-
trix. In this case F is uniquely determined. We will call such a framing a
Darboux or principal framing.

Notation. In general, we will express the derivative of a function u on
a framed surface as du = u1ω

1 + u2ω
2, where uj = ej(u). In particular,

write dkj = kj,1ω
1 +kj,2ω

2 to represent the derivatives of the kj in Exercises
2.3.0.63 below.

Exercises 2.3.0.63:
1. Let c ⊂ E

2 be the curve defined by intersecting M with the plane
through x parallel to e1, e3. Show that the curvature of c at x is
k1.

2. Calculate F ∗(ω2
1) in a Darboux framing as a function of the prin-

cipal curvatures and their derivatives.
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3. Suppose that X1,X2 are vector fields on V such that f∗Xi = ei.
Show that

[X1,X2] = − k1,2

k1 − k2
X1 +

k2,1

k1 − k2
X2. ⊚

4. Find all surfaces in E
3 with k1 ≡ k2, i.e., surfaces where each point

is an umbilic point.
5. Derive the Codazzi equation for Darboux frames, i.e., show that
k1, k2 satisfy the differential equation

(2.3.1)

−k1k2 =
1

(k1 − k2)2
((k1 − k2)(k2,11 − k1,22) + k1,2k2,2 + k2,1k1,1) . ⊚

This to some extent addresses the existence question for prin-
cipal curvature functions. Namely, two functions k1(u, v), k2(u, v)
that are never equal cannot be the principal curvature functions of
some embedding of U → E

3 unless they satisfy the Codazzi equa-
tion. In particular, surfaces with both H and K constant must be
either flat or totally umbilic.

6. Using the Codazzi equation, show that if k1 > k2 everywhere, and
if there exists a point p at which k1 has a local maximum and k2 a
local minimum, then K(p) ≤ 0.

Even among surfaces of revolution, there are an infinite number of non-
congruent surfaces with K ≡ 1. We will see in Example ?? and again in §??
that surfaces with constant K > 0 are even more flexible in general. Thus,
the following theorem might come as a surprise:

Theorem 2.3.0.64. If M2 ⊂ E
3 is compact, without boundary, and has

constant Gauss curvature K > 0, then M is the round sphere.

Exercise 2.3.0.65: Prove the theorem. ⊚

2.4. What do H and K tell us?

Since Darboux frames provide a unique lift for M and well-defined differen-
tial invariants, it is natural to pose the question:

Question: Are surfaces M2 ⊂ E
3 with no umbilic points lo-

cally determined, up to a Euclidean motion, by the functions
H and K?

The answer is NO! Consider the following example:

The Catenoid. Let R
2 have coordinates (u, v), let a > 0 be a constant, and

consider the following mapping f : R
2 → R

3:

f(u, v) = (a cosh v cos u, a cosh v sinu, av)

The image is called the catenoid.
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Exercise 2.4.0.66: Draw the catenoid. Calculate the mean and Gauss
curvature functions by choosing an adapted orthonormal frame and differ-
entiating as we did in §2.2. ⊚

Now consider the map g : R
2 → R

2 given by s = a sinh v, t = u.

Exercise 2.4.0.67: Show that g∗(Kcat) = Khelicoid, and of course the mean
curvature functions match up as well.

Although we have the same Gauss and mean curvature functions, the
helicoid is ruled, and it is not hard to check that the catenoid contains no
line segments. Since a Euclidean transformation takes lines to lines, we see it
is impossible for the helicoid to be equivalent to the catenoid via a Euclidean
motion.

We will see in Example ?? that, given a non-umbilic surface with con-
stant mean curvature, there are a circle’s worth of non-congruent surfaces
with the same Gauss curvature function and mean curvature as the given
surface. On the other hand, the functions H and K are usually sufficient
to determine M up to congruence. Those surfaces for which this is not the
case either have constant mean curvature, or belong to a finite-dimensional
family called Bonnet surfaces, after Ossian Bonnet, who first investigated
them; see §?? for more discussion.

We will also see, in §2.6, that using slightly more information, namely
vector bundle valued differential invariants, one can always determine local
equivalence of surfaces from second-order information.

Flat surfaces. Recall that a surface is flat if K ≡ 0. The name is justi-
fied by Theorem 2.6.0.78, which implies that the intrinsic geometry of such
surfaces is the same as that of a plane, and also by the following exercise:

Exercise 2.4.0.68: Show that if M is flat, there exist local coordinates
x1, x2 on M and an orthonormal frame (e1, e2, e3) such that ω1 = dx1, ω2 =
dx2. ⊚

Here are some examples of flat surfaces:

Cylinders. Let C ⊂ E
2 ⊂ E

3 be a plane curve parametrized by c(u), and
assume X is a unit normal to E

2. Let f(u, v) = c(u) + vX.

Exercise 2.4.0.69: Find a Darboux framing for the cylinder and calculate
its Gauss and mean curvature functions.

Cones. Let C ⊂ E3 be a curve parametrized by c(u), and let p ∈ E3\C. Let
f(u, v) = c(u) + v(p − c(u)). The resulting surface is called the cone over c
with vertex p.

Exercise 2.4.0.70: Show that cones are indeed flat. ⊚
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Remark 2.4.0.71. It turns out the property of being flat is invariant under
a larger group than ASO(3), and flat surfaces are best studied by exploiting
this larger group. This topic will be taken up in , where we classify all
flat surfaces: in the projective complex analytic category they are either
cones, cylinders, or tangential surfaces to a curve. Even in the C∞ category,
the only complete flat surfaces are cylinders; see [?], where there are also
extensive comments about the local characterization of flat C∞-surfaces.

2.5. Invariants for n-dimensional submanifolds of En+s

We already saw that for surfaces, the functionsH,K alone were not sufficient
to determine equivalence. We now begin the study of vector bundle valued
functions as differential invariants for submanifolds of (oriented) Euclidean
space E

n+s = ASO(n+ s)/SO(n+ s).

Let (x, e1, . . . , en+s) denote an element of ASO(n + s). Define the pro-
jection

π : ASO(n+ s) → E
n+s,

(x, e1, . . . , en+s) 7→ x.

Given an n-dimensional submanifold M ⊂ E
n+s, let π : F1 →M denote the

subbundle of ASO(n + s)|M of oriented first-order adapted frames for M ,
whose fiber over a point x ∈M is the set of oriented orthonormal bases such
that e1, . . . , en are tangent to M (equivalently, en+1, . . . , en+s are normal to
M).

Using index ranges 1 ≤ i, j, k ≤ n and n + 1 ≤ a, b ≤ s, we write the
Maurer-Cartan form on ASO(n+ s) as

ω =




0 0 0
ωi ωi

j ωi
b

ωa ωa
j ωa

b


 .

On F1, continuing our standard abuse in omitting pullbacks from the nota-
tion, ωa = 0 and thus dωa = −ωa

j ∧ ωj = 0, which implies

ωa
j = ha

ijω
j,

for some functions ha
ij = ha

ji : F1 → R.

We seek quantities that are invariant under motions in the fiber (F1)x.
The motions in the fiber of F1 are given by left-multiplication by

(2.5.1) R =




1 0 0
0 gi

j 0

0 0 ua
b


 ,

where (gi
k) ∈ SO(n) and (ua

b ) ∈ SO(s). If f̃ = Rf , then
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(2.5.2) h̃a
i j = (u−1)abg

k
i g

l
jh

b
kl.

In this situation, if we were to look for scalar functions that are constant
on the fibers, we would get a mess, but there are simple vector bundle valued
functions that are constant on the fibers. Recall our general formula (1.6.1)
for how the Maurer-Cartan form changes under a change of lift. Under a
motion (2.5.1) we have

(2.5.3) ωi 7→ (g−1)ijω
j, ea 7→ ub

aeb, ωa
i 7→ gi

j(u
−1)abω

b
j .

