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GENERALIZATIONS OF STRASSEN'S EQUATIONS FOR SECANTVARIETIES OF SEGRE VARIETIESJ.M. LANDSBERG AND L. MANIVELAbstrat. We de�ne many new examples of modules of equations for seant varieties of Segrevarieties that generalize Strassen's ommutation equations [7℄. Our modules of equations areobtained by onstruting subspaes of matries from tensors that satisfy various ommutationproperties. 1. IntrodutionLet V;A1; :::; An be vetor spaes over an algebraially losed �eld K of harateristi zero,and let Seg(PA1� � � �� PAn) � P(A1
 � � �
 An)denote the Segre variety of deomposable tensors inside P(A1
 � � �
 An).Let X � PV be a projetive variety. De�ne �r = �r(X), the variety of seant Pr�1's to X by�r(X) = [x1;:::;xr2XPx1;:::;xrwhere Px1;:::;xr � PV denotes the linear spae spanned by x1; :::; xr (usually a Pr�1).For appliations to omputational omplexity, algebrai statistis and other areas, one wouldlike to have de�ning equations for seant varieties of triple Segre produts, in partiular beausethe border rank r of a bilinear map T : A��B� ! C is the smallest r suh that [T ℄ 2 �r(Seg(PA�PB�PC). Here, and throughout this paper, \de�ning equations" refers to set theoreti de�ningequations.De�ning equations are known only for the following ases: all seant varieties of the twofator Segre (lassial: these are just the (r+1)� (r+1) minors of the spae of a� b matries),the n-fator Segre itself PA1� � � �� PAn � P(A1
 � � �
 An) (lassial), its �rst seant variety�2(PA1� � � �� PAn) [3℄, �3(Pa�1�Pb�1�P�1) [4℄, �4(P2�P2�P2) [7℄, �r(P1�Pb�1�P�1) [4℄and several ases of the last nontrivial seant variety of P2�Pb�1�Pb�1 when the last nontrivialseant variety is a hypersurfae [7℄.Segre produts and their seant varieties are invariant under the ation of the group G =GL(A1)� � � �� GL(An) and thus their de�ning equations are best desribed as G-modules. In[3℄ we explained how one an systematially �nd G-modules in the ideal of the seant varietiesusing representation theory. We also observed that the expressions even for highest weightvetors in the modules beome too ompliated to write down expliitly very quikly, so thereare severe limits to the systemati approah.The equations for �2(PA1� � � �� PAn) may be thought of as those oming from the two fatorase, that is, as minors of ordinary matries by onsidering, e.g., A
B
C as A
 (B
C) andtaking the minors of the resulting a� b matrix and permutations of suh.Strassen de�ned equations for �3(PA�PB�PC) when b =  and a = 3 by hoosing a basis ofA� and ontrating tensors to obtain subspaes of B
C, and �nding losed onditions on suhLandsberg supported by NSF grant DMS-0305829. 1



2 J.M. LANDSBERG AND L. MANIVELsubspaes oming from tensors in �3(PA�PB�PC). From this perspetive, one ould look forother losed onditions on suh subspaes, whih is one way to view our generalizations.Another perspetive on the equations for seant varieties is that in general, if X � Y , then�r(X) � �r(Y ) and the equations for �2(PA � PB � PC) omes from the observation thatSeg(PA�PB�PC)� Seg(PA�P(B
C)).More generally, one should look for natural varieties, whose de�ning equations are easilydesribed, that ontain �r(PA � PB � PC). From this perspetive, our new equations areindued by equations of various types of varieties of subspaes of matries that satisfy ertainommutation properties.For a partition � of d, we let S�A denote the orresponding irreduible GL(A) module and��A = S�0A where �0 is the onjugate partition to �. Our main result, theorem 4.2, may bephrased as follows:For eah r, and s suÆiently small (s � r=2 if r is even, s � r=3 if r is odd), we desribe anexpliit realization of the moduleSr�s;s;sA