Let NM denote the normal bundle of M , the bundle with fiber NxM =
(TxM)⊥ ⊂ TxE

n+s. Define

ĨI : = ωa
jω

j ⊗ ea

= ha
ijω

iωj ⊗ ea ∈ Γ(F1, π∗(S2T ∗M⊗NM)),

where we write ωiωj for the symmetric product ωi ◦ωj. Then (2.5.3) shows

that ĨI is constant on fibers and thus is basic, i.e., if s1, s2 : M → F1 are

any two sections, then s∗1(ĨI) = s∗2(ĨI).

Proposition/Definition 2.5.0.72. ĨI descends to a well-defined differen-
tial invariant

II ∈ Γ(M,S2T ∗M ⊗NM)

called the (Euclidean) second fundamental form of M .

When studying surfaces, we failed to mention the vector bundle valued
first-order invariants of submanifolds described in the following exercises.

Exercises 2.5.0.73:
1. Consider

Ĩ :=
∑

i

ωiωi ∈ Γ(F1, π∗(S2T ∗M)).

Verify that Ĩ descends to a well-defined differential invariant

I ∈ Γ(M,S2T ∗M),

which is called the first fundamental form or Riemannian metric of
M .

2. Show that dvol := ω1 ∧ . . . ∧ ωn is invariant under motions in the
fiber and descends to a well-defined invariant, called the volume
form of M . Show that it is indeed the volume form induced by the
Riemannian metric I. (Recall that an inner product on a vector
space V induces an inner product on ΛnV , and thus a volume form
up to a sign.)
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Interpretations of II and K. We now give a more geometrical definition
of the second fundamental form for surfaces in E

3. This definition will be
extended to all dimensions and codimensions in .

The Gauss map. LetM2 ⊂ E
3 be oriented and let S2 denote the unit sphere.

Since e3 is invariant under changes of first-order adapted frame, we obtain
a well-defined mapping

M2 → S2,

x 7→ e3(x),

called the Gauss map.

Proposition 2.5.0.74. II(v,w) = −〈de3(v), w〉.
Thus, II admits the interpretation as the derivative of the Gauss map.

Exercises 2.5.0.75:
1. Prove Proposition 2.5.0.74.
2. Let Mn ⊂ E

n+1 be an oriented hypersurface. Define the Gauss
map of M and the analogous notions of principal curvatures, mean
curvature and Gauss curvature.

3. Show that the generic fibers of the Gauss map are (open subsets
of) linear spaces, and thus flat surfaces are ruled by lines. ⊚

A geometric interpretation of Gauss curvature. The round sphere S2 may
be considered as the homogeneous space ASO(3)/ASO(2) via the projection
(x, e1, e2, e3) 7→ e3. As such, the form ω3

1 ∧ ω3
2 is the pullback of the area

from on S2 because de3 = −(ω3
1e1 + ω3

2e2). Since ω3
1 ∧ ω3

2 = Kω1 ∧ ω2, we
may interpret K as a measure of how much the area of M is (infinitesimally)
distorted under the Gauss map. (This is because, for a linear map A : V →
V , the determinant of A gives, up to sign, the factor by which volume is
distorted under A. More precisely, if P is a parallelepiped with one vertex
at the origin, vol(A(P )) = |detA| vol(P ).)

The Gauss equation. There is another way to calculate the Gauss curva-
ture of a surface, namely by differentiating ω2

1. Using the Maurer-Cartan
equation, we obtain

(2.5.4) dω2
1 = −Kω1 ∧ ω2,

which is called the Gauss equation.

Exercises 2.5.0.76:
1. Let c(t) ⊂M2 ⊂ E

3 be a curve on a surface such that |c′(t)| = 1 and
c′′(t) ⊥ Tc(t)M for all t. Show that 〈IIM,c(t)(c

′(t), c′(t)), e3〉 = κc(t),
where κ denotes the curvature of the curve.

2. Let M2 ⊂ E
3 be a surface. Let x ∈ M be a point such that there

exists ǫ > 0 such that M ∩ TxM ∩Bǫ(x) = x, where Bǫ(x) denotes
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a ball in E
3 of radius ǫ around x. Show that Kx ≥ 0. What can

one say if Kx < 0?

2.6. Intrinsic and extrinsic geometry

Definition 2.6.0.77. A Riemannian manifold is a differentiable manifold
M endowed with a smooth section g ∈ Γ(M,S2T ∗M), called a Riemannian
metric, that is positive definite at every point.

If Mn ⊂ E
n+s, then the first fundamental form I is a Riemannian metric

on M . Which of our differential invariants forM depend only on the induced
Riemannian metric I? Such invariants are often called intrinsic, depending
only on the Riemannian structure of M , as opposed to extrinsic invariants,
which depend on how M sits in Euclidean space.

Intrinsic geometry for surfaces. By definition, I is intrinsic, while II is
necessarily extrinsic, since it takes values in a bundle that is defined only by
virtue of the embedding of M . However, one can obtain intrinsic invariants
from II. Given a surface M2 ⊂ E

3, we have the “great theorem” of Gauss:

Theorem 2.6.0.78 (Gauss’ theorema egregium). The Gauss curvature of a
surface M2 ⊂ E

3 depends only on the induced Riemannian metric.

Proof. Let f : U → M be a local parametrization, with U ⊂ R
2, and let

F : U → F1 be a first-order adapted lift. Let X1,X2 be vector fields on U
such that f∗Xi = ei. ThenX1,X2 are orthonormal for the metric g = f∗I on

U . Let η1, η2 be the dual 1-forms on U (i.e., ηj(Xi) = δj
i ). Since η1∧η2 6= 0,

there exist functions a, b such that

dη1 = aη1 ∧ η2,

dη2 = bη1 ∧ η2.

The proof is completed by the following exercises:

Exercises 2.6.0.79:
1. Show that there exists a 1-form α such that

dη1 = −α ∧ η2,

dη2 = α ∧ η1.

2. If X̃1, X̃2 is another g-orthonormal framing on U , show that dα̃ =
dα. Show that the function κ defined by dα = κη1 ∧ η2 is also
unchanged, and thus depends only on g.

3. Show that (η1, η2, α) = F ∗(ω1, ω2, ω1
2), and thus κ = f∗K by

(2.5.4). �
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The Codazzi equation. Given two functions H, and K on an open subset
U ⊂ R

2, does there exist (locally) a map f : U → E
3 such that H and

K are the mean and Gauss curvature functions of M = f(U)? There are
inequalities on admissible pairs of functions becauseH,K are supposed to be
symmetric functions of the principal curvatures (so, e.g., H = 0 implies K ≤
0). However, as we have already seen in (2.3.1), stronger restrictions exist
and are uncovered when one differentiates and checks that mixed partials
commute.

To see these restrictions, set up an EDS on ASO(3)×R
3, where R

3 has
coordinates hij = hji, for lifts of surfaces equipped with second fundamental
forms, namely

I = {ω3, ω3
1 − h11ω

1 − h12ω
3, ω3

2 − h21ω
1 − h22ω

3}
with independence condition Ω = ω1∧ω2. We calculate dω3 ≡ 0mod I, but

0 = d

{(
ω3

1

ω3
2

)
− h

(
ω1

ω2

)}

= −
(

0 −ω2
1

ω2
1 0

)
∧
(
ω3

1

ω3
2

)
− dh ∧

(
ω1

ω2

)
+ h

(
0 −ω2

1

ω2
1 0

)
∧
(
ω1

ω2

)

≡ −
(

0 −ω2
1

ω2
1 0

)
∧ h

(
ω1

ω2

)
− dh ∧

(
ω1

ω2

)
+ h

(
0 −ω2

1

ω2
1 0

)
∧
(
ω1

ω2

)
mod I

≡ −
{
dh−

[
h,

(
0 −ω2

1

ω2
1 0

)]}
∧
(
ω1

ω2

)
= 0,

(where [, ] denotes the commutator of matrices). Thus h must satisfy the
matrix differential equation (2.6), which is called the Codazzi equation.