�r;sB
�r;sC � Sr+s(A
B
C)as a module of equations of �r(PA�
PB�
PC�), and eah of these modules is independent inthe ideal of �r(PA�
PB�
PC�).(We often reverse the roles of vetor spaes with their duals to eliminate �-s from the modulesde�ning equations.)The determination of the generators of the ideal of �3(Pa�1� Pb�1� P�1) in [4℄ relies on aomputer alulation to prove the �3(P2� P2 � P2) ase is generated by Strassen's equations,and this omputer alulation was originally announed in [1℄. In x5 we give a omputer freeproof that the modules inherited from Strassen's equations give set-theoreti de�ning equationsfor �3(Pa�1�Pb�1�P�1). A key point in our proof is the irreduibility of the variety of pairs ofommuting matries. This irreduibility fails for triples of ommuting matries. The followingnatural question appears to be losely related to our problem: Find equations that haraterizethe irreduible omponent of the variety of triples of ommuting matries ontaining triples ofregular semisimple matries as an open subset.One an put our investigation in the broader ontext of the study of the geometry of orbitlosures: let G be a omplex semi-simple group, let V = Vl be an irreduible G module ofhighest weight l. Then Kostant showed that the ideal of the losed orbit G:[vl℄ = G=P � PV isgenerated in degree two by V2l? � S2V �. If we onsider other G-varieties in PV , what an wesay about their de�ning equations?1.1. Overview. In x2 we review inheritane and remark that using subspae varieties (de�nedin the setion) the problem of determining de�ning equations of seant varieties of Segre vari-eties is redued to the ase of �r(Pr�1� � � �� Pr�1). In x3 we review Strassen's equations for�r(P2 � Pb�1 � Pb�1), reformulate them more invariantly, and desribe the modules of equa-tions assoiated to his onditions. In x4 we generalize Strassen's equations and state our mainresult, theorem 4.2. In x5 we show that our generalizations signi�antly redue the problemof determining de�ning equations in some ases, in partiular solving it when r = 3. In x6 wegeneralize our approah further and put it in a larger ontext, that of a lass of ontrations weall oerive. Finally in x7 we �nish the proof of theorem 4.2, showing that many of the newmodules of equations we de�ned are indeed nontrivial.2. Inheritane and subspae varieties2.1. Inheritane. We review some fats from [3℄. The varieties �r(PA�1 � � � � � PA�n), areinvariant under the ation of the group G = GL(A1)� � � �� GL(An). Thus their ideals are given



GENERALIZATIONS OF STRASSEN'S EQUATIONS FOR SECANT VARIETIES OF SEGRE VARIETIES 3by diret sums of irreduible submodules S�1A1
 � � �
 S�nAn � Sd(A1
 � � � 
An), where eah�j is a partition of d. If dimAj = aj then �j an have at most aj parts. We let l(�) denotethe number of parts of the partition �. For a variety X � PV , we let Id(X) � SdV � denote theomponent of the ideal of X in degree d.Proposition 2.1. [3℄ If an irreduible module S�1A1
 � � �
 S�nAn � Id(�r(PA�1� � � �� PA�n)),then for all vetor spaes A0j � A�j , we have (S�1A01
 � � � 
S�nA0n)� � Id(�r(PA01�� � ��PA0n)).Moreover, a module (S�1A01
 � � � 
S�nA0n)� where the length of eah �j is at most aj is inId(�r(PA01� � � � �PA0n)) i� the orresponding module is in Id(�r(PA1� � � � �PAn)).Thus a opy of a module S�1A1
 � � � 
S�nAn will be in I(�r(Pr�1 � � � � � Pr�1)) i� theorresponding opy of the module S�1C l(�1 )
 � � � 
S�nC l(�n ) is in the ideal of �r(Pl(�1)�1 �� � � � Pl(�n)�1).2.2. Subspae varieties. Let Subb1;:::;bn � P(A�1
 � � � 
A�n) denote the set of tensors T suhthat there exists subspaes Bj � A�j with dimBj = bj and T 2 B1
 � � � 
Bn. Subb1;:::;bn isZariski losed and its ideal is easy to desribe. Id(Subb1;:::;bn) is the diret sum of the modulesS�1A1
 � � �
 S�nAn suh that S�1A1
 � � �
 S�nAn � Sd(A1
 � � � 
An) and the length of some�j is greater than bj . (In [4℄ we prove the generators of the ideal are indeed the expeted ones.)Assuming all the bj are equal to say b0, then Subb0;:::;b0 is de�ned by equations of degreeb0+1, namely all the modules in Sb0+1(A1
 � � �
 An) ontaining an exterior power of some Aj .In other words, as a set, Subr;:::;r is the intersetion of all the r-th seant varieties of atteningsof the form Ai
 (A1
 � � �
 Âi
 � � �
 An).In partiular, �r(PA�1� � � � � PA�n) � Subb1;:::;bn for all b1; :::; bn with bi � r. We summarizethe above disussion:Proposition 2.2. De�ning equations for �r(PA�1�� � ��PA�n), when dimA�j � r may be obtainedfrom the union of the the modules inherited from de�ning equations for �r(Pr�1 � � � � � Pr�1)and de�ning equations for Subr;:::;r.Remark 2.3. For ordinary matries, i.e., points in the tensor produt of two vetor spaes, thereis just one notion of rank, but it has several generalizations to tensor produts of several vetorspaes. The �rst is the minimum number of monomials required to express a given tensor asa sum of monomials, whih is now ommonly alled the rank of the tensor. The seond is thesmallest seant variety of the Segre variety in whih the tensor lies, whih is alled the borderrank of the tensor. A third notion omes from Cayley's hyperdeterminant, a higher dimensionalgeneralization of the determinant. Already forP1�P1�P1 this notion diverges from the previoustwo, in the sense that every tensor in P1�P1�P1 has border rank at most two, but the zero set ofthe hyperdeterminant is a quarti hypersurfae. For P2�P2�P2 the hyperdeterminant desribesan irreduible hypersurfae of degree 36 whereas �4(P2�P2�P2) is a hypersurfae of degee 9.The hyperdeterminants indue \hyper-minors" by inheriting the orresponding modules, but thezero sets of these appear to have little relation with seant varieties. A fourth notion generalizesto the subspae varieties, beause T 2 A
B has rank r i� there exist A0 � A, B0 � B, bothof dimension r, with T 2 A0
B0. Tensors of border rank r are in general only ontained inSubr;:::;r. 3. Strassen's equations3.1. Strassen's theorem. For a tensor T 2 A
B
C and � 2 A�, let T� 2 B
C denote theontration of T with �.



4 J.M. LANDSBERG AND L. MANIVELTheorem 3.1 (Strassen). [7℄ Let 3 � a � b =  � r. Let T 2 A
B
C and � 2 A� be suhthat rankT� = b. For all �1; �2 2 A�, onsider the linear maps T�;�j : B ! B by onsideringT� : C� ! B and T�;�j = T�jT��1. If [T ℄ 2 �r(PA� PB� PC), thenrank [T�;�1; T�;�2℄ � 2(r � b):Moreover for a generi tensor T 2 A
B
C, [T�;�1; T�;�2℄ is of maximal rank.This theorem (together with an easy appliation of Terraini's lemma) implies �4(P2�P2�P2)is a hypersurfae. It also implies that the border rank of the multipliation of m�m matries isat least 3m22 . Here is a proof that is essentially Strassen's, rephrased more invariantly to enablegeneralizations.Proof. First note that it is suÆient to prove the result for T of the form T = a1b11+� � �+arbrras these form a Zariski open subset of the irreduible variety �r. Here aj 2 A et... andajbjj = aj 