Given a Riemannian metric g on M and an orthonormal framing, we saw
in the proof of Theorem 2.6.0.78 that ω1, ω2, ω2

1 are uniquely determined.
In this situation, we may interpret (2.6) as a system of equations for the
possible second fundamental forms II = hijω

iωj for embeddings of M into
E

3 that induce the metric g. These restrictions are well-defined, since (2.6)
is invariant under changes of orthonormal framing.

Intrinsic geometry in higher dimensions.

Frames for any manifold. Given an n-dimensional differentiable manifold
Mn, consider the bundle of all coframings of M . More precisely, write V
for R

n and let π : F(M) → M denote the bundle whose fiber over x ∈ M
is the set of all linear maps fx : TxM → V . Once we fix a basis of V , we
may write a local section of F(M) as s(x) = (x, fx) = (x, η1

x, . . . , η
n
x ) with

ηi ∈ Ω1(M) and the ηi
x a basis of T ∗

xM . The ηi determine a dual framing
(e1, . . . , en) of TM , so equivalently we may consider F(M) as the bundle of
all framings of M .
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Although F(M) is not a Lie group, GL(V ) acts simply transitively on
the fibers by g.fx = g−1 ◦ fx. We now try to obtain an analogue of the
Maurer-Cartan form for F(M):

Define the tautological V -valued 1-form η on F(M) by, for f = (x, fx) ∈
F(M),

ηf (w) := fx(π∗w), w ∈ TfF(M).

With a basis for V fixed as above, the forms π∗f (ηi) (which, by our usual

abuse of notation, we write as ηi) furnish a basis of the semi-basic forms on
F(M).

The ηi generalize the semi-basic forms ωi on the frame bundle of Eu-
clidean space. We would also like to find analogues of the forms ωi

j, i.e.,

additional forms αi
j that fill out a coframing of F(M) and satisfy

(2.6.1) dηi = −αi
j ∧ ηj .

Such forms always exist; however, without some additional restrictions, the
αi

j will not be uniquely defined.

Exercise 2.6.0.80: Suppose ηi is a local coframing defined on U ⊂ M .
Then we may define a local trivialization

t : GL(V ) × U ≃ F(M)|U
by (g, x) 7→ g−1ηx. Show the existence of a desired coframing on F(M)|U
as follows:

(a) Show that t∗η = g−1η.
(b) Show that there exist αi

j ∈ Ω1(F(M)|U ) satisfying (2.6.1) such

that t∗αi
j ≡ (g−1dg)ij modulo {ηi}. ⊚

(c) Show that (ηi, αi
j) is a coframing of F(M)|U .

(d) Show that any other coframing satisfying (2.6.1) must be of the
form α̃i

j = αi
j + Ci

jkη
k for some functions Ci

jk = Ci
kj. ⊚

Frames for Riemannian manifolds. Over a Riemannian manifold M , con-
sider the bundle of orthonormal coframes which we denote π : (M) → M .
Namely, endow V with the standard inner product 〈, 〉 and define the fiber of
(M) ⊂ F(M) to be the linear maps (TxM,gx) → (V, 〈, 〉) that are isometries.
(We will sometimes denote the general frame bundle by (M) to distinguish
it from (M).) The orthogonal group O(V ) acts simply transitively on the
fibers of (M).

On (M) we still have the tautological forms ηi (which are pullbacks of
those on F(M) under the obvious inclusion). If s : M → (M) is a smooth
(local) section, then ηj = s∗(ηj) provides a local coframing such that

g = (η1)2 + · · · + (ηn)2.



2.6. Intrinsic and extrinsic geometry 53

Thanks to the additional structure of the Riemannian metric, we will
uniquely define an so(V )-valued 1-form to obtain a canonical framing of (M)
as follows:

Lemma 2.6.0.81 (The fundamental lemma of Riemannian geometry). Let
(Mn, g) be a Riemannian manifold and let ηi denote the tautological forms
on (M). Let s : M → (M) be a smooth section. Then there exist unique
forms ηi

j ∈ Ω1(M) such that

i. s∗(dηi) = −ηi
j ∧ s∗(ηj)

and

ii. ηi
j + ηj

i = 0.

Proof. Write ηj = s∗(ηj). Since the ηi furnish a basis of T ∗M at each
point, we may write

(2.6.2) dηi = −αi
j ∧ ηj

for some αi
j ∈ Ω1(M). Let αi

j = βi
j + γi

j, where βi
j = −βj

i and γi
j = γj

i .

We first prove existence by showing it is possible to choose forms α̃i
j such

that γ̃i
j = 1

2 (α̃i
j + α̃j

i ) = 0.

Exercise 2.6.0.82: Write γi
j = T i

jkη
k for some functions T i

jk = T j
ik : M →

R, and let

α̃i
j = αi

j − (T i
jk + T i

kj − T j
ki)η

k.

Verify that dηi = −α̃i
j ∧ ηj , and show that γ̃i

j = 0.

To prove uniqueness, assume that αi
j, α̃

i
j both satisfy i. and ii. Since

(α̃i
j −αi

j)∧ ηj = 0, by the Cartan Lemma we have α̃i
j −αi

j = Ci
jkη

k for some

functions Ci
jk = Ci

kj. Moreover, we also have Ci
jk = −Cj

ik.

Exercise 2.6.0.83: Show that Ci
jk = 0.

�

In case M is a submanifold of E
n+s, our uniqueness argument implies

that ηi
j = F ∗(ωi

j), where F is any extension of s to a first-order adapted
framing F : M → FEn+s .

In we will prove the following “upstairs” version of the fundamental
lemma:

Lemma 2.6.0.84 (The fundamental lemma of Riemannian geometry). Let
M be an n-dimensional Riemannian manifold and let ηi denote the tauto-
logical forms on (M). Then there exist unique forms ηi

j ∈ Ω1((M)) such

that dηi = −ηi
j ∧ ηj and ηi

j + ηj
i = 0.
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The ηi
j (in either the upstairs or downstairs version of the fundamental

lemma) are referred to as connection forms. The upstairs version provides
a coframing of (M), which we now differentiate to obtain differential invari-
ants. (If you are unhappy that we haven’t yet proven the upstairs version,
you may use the downstairs version and note that all quantities we are about
to define are independent of the choice of section s.) While dηi is given by
Lemma 2.6.0.84, we calculate dηi

j by using

0 = d2ηi = −(dηi
j + ηi

k ∧ ηk
j ) ∧ ηj .

Let Θ̃i
j := dηi

j + ηi
k ∧ ηk

j ∈ Ω2((M)). The forms Θ̃i
j are semi-basic (because

0 and the ηj are). Define

Θ̃ = Θ̃i
je

j⊗ei ∈ Ω2 ((M), π∗(End(TM))) ,

where End(TM) = T ∗M ⊗ TM .

Exercise 2.6.0.85: Show that Θ̃ is basic, i.e., show that there exists Θ ∈
Ω2(M,End(TM)) such that Θ̃ = π∗(Θ). ⊚

The differential invariant Θ is called the Riemann curvature tensor.

Let so(TM) ⊂ End(TM) denote the subbundle of endomorphisms of
TM that are compatible with the Riemannian metric g, in the sense that
if A ∈ so(TxM), then ρ(A)gx = 0, where ρ : End(TxM) → End(S2T ∗

xM) is
the induced action. In other words, if A ∈ so(TxM), then

gx(Av,w) = −gx(v,Aw) ∀v,w ∈ TxM.

Exercise 2.6.0.86: Show that Θ ∈ Ω2(M, so(TM)).

Definition 2.6.0.87. A Riemannian manifold (Mn, g) is flat if there exist
local coordinates x1, . . . , xn such that g = (dx1)2+. . .+(dxn)2. For example,
the Riemannian metric on E

n is flat.

Theorem 2.6.0.88. Let (Mn, g) be a Riemannian manifold such that Θ ≡
0. Then M is flat.

Proof. By hypothesis, dηi
j + ηi

k ∧ ηk
j = 0. By Cartan’s Theorem 1.6.0.29,

around any point x ∈M there exist an open set U and a map g : U → SO(n)
such that ηi

j = (g−1dg)ij on U . We have

dηj = −(g−1dg)jk ∧ ηk.

Taking a new frame η̃i = gi
jη

j , we obtain

dη̃i = dgi
j ∧ ηj − gi

j ∧ dηj

= dgi
j ∧ ηj − gi

j ∧ ((g−1dg)jk ∧ ηk = 0.

Thus η̃i = dxi for some functions xi defined on a possibly smaller open set
U ′. �
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The following exercises show how some standard notions from Riemann-
ian geometry are natural consequences of the structure equations described
above. If you have not already seen these notions, you may wish to skip
these exercises.
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Exercises 2.6.0.89: Write Θi
j = 1

2R
i
jklη

k ∧ ηl =
∑

k>l

Ri
jklη

k ∧ ηl, so that

Θ = 1
2R

i
jkl(η

j⊗ei)⊗ηk ∧ ηl ∈ Γ(so(TM)⊗Λ2T ∗M) = Ω2(M, so(TM)).

(Here we should really be pulling everything back from (M), but we continue
to abuse notation and omit the s∗’s.) We can use the Riemannian metric g
to define a bundle isomorphism ♯ : TM → T ∗M ; tensoring with T ∗M , we
obtain a map ♯⊗ IdT ∗M : so(TM) → Λ2(T ∗M). Applying ♯⊗ IdT ∗M to the
first two factors in Θ, we define

R = 1
2Rijkl(η

i ∧ ηj)⊗(ηk ∧ ηl) ∈ Γ(M,Λ2T ∗M⊗Λ2T ∗M).

1. (a) Show that since we are using orthonormal frames, Rijkl =
Ri

jkl. (If we were using frames that were not orthonormal, then

Rijkl 6= Ri
jkl; see §2.10.)

(b) Show that R ∈ Γ(S2(Λ2T ∗M)), i.e., Rijkl = Rklij.
(c) Show that R ∈ Γ(T ∗M⊗S21T

∗M)), i.e., Rijkl +Riklj +Riljk =
0. (See for the definition of the tensorial construct S21V .)
This is called the first Bianchi identity.

(d) Let Rik =
∑

j Rijkj and Ric = Rikη
iηk ∈ Γ(S2T ∗M). Show

that Ric is well-defined. It is called the Ricci curvature of M .
(e) Show that S :=

∑
iRii ∈ C∞(M) is well-defined. It is called

the scalar curvature of M .
(f) Show that when n = 3 one can recover R from Ric, but this is

not the case for n > 3.
(g) Show that when M is a surface, R1212 = K, the Gauss curva-

ture.
(h) Let E ∈ G(2, TxM), the Grassmannian of two-planes in TxM

(see or ), and let v1, v2 be an orthonormal basis of E. Then
we define K(E) := R(v1, v2, v1, v2) as the sectional curvature
of E. Show that K(E) is well-defined. (Remark: S, the scalar
curvature, satisfies S(x) =

∫
Gr(2,TxM)K(E) dvol where dvol is

the natural volume form onGr(2, TxM) = SO(TxM)/(S(O(2)×
S(n− 2))).

(i) Calculate the sectional curvature function on G(2, Tx(S2 ×
S2)), where S2 × S2 has the product metric. What are the
maximum and minimum values for K(E)?

(j) More generally, given Riemannian manifolds (M1, g1) and (M2, g2),
we can form the product Riemannian manifold (M1×M2, g1 +
g2). Express the Riemann curvature tensor of M1 × M2 in
terms of R1, R2, the curvature tensors on M1,M2.

For a more invariant description of the various curvatures one
can extract from the Riemann curvature tensor, see Exercise ??.??.
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2. (Covariant differential operators) Let X ∈ Γ(TM) be a vector
field and s : M → (M) a (local) orthonormal coframing. We have
X = Xiei for some functions Xi. Define the covariant derivative
of X to be

(2.6.3) ∇X = (dXi +Xjηi
j)⊗ei ∈ Ω1(M,TM) = Γ(TM⊗T ∗M),

with ηi and ηi
j being pulled back via s.

(a) Show that ∇X is well-defined, i.e., independent of the choice
of section s.

(b) For Y ∈ Γ(TM), we define ∇YX := Y ∇X = (dXi +
Xjηi

j)(Y )ei. Show that ∇Y (fX) = f∇YX + X(f)Y for f ∈
C∞(M). In other words, the differential operator ∇Y obeys
the Leibniz rule.

(c) Show that

(2.6.4) ∇XY −∇YX = [X,Y ].

Note that the left-hand side, which is the Lie bracket of X and
Y , is independent of the Riemannian metric.

(d) Show that ∇ is compatible with g in the sense that

Y (g(X1,X2)) = g(∇YX1,X2) + g(X1,∇YX2)

for all Y,X1,X2 ∈ Γ(TM).
(e) If α = aiη

i ∈ Ω1(M), we may define

∇α = (dai + ajη
j
i )⊗ηiΓ(T ∗M⊗T ∗M).

Alternatively, define ∇α by requiring, for all X,Y ∈ Γ(TM),
that

Y (X α) = (∇YX) α+X (∇Y α).

Since ∇Y is linear in Y , this defines a tensor ∇α ∈ Γ(T ∗M⊗
T ∗M) by

∇α(X,Y ) := X (∇Y α).

Show that these two definitions of ∇α agree. Similarly, one
can extend ∇ to act on sections of T ∗⊗aM ⊗T⊗bM and its
natural subbundles.

Let M be a C∞ manifold. A covariant differential operator or
connection on TM is an operator ∇ : Γ(TM) × Γ(TM) → Γ(TM)
that is C∞(M)-linear in the first factor and obeys the Leibniz rule.
If the connection satisfies (2.6.4), it is called torsion-free. The fun-
damental Lemma 2.6.0.81 implies that there exists a unique con-
nection that is torsion-free and compatible with the Riemannian
metric. This connection is called the Levi-Civita connection. Con-
nections are discussed in more detail in §??.
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3. Let ∇R = Rijkl,m(ηi ∧ ηj)⊗(ηk ∧ ηl)⊗ηm. Show that ∇R satisfies
the second Bianchi identity Rijkl,m +Rijmk,l +Rijlm,k = 0. ⊚

4. For X,Y,Z ∈ Γ(TM), define

R(X,Y )Z = ∇X∇Y Z −∇Y ∇XZ −∇[X,Y ]Z.