 bj 
 j . Fix an auxiliary vetor spae D ' C r and write T� : C� ! B as aomposition of maps C� i����! D Æ�����! D p����! B:To see this expliitly, if T = a1b11 + � � �+ arbrr and we assume b1; :::; bb, 1; :::; b are basesof B;C, then letting d1; :::; dr be a basis of D, we have i(�) = Prj=1 �(j)dj , Æ�(dj) = �(aj)dj,for 1 � s � b we have p(ds) = bs, and for b + 1 � x � r, writing bx = �sxbs, then we havep(dx) = �sxbs.Let D0 = i(C�), write i0 : C� ! D0 and set p� := p jÆ�(D0), so p� : Æ�(D0)! B is a linearisomorphism. Then we may write T��1 = (i0)�1Æ��1p��1.Note that rank [T�;�1; T�;�2℄ = rank (T�1T��1T�2 � T�2T��1T�1) beause T� is invertible. Wehave T�1T��1T�2 � T�2T��1T�1= (pÆ�1i0)((i0)�1Æ��1p��1)(pÆ�2i0)� (pÆ�2i0)((i0)�1Æ��1p��1)(pÆ�1i0)= p[Æ�1Æ��1p��1pÆ�2 � Æ�2Æ��1p��1pÆ�1 ℄i0= pÆ��1[Æ�1p��1pÆ�2 � Æ�2p��1pÆ�1 ℄i0where the last equality holds beause the Æ�'s ommute.Now p��1p jÆ�(D0)= Id, so write D = Æ�(D0)�D00, where we hoose any omplement toÆ�(D0) in D. We have dimD00 = r � b and we may write p��1p = IdÆ�(D0) + f for some mapf : D00 ! D. Thus T�1T��1T�2 � T�2T��1T�1 = pÆ��1[Æ�1fÆ�2 � Æ�2fÆ�1 ℄i0and is therefore of rank at most 2(r� b). �3.2. Towards a more invariant formulation of Strassen's theorem. As stated, there areseveral undesirable aspets to Strassen's equations: the hoies of �; �1; �2, the requirement that� is suh that T� invertible, and the way the equations are written makes it diÆult to see whatequations will be inherited from them when we inrease the dimensions of the spaes. Moreover,say a = b = , then we an learly hange the roles of the spaes - are the new equations soobtained redundant or not?A �rst step towards resolving these issues is to reonsider matrix multipliation and inversesmore invariantly.For a linear map f : V ! W , let f^k : �kV ! �kW denote the indued linear map. IfdimV = dimW = n and f is invertible, then as a tensor f^n�1 = (f�1)t
 det(f). Reall thatfor a vetor spae of dimension n, that �n�1V = V �
�nV , so if V;W have dimension n, then



GENERALIZATIONS OF STRASSEN'S EQUATIONS FOR SECANT VARIETIES OF SEGRE VARIETIES 5�n�1V �
�n�1W = Hom (W;V )
�bV 
�bW . f^n�1 has the advantage over f�1 of beingde�ned even if f is not invertible.For T 2 A
B
C, let T� := T^b�1� 2 �b�1B
�b�1C = �b�1B
C�
�bC. We mayontrat T�
T�j 2 �b�1B
C�
�bC
B
C to an elementT��j 2 �bB
C�
�bC
C = C�
C
�bB
�bC:Now onsider T��1 
T��2 2 C�
C
C�
C
 (�bB)
2
 (�bC)
 2and ontrat on the seond and third fators to obtain an element of C�
C
 (�bB)
2
 (�bC)
 2.This ontration of ourse orresponds to matrix multipliation, as does ontration in the �rstand fourth fator, whih orresponds to multiplying the matries in the opposite order. We doboth ontrations and take their di�erene and all the result[T��1; T��2℄ 2 C�
C
 (�bB)
2
 (�bC)
 2:Strassen's theorem states that the rank of [T��1; T��2℄ is at most 2(r� b).Equivalent to Strassen's observation that rank [T�;�1; T�;�2℄ = rank (T�1T��1T�2�T�2T��1T�1),we an get away with a lower degree tensor by just ontrating one with T� to get elements ofB
C 
�bB
�bC.To eliminate the hoies of �; �1; �2, we may onsider the tensor T� without having hosen� as T (�) 2 Sb�1A
�b�1B
�b�1C, whih is obtained as the projetion of (A