Show that R is a tensor, i.e., it is C∞(M)-linear in all three factors,
and that R = −Θ. ⊚

The fundamental theorem for hypersurfaces. Suppose Mn ⊂ E
n+s is

a submanifold. The relationship between the curvature tensor of the induced
Riemannian metric on M and the second fundamental form of M is given
by the algebraic Gauss map G, defined as follows:

Let V,W be vector spaces, where W has an inner product. Given a basis
ej of V ∗ and an orthonormal basis fa of W , let

G : S2V ∗⊗W → S2(Λ2V ∗),

ha
ije

iej⊗fa 7→
∑

a

(ha
ijh

a
kl − ha

ilh
a
jk)(e

i ∧ ek) ◦ (ej ∧ el),

where 1 ≤ i, j, k ≤ n = dimV and 1 ≤ a, b ≤ s = dimW . (If we think of
each ha as a matrix, we are taking the 2 × 2 minors.)

Exercises 2.6.0.90:
1. Show that G is independent of the choices of bases.
2. Taking V = TxM , W = NxM (the normal space at x), show that
G(II) = R.

We are now finally in a position to answer our original question regarding
the equivalence of surfaces in E

3, and at the same time see the generalization
to hypersurfaces.

Theorem 2.6.0.91 (The fundamental theorem for hypersurfaces in E
n+1).

Let (M,g) be a Riemannian manifold with curvature tensor R, and let h ∈
Γ(S2T ∗M). Assume that

i. (Gauss) R = G(h)

and

ii. (Codazzi) ∇h ∈ Γ(S3T ∗M)

hold. Then for every x ∈M there exist an open neighborhood U containing
x, and an embedding f : U → E

n+1 as oriented hypersurface, such that
f∗(I) = g and f∗ (〈II, en+1〉) = h, where en+1 is a unit vector in the direction
of the orientation. Moreover, f is unique up to a Euclidean motion.

Corollary 2.6.0.92. Let Mn,M
n ⊂ E

n+1 be two orientable hypersurfaces
with fundamental forms I, II and I, II . Suppose there exist a diffeomor-
phism φ : M →M and unit vector fields en+1, en+1 such that
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i. φ∗(I) = I,

and

ii. φ∗
(
〈II, ēn+1〉

)
= 〈II, en+1〉.

Then there exists g ∈ AO(n + 1) (the group ASO(n + s) plus reflections)
such that φ = g |M .

Proof of 2.6.0.91. Let Σ = (M) × (En+1), where we use η’s to denote
forms on the first space and ω’s for forms on the second. We omit pullback
notation in the proof. Let Ω denote a volume form on (M) (e.g., wedge
together all the entries of the Maurer-Cartan form) and let

I = {ηi − ωi, ηi
j − ωi

j, ω
n+1, ωn+1

j − hjkω
k}.

Integral manifolds of (I,Ω) are graphs of immersions i : (M)|U → (En+1)
that are lifts of immersions j : U → E

n+1, for U ⊂ M , satisfying j∗(I) = g
and j∗(〈II, en+1〉) = h. We obtain existence by:

Exercise 2.6.0.93: Show that (I,Ω) is Frobenius. ⊚

To prove uniqueness, fix an orthonormal frame (e1, . . . , en) at x. If two
such immersions j, ̃ exist, we can arrange (by composing ̃ with an element
of AO(n+1)) that j(x) = ̃(x), j∗ei = ̃∗ei at x and the orientations at j(x)
match up. Thus, j and ̃ have lifts to Σ which are both integral manifolds
of (I,Ω) and pass through the same point (p, q) ∈ Σ. Thus, j = ̃ by the
uniqueness part of the Frobenius Theorem. �

The Laplacian. Let (Mn, g) be a Riemannian manifold with a volume form.
Recall the star operator ∗ : Ωk(M) → Ωn−k(M) defined in . Define a
differential operator of order two, the Laplacian, by

∆gα = (d ∗ d ∗ + ∗ d ∗ d)α, α ∈ Ωk(M).

If (ω1, . . . , ωn) is a coframing of M , recall the notation df = fjω
j.

Exercise 2.6.0.94: (a) If M2 ⊂ E
3 is a surface and (e1, e2) is a

Darboux framing, with principal curvature functions k1, k2, show
that

∆gf = −(f11 + f22) −
f1k2,1 − f2k1,2

k1 − k2
.

(b) If g is a flat metric and (x1, . . . , xn) are coordinates such that
dxj gives an orthonormal coframing, show that

∆gf = −(f11 + . . .+ fnn).

(c) If x : M2 → E
n is an isometric immersion (i.e., the metric g onM

agrees with the pullback from E
n), then calculating the Laplacian
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of each component of x as a vector-valued function gives

∆gx = 2 ~H,

where ~H = traceg II is the mean curvature vector.

Isothermal coordinates. Let (M2, g) be a Riemannian manifold with coordi-
nates (x, y). Write g = a(x, y)dx2 + b(x, y)dxdy + c(x, y)dy2; then one can
calculate K(x, y) by differentiating the functions a, b, c. In general one gets
a mess (although this was the classical way of calculating K).

Let (Mn, g) be a Riemannian manifold. Coordinates (x1, . . . , xn) such
that

g = e2u(dx1 ◦ dx1 + . . .+ dxn ◦ dxn),

where u = u(x, y) is a given function, are called isothermal coordinates.
Note that a Riemannian manifold admits isothermal coordinates iff g is
conformally equivalent to the flat metric. In we will show that every surface
with an analytic Riemannian metric admits isothermal coordinates. In fact,
this is true for C∞ metrics as well—see ([?], vol. IV).

Specializing to surfaces with isothermal coordinates (x, y), the framing
e1 = e−u∂x, e2 = e−u∂y is orthonormal.

Exercise 2.6.0.95: (a) Show that the Gauss curvature is given by

K = −e−2u∆u,

where ∆ is the Laplacian. In particular, if K = ±1, then of course
∆u = ∓e2u. Writing z = x+ iy, solutions to this are given by

u(z) = log
2|f ′(z)|

1 ± |f(z)|2 ,

where f is a holomorphic function on some D ⊂ C with f ′ 6= 0 on
D and 1 ± |f |2 > 0.

(b) Show that, in isothermal coordinates, ∆f = 0 iff fxx + fyy = 0.

2.7. Space forms: the sphere and hyperbolic space

We have seen that E
n ∼= ASO(n)/SO(n) as a homogeneous space. Express-

ing E
n in this way facilitated a study of the geometry of its submanifolds.

Let Sn ⊂ E
n+1 be the sphere of radius one, with its inherited metric

g. We may similarly express Sn as the quotient SO(n + 1)/SO(n). In
this manner, (Sn) = SO(n + 1) with the basepoint projection given by
(e0, e1, . . . , en) 7→ e0 ∈ Sn.

Let L
n+1 be (n + 1)-dimensional Minkowski space, i.e., R

n+1 equipped
with a quadratic form

Q(x, y) = −x0y0 + x1y1 + . . .+ xnyn
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of signature (1, n). Let O(V,Q) = O(1, n) denote the group of linear trans-
formations preservingQ (see for details). Then L

n+1 ∼= ASO(1, n)/SO(1, n).

We define hyperbolic space to be

Hn = {x ∈ L
n+1 | Q(x, x) = −1, x0 > 0}.

(The reasons for this name will become clear below.) Thus, Hn may be
considered as (one half of) the “sphere of radius −1” in L

n+1.

Exercise 2.7.0.96: Show that Q restricts to be positive definite on vectors
tangent to Hn.

Thus, Hn inherits a Riemannian metric from L
n+1. Moreover, Hn can

be expressed as the quotient SO(1, n)/SO(n). In this manner, (Hn) =
SO(1, n), with the basepoint projection given by (e0, e1, . . . , en) 7→ e0 ∈ Hn.

Let ǫ = 0, 1,−1 respectively for X = E
n, Sn,Hn. This handy notation

will enable us to study all three spaces and their submanifold geometry at
the same time. Then X = G/SO(n), where G is respectively ASO(n),
SO(n+ 1), SO(1, n), with Lie algebra g = aso(n), so(n + 1), so(1, n). The
Maurer-Cartan form of G may be written as

ω =

(
0 −ǫωj

ωi ωi
j

)

where 1 ≤ i, j ≤ n and ωi
j + ωj

i = 0.

As explained above, we identify G with (X), so that the ωi are the
tautological forms for the projection to X and g := Σ(ωα)2 gives the Rie-
mannian metric on X. The Maurer-Cartan equation for dωi implies that
the ωi

j are the (upstairs) Levi-Civita connection forms for g. We also use
the Maurer-Cartan equation to compute the curvature of X:

dωi
j = −ωi

k ∧ ωk
j − ωi ∧ (−ǫωj).

Therefore, Θi
j = dωi

j + ωi
k ∧ ωk

j = ǫωi ∧ ωj and

Rijkl = ǫ(δikδjl − δilδjk).

Exercises 2.7.0.97:
1. Show that the sectional curvature of X is constant for all 2-planes.

(In particular, it is zero for E
n, positive for Sn, and negative for

Hn.)
2. Let Mn−1 ⊂ Xn be a hypersurface. Define its second fundamental

form and describe the hypersurfaces with II ≡ 0.
3. Consider the surface S1×S1 ⊂ S3 defined by (x0)2 +(x1)2 = cos2 θ

and (x2)2 + (x3)2 = sin2 θ for some constant θ ∈ (0, π/2). Show
that this surface, which is known as a Clifford torus, is flat, and
calculate its mean curvature.
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2.8. Curves on surfaces

The interaction between the geometry of surfaces in E
3 and the geometry

of curves lying on them was much studied by early differential geometers
such as Dupin, Gauss, Minding and Monge (see [?] for more information).
We will use curves on surfaces to prove the Gauss-Bonnet theorem and to
study Cauchy-type problems associated to the exterior differential systems
for surfaces in .

Let c(s) be a regular curve in E
3 parametrized by arclength. Recall from

§1.8 that we can adapt frames so that

d(x, T,N,B) = (x, T,N,B)




0 0 0 0
1 0 κ 0
0 −κ 0 τ
0 0 −τ 0


 ds.

Now say that c lies on a surface M ⊂ E
3. Let (e1, e2, e3) be a first-order

adapted lift of M (so e3 ⊥ TM). Let θ denote the angle from e1 to T , and
let ǫ be T rotated counterclockwise by π

2 in TpM , so that
(
T
ǫ

)
=

(
cos θ sin θ
− sin θ cos θ

)(
e1
e2

)
.

Then the {e3, ǫ}-plane is orthogonal to T . The angle between N and e3 is
traditionally denoted by ̟,1 so that

(
N
B

)
=

(
cos̟ sin̟
− sin̟ cos̟

)(
e3
ǫ

)
.

Since (T, ǫ, e3) gives an orthonormal frame of E
3, when we restrict this frame

to c we have

(2.8.1) d(x, T, ǫ, e3) = (x, T, ǫ, e3)




0 0 0 0
1 0 κg κn

0 −κg 0 τg
0 −κn −τg 0


 ds

for some functions κg(s), κn(s), τg(s). (This notation will become less mys-
terious in a moment.)

To interpret these functions, notice that

κg = κ sin̟ = component of the orthogonal projection of κN onto ǫ;

κn = κ cos̟ = component of the orthogonal projection of κN onto e3.

The first, κg, is called the geodesic curvature. Geodesics are defined to
be the constant speed curves with κg ≡ 0. Exercise 2.8.0.98.3 below shows

1This letter, pronounced “var-pi” by M. Spivak in our favorite introduction to differential
geometry [?], is not a sickly omega, but an alternate way of writing π.
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that κg(c) = ∇c′c
′, and this shows how geodesic curvature is defined intrin-

sically for Riemannian manifolds. In Exercise 2.10.0.113, you will show that
geodesics are locally the curves that are the shortest distance between two
points on a Riemannian manifold. Thus the notion of a small geodesic disk
about a point (which we will use in the proof of the Gauss-Bonnet theorem)
makes sense.

Next, (2.8.1) shows that κn measures the curving of the surface in the
direction of T (by means of measuring how the surface normal e3 is bending);
it is called the normal curvature of the surface along c. We say c ⊂M is an
asymptotic line on M if κn ≡ 0.

Finally, notice that if κg ≡ 0, then all of the curvature of the curve lies
in the normal direction, and ǫ is parallel to the binormal B of the curve.
Thus τg measures what the torsion (as a curve in R

3) of a geodesic having
tangent vector T would be; it is called the geodesic torsion of c.

Exercises 2.8.0.98:
1. Show that

κn = −〈II(T, T ), e3〉,
τg = 〈II(ǫ, ǫ), e3〉,
κg = (dθ + ω2

1)(T ).(2.8.2)

(Hint: Use Proposition 2.5.0.74.)
(2.8.2) shows that κg is intrinsic to the induced Riemannian

metric on the surface and depends on how the curve is situated on
the surface (in particular, how T is turning as we move along c).
By contrast, the values of τg, κn depend only on the pointwise value
of T , and are really measuring properties of the immersion of the
surface into E

3.
2. Show that κg ≡ 0 if and only if the osculating plane to c is perpen-

dicular to the surface at each point.
3. Show that κg(c) = ∇c′c

′.
4. Find formulas for κn, τg in terms of the principal curvatures k1, k2

when our surface is given a principal (Darboux) framing.
5. Find formulas for κn, τg when our surface is given a framing such

that e1 = T .
6. Calculate τg of a curve c such that c′ is a principal direction (i.e.,

a direction where κn is a principal curvature) at each point along
c. Such curves are called lines of curvature.

Exercise 2.8.0.99: Prove the local Gauss-Bonnet theorem: Let (M2, g) be
a Riemannian manifold and let U ⊂ M be a connected, simply-connected
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oriented open subset with smooth boundary ∂U . Show that
∫

U
KdA = 2π −

∫

∂U
κgds,

where dA is the area form on U , ds is the arclength measure on ∂U , and
∂U is oriented so that if T points along ∂U and N points into the interior
of U , then T ∧N agrees with the orientation on U . ⊚

2.9. The Gauss-Bonnet and Poincaré-Hopf theorems

Given a compact oriented surface, there are lots of Riemannian metrics
we can put on it. With different metrics, the Gauss curvature can have
wildly different behavior. However, as we will see, the integral of the Gauss
curvature is independent of the metric and only relies on the underlying
topology of M .

First, we review some concepts from simplicial and differential topology.

A triangulation of the plane is the plane together with a set of triangular
tiles that fill up the plane. A triangulation of a neighborhood U in a surface
M is the pullback of some triangulation of a plane under a diffeomorphism
f : U → R

2, and a triangulation of a surface is a covering by triangulated
open sets such that the triangulations agree on the overlaps.

Let T be a triangulation of M with V vertices, E edges and F faces.
Define

χ∆(M,T ) = V − E + F.

Exercise 2.9.0.100: Show that if T, T ′ are two triangulations of M , then
χ∆(M,T ) = χ∆(M,T ′). ⊚

Since χ∆(M,T ) is independent of T , we will denote it by χ∆(M).