B
C)
 b�1to the subspae Sb�1A
�b�1B
�b�1C. Similarly T�j 2 B
C, may be thought of as T(�) 2A
B
C. We then ontratT (�)
T(�)
T(�) 2 �b�1B
�b�1C 
B
C
B
C 
 (Sb�1A
A
A)in two di�erent ways, �rst ontrating the �rst fator with the third and the seond with thesixth to obtain an element of B
C 
 (Sb�1A
A
A)
�bB
�bC, then ontrating the �rstwith the �fth and the seond with the fourth. We then take the di�erene of the two to obtainan element of B
C
�bB
�bC
 (Sb�1A
A
A). Call the resulting tensor �(T ), i.e.,� 2 (A�
B�
C�)
 b+1
 (Sb�1A
�2A)
�bB
B
�bC
Cand in fat desends to be an element of Sb+1(A�
B�
C�)
 (Sb�1A
�2A)
�bB
B
�bC
C.The proof of Strassen's theorem may be rephrased in this language. We leave this as anentertaining exerise for the reader. (Hint: the Pl�uker relations for the Grassmannian G(2; r)furnish the key to showing the bound on the rank of the ommutator.)3.3. Strassen's equations as modules. We �rst determine whih modules in�2A
Sb�1A
�bB
B
C
�bCmap nontrivially into Sb+1(A
B
C), when we use � to ompose the inlusion�2A
Sb�1A
�bB
B
C 
�bC � (A
B
C)
 b+1with the projetion (A
B
C)
 b+1 ! Sb+1(A
B
C).Sine here b = dimB = dimC, we have�2A
Sb�1A
�bB
B
C
�bC = (Sb;1A�Sb�1;1;1A)
�b;1B
�b;1Cso there are two possible modules. By [4℄, Sb;1A
�b;1B
�b;1C does not our in the ideal of�r(P1�Pb�1�P�1) so by inheritane it annot our when dimA > 2 either, so we are reduedto a unique module.Taking minors orresponds to taking exterior powers in the B;C fators and we onlude:



6 J.M. LANDSBERG AND L. MANIVELProposition 3.2. As modules, the equations that implyrank [T��1; T��2℄ � 2(r� b):for all hoies of �; �1; �2 2 A� orrespond to the image of the inlusion via � ofS2(r�b)+1(Sb�1;1;1A)
�2(r�b)+1(�b;1B)
�2(r�b)+1(�b;1C)into S(2(r�b)+1)(b+1)(A
B
C). When r = b we obtain the single moduleSb�1;1;1A
�b;1B
�b;1C:For P2 � P2 � P2 we obtain the same modules regardless of whih fator we use to makethe projetions - all are the same opy of S211A
S211B
S211C for the ase of �3 and ofS333A
S333B
S333C for the ase of �4. This redundany fails for larger dimensional projetivespaes.3.4. Example of Strassen's equations. We write down a basis of the modules of polynomialsorresponding to Sb�1;1;1A
�b;1B
�b;1C. Let �i; �j ; �k 2 A�, let �1; :::; �b, �1; :::; �b be basesof B�; C�. Consider the tensorP i;jjks;t = �i ^ �j 
 (�k)b�1
 �1 ^ � � � ^ �b
 �s
 �1 ^ � � � ^ �b
 �tApplying � we obtain (ignoring salars)(�2
�3 � �3
�2)
 (�1)b�1
 (Xj (�1)j+1��̂
 �j 
 �s)
 (Xk (�1)k+1�k̂ 
 �k
 �t)= (�1)j+k[((�1)b�1
��̂
 �k̂)
 (�2
 �j 
 �t)
 (�3
 �s
 �k)� ((�1)b�1
 ��̂
 �k̂)
 (�3
 �j 
 �t)
 (�2
 �s
 �k)℄:If we hoose dual bases for A;B;C and writeT =Xl al
Xlwhere the al are dual to the �l and Xl are represented as b� b matries with respet to the dualbases of B;C, then P i;jjks;t (T ) =Xu;v (�1)u+v(detX ûk;v̂)(Xui;tXsj;v �Xsi;vXuj;t)where X ûj;v̂ is Xj with its u-th row and v-th olumn removed.4. Generalizations of Strassen's onditionsWe now generalize Strassen's equations using our new perspetive. Reall that the key pointfor Strassen's equations was that ontrating a tensor T 2 A
B
C in two di�erent waysyielded tensors that almost ommute when T 2 �r.Consider, for s; t suh that s+ t � b and �; �j 2 A�, the tensorsT^s�j 2 �sB
�sC; T^t� 2 �tB
�tC(our old ase was s = 1; t = b � 1). We may ontrat T^t� 
T^s�1 
T^s�2 to obtain elementsof �s+tB
�s+tC
�sB
�sC in two di�erent ways, all these ontrations  s;t�;�1;�2(T ) and s;t�;�2;�1(T ).