Let X ∈ Γ(TM) be a vector field with isolated zeros. Around such a zero
p ∈ M define the index of X at p as follows: Pick a closed embedded curve
retractible within M to p such that no other zero of X lies in the region U
enclosed by the curve. Choose a diffeomorphism f : U → D, where D is
the unit disc in E

2. Let θ be the counterclockwise angle between f∗(X) and
some fixed vector v ∈ E

2. Define the integer

indX(p) =
1

2π

∫

∂D
dθ,

where the circle ∂D ⊂ E
2 is oriented counterclockwise. The index is well-

defined by Stokes’ theorem.

Intuitively, to obtain the index we draw a small circle around an isolated
zero. Travel around the circle once and count how many times the vector
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field spins counterclockwise (counting clockwise spin negatively) when going
around the circle once. See [?] or [?] for more on indices of vector fields.

Suppose p1, . . . , pr ∈M are the isolated zeros of X. Define

χvf(M,X) =
∑

i

indX(pi).

Below, we will indirectly prove that χvf(M,X) is independent of X. For a
direct proof, again see [?] or [?].

Let M2 be a compact oriented manifold without boundary. Let g be a
Riemannian metric on M and define

χmetric(M,g) =
1

2π

∫

M
KdA.

Theorem 2.9.0.101 (Guass-Bonnet and Poincaré-Hopf). Let (M2, g) be a
compact orientable Riemannian manifold, let T be a triangulation of M and
let X be a vector field on M with isolated zeros. Then

χmetric(M,g) = χ∆(M) = χvf(M,X).

The equality χmetric(M,g) = χ∆(M) is the Gauss-Bonnet Theorem, and
χvf(M,X) = χ∆(M) is the Poincaré-Hopf Theorem. The common value of
these invariants is called the Euler characteristic of M , and is denoted by
χ(M).

We first prove, for certain vector fields X, that χvf(M,X) = χ∆(M).
Next we show that χmetric(M,g) = χvf(M,X), which, since the left hand
side is independent of X and the right hand side independent of g, shows
that both are well-defined. Combined with Poincaré-Hopf for certain vector
fields, this proves both theorems.

Just for fun, we afterwards give a direct proof that χmetric(M,g) =
χ∆(M). (Actually, “we” here is a bit of a euphemism, as you, the reader,
will do much of the work in Exercise 2.9.0.102.)

Proof. Given a triangulation T , one can associate a vector field X to it
such that χvf(M,X) = χ∆(M). Consider the following picture:

Notice that each vertex of the triangulation becomes a zero of index +1,
and each edge and face contains a zero of index −1 or +1, respectively.

To prove that χmetric(M,g) = χ∆(M), we follow ([?], vol. III) (who
probably followed someone else): We will divide M into two pieces, a subset
U ⊂ M where X is complicated but the topology of U is trivial, and M\U
where X is simple but we know nothing about the topology.

Let p1, . . . , pr be the zeros of X. Let Di(ǫ) be an open geodesic disc of
radius ǫ about pi, where ǫ is small enough so that the discs are contractible
and don’t intersect each other. Let N(ǫ) = M\(∪iDi(ǫ)), a manifold with
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boundary. On N(ǫ), X is nonvanishing, so we may define a global oriented
orthonormal framing on N(ǫ) by taking e1 = X

|X| with e2 determined by the

orientation. We let η1, η2 denote the dual coframing. Now we calculate
∫

N(ǫ)
KdA =

∫

N(ǫ)
dη2

1 =

∫

∂N(ǫ)
η2
1 =

∑

i

∫

∂Di(ǫ)
η2
1 .

Let ẽj1, ẽ
j
2 be an orthonormal framing in Dj(ǫ), and from now on we

suppress the j index. Let θ denote the angle between e1 and ẽ1. We have
η̃2
1 = η2

1 − dθ wherever both framings are defined. We calculate
∫

M
KdA = lim

ǫ→0

∫

N(ǫ)
KdA

= lim
ǫ→0

∑

i

∫

∂Di(ǫ)
η̃2
1 + dθ

= lim
ǫ→0

∑

i

∫

Di(ǫ)
KdA+

∑

i

∫

∂Di(ǫ)
dθ.(2.9.1)

Since K is bounded, as ǫ → 0 the first expression in (2.9.1) tends to zero.
As ǫ tends to zero the vector ẽ1 tends to a constant vector, so the second
term tends towards 2π times index of X at pi. �

Exercise 2.9.0.102 (The Gauss-Bonnet Formula): Let (M2, g) be an ori-
ented Riemannian manifold and let R ⊂ M be an open subset that is con-
tractible with ∂R the union of a finite number of smooth curves C1, . . . , Cp,
oriented so that if T points along Cj and N points into R, then T ∧N agrees
with the orientation on R. Let δi denote the angle between the terminal po-
sition of the tangent vector to Ci and the initial position of the tangent
vector to Ci+1 (with the convention that Cp+1 = C1):

Prove the Gauss-Bonnet formula:
∫

R
KdA =

∫

∂R
κgds+

∑

i

δi − 2π.

Then, use this formula to obtain a second proof of the Gauss-Bonnet theorem
using the triangulation definition of the Euler characteristic.

Why are these theorems so wonderful? Take a plane in E
3, and draw a

circle in the plane. Now perturb the disk inside the circle—by stretching or
squashing, whatever you like—so that the boundary of the disk stays flat
(see Figure 1). What is the average curvature of the wildly curving surface
you’ve made inside the circle? Zero! Next, take a round sphere, sit on it,
twist it, fold it so it gets lots of negative curvature regions. What’s the
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average curvature of your distorted sphere? 4π, no matter how strong you
are!

Exercises 2.9.0.103:
1. Let M2 ⊂ E

3. Show that the degree of the Gauss map is χ(M)/2.
2. What is

∫
∂R κgds, where R is the region enclosed by the lower

dashed curve (only half of which is pictured) in Figure 2?
3. Prove the Gauss-Bonnet theorem for compact even-dimensional hy-

persurfaces Mn ⊂ E
n+1. Namely, let Kn denote the product of the

principal curvatures k1, . . . , kn and dV the volume element. Then

∫

M
KndV =

1

2
vol(Sn)χ(M),

where vol(Sn) = 2n+1πn/2(n
2 )!/n! is the volume of the n-dimensional

unit sphere for n even.
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The generalization by Chern [?] to Riemannian manifolds is:

Theorem 2.9.0.104 (Gauss-Bonnet-Chern). Let Mn be a compact, ori-
ented Riemannian manifold of even dimension. Then∫

M
Pfaff(Θ)dV = 2n−1 vol(Sn)χ(M),

where Θij = 1
2Rijklη

k ∧ ηl.

The Pfaffian is defined in Exercise ??.??. Note that, since the entries of
Θ are 2-forms, wedge products are commutative, and so the Pfaffian makes
sense with the multiplications being wedge products.

The proof of the Gauss-Bonnet-Chern theorem is not too difficult; see,
e.g., [?]. The essential point is that if one puts two metrics g, g̃ on M ,

the forms Pfaff(Θ)dV and Pfaff(Θ̃)dV differ by an exact form and therefore
[Pfaff(Θ)dV ] is well-defined as a cohomology class, i.e.,

∫
M Pfaff(Θ)dV is in-

dependent of the Riemannian metric. The same proof works for Riemannian
metrics on arbitrary vector bundles over M , giving rise to curvature repre-
sentations of the Euler class of a vector bundle (see [?] for the definition of
the Euler class). More generally, any elementary symmetric combination of
the eigenvalues of a skew-symmetric matrix with, e.g., positive imaginary
part leads to a characteristic class; that is, the corresponding cohomology
class obtained from Θ is independent of the Riemannian metric used. For
an excellent introduction to representing characteristic classes via curvature,
see the appendix to [?].

There are further generalizations of Gauss-Bonnet-Chern (e.g., the
Atiyah-Singer index theorem), but discussion of them would take us too
far afield at this point; for further reading, see [?].

2.10. Non-orthonormal frames

Non-orthonormal frames for Riemannian manifolds. Let Mn be a
differentiable manifold and let F = (M) be the bundle of all framings of
M , as in §2.6. Suppose M happens to have a Riemannian metric g, but we
continue to use F(M). (This will be desirable if, for example, we wish to
vary the metric on M .) We define the functions gij = gij(f) := g(ei, ej) on
F , where f = (x, e1, . . . , en) ∈ F . The fundamental lemma of Riemannian
geometry now takes the form:

Lemma 2.10.0.105 (Fundamental Lemma). There exist unique forms ηi
j ∈

Ω1((M)) such that

i. dηi = −ηi
j ∧ ηj

and

ii. dgij = gikη
k
j + gkjη

k
i ,
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where ηi are the tautological forms on (M).

Note that the second condition replaces 0 = ηi
j + ηj

i , which no longer

holds on (M).

Exercise 2.10.0.106: Let (M,g) be oriented and let dvolM denote the in-
duced volume form. Show that

dvolM =
√

det(gij)η
1 ∧ . . . ∧ ηn. ⊚

Submanifolds of En+s. Consider the general frame bundle (En+s), which
we may identify with AGL(n+s) in the usual way. Let Mn ⊂ E

n+s, and let
F1 ⊂ (En+s) be the bundle of first-order adapted frames, i.e., frames such
that TxM is spanned by e1, . . . , en. As a prelude to , define the quotient
normal bundle ÑM as the bundle whose fiber at x ∈ M is TxE

n+s/TxM .

Then en+1, . . . , en+s span ÑxM modulo TxM , but these vectors are not
necessarily perpendicular to TxM .

Using index ranges as in §2.5, on F1 we have

d(x, ej , ea) = (x, ek, eb)




0 0 0

ωj ωj
k ωk

b

0 ωa
k ωa

b


 .

Then the Maurer-Cartan equation 0 = dωa = −ωa
i ω

i again implies that
ωa

i = ha
ijω

j for some functions ha
ij = ha

ji on F1, so we have

I = gijω
iωj ∈ Γ(M,S2T ∗M),

II = ωa
jω

j⊗ea ∈ Γ(M,S2T ∗M⊗ÑM).

Now, for simplicity, assume M is a hypersurface. Fix an orientation on
M (say, upward). Let N be an unit vector field perpendicular to the surface,
and let Q = 〈II,N〉. Then the eigenvalues of g−1Q are well-defined. This
can be explained as follows.

Given a vector space V with a quadratic form Q ∈ S2V ∗, we may think
of Q as a map V → V ∗. Given a linear map between two different vector
spaces, it does not make sense to talk of eigenvalues (and therefore traces
and determinants). But now say we have a second, nondegenerate, qua-
dratic form g ∈ S2V ∗. We may think of g−1 as a map g−1 : V ∗ → V and
consider the composition g−1 ◦Q : V → V . We can calculate the trace and
determinant of g−1 ◦Q.

Exercise 2.10.0.107: Say M is a surface. Show that

K = det(g−1 ◦Q)

H = trace(g−1 ◦Q). ⊚



70 2. Euclidean Geometry and Riemannian Geometry

Coordinate formulas for H,K. Now we will finally prove the formulas (1.1.3).
Say M ⊂ E

3 is given locally by a graph z = f(x, y), with f(0, 0) = 0 and
fx(0, 0) = fy(0, 0) = 0.

A simple coframing of TR
3 along M is

ω1 = dx,

ω2 = dy,

ω3 = dz − fxdx− fydy.

Note that this coframing is first-order adapted in the sense that TM =
{ω3}⊥. The dual framing is

e1 = ∂x + fx∂z,

e2 = ∂y + fy∂z,

e3 = ∂z.

Then

(gij) =

(
1 + f2

x fxfy

fyfx 1 + f2
y

)
,

and therefore

dvolM = (det g)
1

2ω1 ∧ ω2(2.10.1)

= [(1 + f2
x)(1 + fy)

2) − (fxfy)
2]

1

2 dx ∧ dy

= (1 + f2
x + f2

y )
1

2 dx ∧ dy.
Computing de1 and de2 gives ω3

1 = d(fx) and ω3
2 = d(fx), so that h = (hij)

is just the Hessian of f .

Exercise 2.10.0.108: Show that, relative to our framing for the graph z =
f(x, y),

Q = (1 + f2
x + f2

y )−
1

2

(
fxx fxy

fyx fyy

)(
ω1

ω2

)

(gij)
−1 = (1 + f2

x + f2
y )−1

(
1 + f2

x −fxfy

−fxfy 1 + f2
y

)
.

Then confirm that H,K are given by (1.1.3). ⊚

Geometric interpretation of H ≡ 0. Non-orthonormal frames are par-
ticularly useful if one wants to deform a submanifold.

Definition 2.10.0.109. M2 ⊂ E
3 is said to be minimal if for all x ∈ M

there exists a closed neighborhood U , with x ∈ U ⊂ M , such that for
any V ⊂ E

3 that is a small deformation of U with ∂V = ∂U , we have
area(V ) ≥ area(U).

Theorem 2.10.0.110. M2 ⊂ E
3 is minimal iff H ≡ 0.
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Proof. We show that minimal implies H ≡ 0. We use our area formula
(2.10.1) and deform the metric. We work locally, so we have U ⊂ R

2 and
x : U → E

3 giving the surface. Let u, v be coordinates on U .

Fix an orthonormal framing (e1, e2, e3) along x(U) and let xt(u, v) be a
nontrivial deformation of x. For t sufficiently small, we may write

xt(u, v) = x(u, v) + t s(u, v)e3(u, v) +O(t2),

where s : U → R is some function. For fixed t, we calculate

dxt = dx+ t e3 ds+ t s de3 +O(t2)

= e1ω
1 + e2ω

2 + t e3(s1ω
1 + s2ω

2) − t s(e1ω
3
1 + e2ω

3
2) +O(t2).

Using the same ω1, ω2, we may write dxt = et1ω
1 + et2ω

2 for

et1 = (1 − t s h11)e1 − t(s h21e2 + s1e3) +O(t2),

et2 = (1 − t s h22)e2 − t(s h12e1 + s2e3) +O(t2).

Of course, this framing is no longer orthonormal, and in fact the metric now
looks like

gt =

(
1 − t s h11 2t s h21

2t s h12 1 − t s h22

)
+O(t2).

Exercise 2.10.0.111: Calculate d
dt |t=0(det gt)

1

2 and show d
dt |t=0

∫
U dvol(gt) =

0 iff H ≡ 0.

Now we wave our hands a little and ask you to trust that calculus in
infinite dimensions behaves the same way as in finite dimensions. That is,
a function has a critical point at a point where the derivative vanishes, and
in our case its easy to see we are at a minimum. (If you don’t believe us,
consult a rigorous book on the calculus of variations, such as [?].) �

Exercise 2.10.0.112: More generally, for Mn ⊂ E
n+s, define ~H ∈ Γ(NM),

the mean curvature vector, to be traceg(II). Show that M is minimal iff
~H ≡ 0. In particular, show that straight lines are locally the shortest curves
between two points in the plane

Exercise 2.10.0.113: More generally, let Xn+s be a Riemannian manifold

and Mn ⊂ X a submanifold, and define ~H ∈ Γ(NM), the mean curvature

vector, to be traceg(II). Show that M is minimal iff ~H ≡ 0. In particular,
show that geodesics are locally the shortest curves between two points of X.
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Figure 1. A distorted disk

Figure 2. What’s the average Gauss curvature?