GENERALIZATIONS OF STRASSEN'S EQUATIONS FOR SECANT VARIETIES OF SEGRE VARIETIES 7Now say we may write T = a1
 b1
 1+ � � �+ar 
 br
 r for elements ai 2 A, bi 2 B, i 2 C.We have  s;t�;�1;�2(T ) = XjIj=s;jJj=t;jKj=shaI ; �1ihaJ ; �ihaK; �2i(bI+J 
 bK)
 (I 
 J+K);where we used the notation aI+J = aI ^ aJ et.. For this to be nonzero, we need I and J tobe disjoint subsets of f1; : : : ; rg. Similarly, J and K must be disjoint. If s + t = r this impliesI = K. We onlude:Proposition 4.1. For T 2 �s+t(PA� PB� PC), for all �; �1; �2 2 A� s;t�;�1;�2(T )�  s;t�;�2;�1(T ) = 0:We have the bilinear map(�2(SsA)
StA)� � (A
B
C)
2s+t ! �s+tB
�s+tC
�sB
�sC:whose image is  s;t�;�1;�2(T )�  s;t�;�2;�1(T ). We rewrite it as a polynomial map	s;t : A
B
C ! (�2(SsA)
StA)
�s+tB
�s+tC
�sB
�sC:If we want to onsider polynomial equations on A
B
C, they are the image of the transposeof 	s;t. So just as with Strassen's equations, we no longer need to make hoies of elements ofA�. The only ath is we don't yet know whether or not 	s;t(T ) is identially zero for all tensorsT . This is addressed in x7.We write r = s+ t and all the image of 	s;r�s the (r; s)-oerive equations.The modules for the (r; s)-oerive equations are the irreduible submodules of�2(SsA)
Sr�sA
�rB
�sB
�sC
�rCthat map isomorphially into Sr+s(A
B
C) under the transpose of 	s;t. There are many suhsubmodules and we an desribe them expliitly (see the formulas (4) below), but there is no easyto implement formula for the deomposition of Sr+s(A
B
C). There are ertain modules thatare easily seen to our in both Sr+s(A
B
C) and �2(SsA)
Sr�sA
�rB
�sB
�sC
�rC,and we will show that at least most of the time, these modules map isomorphially, so that mostof the (r; s)-oerive onditions lead to nontrivial equations.Theorem 4.2. For s odd, r even, and 2s � r, or r; s odd and 3s � r, the multipliity oneomponent of Sr+s(A
B
C) of type Sr�s;s;sA
�r;sB
�r;sC indued from the (r; s)-oeriveequations is a nontrivial set of equations of �r(PA��PB��PC�). All these modules of equationsfor �r are independent elements of the ideal of �r as s varies.The proof of nontriviality is given in x7. To see the independene, onsider equations of degreesr+s1 and r+s2 with s1 < s2. Were the seond set indued by the �rst, the orresponding tableaufor Sr�s1;s1;s1A would have to �t inside the tableau for Sr�s2;s2;s2A. But sine r � s1 > r � s2the �rst tableau has a longer �rst row than the seond.5. CommrAWe study the speial ase s = 1. Then we have the deompositions�2A
Sr�1A = Sr;1A�Sr�1;1;1A;B
�rB = �r+1B��r;1B;C
�rC = �r+1C��r;1C:



8 J.M. LANDSBERG AND L. MANIVELWe may ignore the modules ontaining an (r+1)-st exterior power as we already know all thoseare ontained in the ideal, and we may eliminate Sr;1A
�r;1B
�r;1C as above. Thus we areredued to studying the modules inherited from Strassen's equations.De�nition 1. We let CommrA � P(A
B
C) be the set of tensors T suh that 	1;r�1(T ) = 0.This set is Zariski losed whose ideal is generated by the image of the transpose of 	1;r�1. Thease a = 3, r = b =  orresponds to the tensors obeying Strassen's ommutation ondition[T�;�1; T�;�2℄ = 0 for all �; �1; �2 2 A� suh that T� is invertible.Note that these equations are of the minimal degree r + 1 (see [3℄).Proposition 5.1. For a = 3 � r � b; ,CommrA = �r(PA�� PB��PC�) [ Sub3;r�1;r [ Sub3;r;r�1:Proof. The set of de�ning equations for CommrA is S211A
�r;1B
�r;1C. In partiular theyall involve terms ontaining partitions of length r in B and C, thus they vanish on Sub3;r;r�1 [Sub3;r�1;r. We also already saw that CommrA � �r, so we haveCommrA � �r(PA�� PB��PC�) [ Sub3;r;r�1 [ Sub3;r�1;r:Let T 2 CommrA be suh that T =2 Sub3;r;r�1[Sub3;r�1;r. Let B0 � B, C 0 � C be the smallestsubspaes suh that T 2 A
B0
C 0. T 2 CommrA implies that B0; C0 both have dimension atmost r and T =2 Sub3;r;r�1 [ Sub3;r�1;r, implies further that both have dimension exatly r.Fix �0 2 A and onsider the abelian subalgebra fT�0;�1 ; T�0;�2g � End(C 0). Now the ruialpoint is that any pair of ommuting matries an be approximated by simultaneously diagonal-izable matries. (This statement is the only plae where we use the hypothesis that a = 3. It is aslightly more preise statement than the well-known irreduibility of the ommuting variety [6℄.Note that the orresponding statement is not true for three or more ommuting matries.) Thatis, our tensor T is in the losure of the set of those T 0's for whih we an �nd a basis b1; : : : ; br ofB0, and a basis 1; : : : ; r of C 0, suh that any T 0(�) is a linear ombination of b1
 1; : : : ; br
 r.But then we an �nd a1; : : : ; ar in A, suh that T 0 = a1
 b1
 1+ � � �+ar
 br
 r. In partiularsuh a T 0 belongs to �r, hene so does T . �Now, sine �3(P2�P2�P1) is the entire ambient spae, Sub3;3;2[Sub3;2;3 � �3(Pa�1�Pb�1�P�1) and we onlude:Corollary 5.2. As sets, for a; b; � 3,�3(Pa�1�Pb�1� P�1) = Comm3A \ Sub333 = Comm3B \ Sub333 = Comm3C \ Sub333:That is �3(Pa�1� Pb�1� P�1) is the zero set of S211A
S211B
S211C � S4(A
B
C) andmodules in degree four ontaining a fourth exterior power (i.e., �4A
�4(B
C) plus permu-atations). In partiular, �3 is ut out set-theoretially by equations of degree four.Remark 5.3. In fat, the stronger statement that the ideal of �3 is generated by the abovemodules holds, see [4℄, but the proof relies on a omputer alulation.Proposition 5.4. For a � b;  and r � 4,CommrA = �r(PA�� PB��PC�)[ Suba;r�1;r [ Suba;r;r�1:Proof. The proof is the same as above exept that at the point where we used a = 3 we useinstead that for r � 4, an r-dimensional abelian subalgebra of glr an be approximated byCartan subalgebras (subalgebras of matries that are diagonal in some �xed basis) [2℄ and weonlude as above. �



GENERALIZATIONS OF STRASSEN'S EQUATIONS FOR SECANT VARIETIES OF SEGRE VARIETIES 9Remark 5.5. It is likely that 5-dimensional abelian subalgebra of gl5 an be approximated byCartan subalgebras so proposition 5.4 should still hold for r = 5, [2℄. On the other hand, itis not possible to approximate r-dimensional abelian subalgebras of glr by Cartan algebras forr > 5.Corollary 5.6. As sets, for a; b; � 3, �4(Pa�1� Pb�1�P�1) is the zero set of(1) (S311A
S2111B
S2111C)� (S2111A
S311B
S2111C)� (S2111A
S2111B
S311C) �S5(A
B
C), i.e., the equations of Comm4.(2) equations inherited from �4(P2�P2�P3)(3) modules in S5(A
B
C) ontaining a �fth exterior power, i.e., the equations for Sub4;4;4.Remark 5.7. The known de�ning modules for �4(P2� P2� P3) are S321A
S321B
S3111C indegree 6 and S333A
S333B
S333C in degree 9, [3℄. We do not have an interpretation forS321A
S321B
S3111C, and it would be useful to have one in order to determine if the knownmodules for �4(P2� P2� P3) are suÆient to de�ne it. In [3℄ there is a typographial error inthe statement of proposition 6.3, inorretly giving the modules in degree six, although they arewritten orretly in the proof. 6. Coerive ontrationsWe now plae the disussion of x4 in a more general ontext. Let m and k be integers, withm even. Consider the projetionSk(A1
 � � �
 Am) �! �kA1
 � � �
 �kAm;sending T =Pi ai1
 � � �
 aim to ^kT = XjIj=k aI1
 � � �
 aIm;where if I = (i1 < � � � < ik), then aI = ai1^ � � �^ aik .Let T = X1�i�r ai0
 � � �
 aim 2 A�0
 � � �
 A�mfor some vetors aij 2 A�j . For any � 2 A0, let T (�) 2 A�1
 � � �
 A�m denote the ontration ofT by �. Then ^kT (�) = XjIj=khaI0; �iaI1
 � � �
 aIm:Now onsider the produt of p suh tensors,^k1 T (�1)
 � � �
 ^kp T (�p)(1) = XjI1j=k1;:::;jIpj=kphaI10 ; �1i � � � haIp0 ; �pi(aI11 
 � � �
 aIp1 )
 � � �
 (aI1m
 � � �
 aIpm):Note that we put together the di�erent terms involving wedge powers of eah A�j . This is beausewe want to take more skew-symmetrizations, that is, we want to apply natural maps of type(2) �m1A�1
 � � �
 �mtA�1 ! �m1+���+mtA�1to our tensor.De�nition 2. A ontration(3) � : A�p0 � (A�0
 � � �
 A�m)! (�k1A�1
 � � � 
�k1A�m)
 � � � 
 (�kpA�1
 � � � 
�kpA�m)



10 J.M. LANDSBERG AND L. MANIVELgiven by (1) followed by maps of the form (2) is r-oerive if when restrited to tensors of theform T = a10
 � � �
 a1m + � � �+ ar0
 � � �
 arm the only nonzero terms in the right hand side of(1) are terms with I1 = I2 (or more generally the only nonzero terms are those where twoof the multi-indies Ij oinide). Generalizing our previous disussion, r-oerive ontrationsfurnish equations for �r(PA�0� � � �� PA�m), by taking (���0)(T ) where �0 is the same as � onlyswithing the roles of the oiniding multi-indies.Suh a ontration is alled partially r-oerive if when restrited to tensors of the formT = a10
 � � �
 a1m+ � � �+ ar0
 � � �
 arm the ontrated tensor is nongeneri among tensors in theimage of � � �0.Strassen's tensors � are partially r-oerive beause the ontrated tensor an have rank (asa matrix) at most 2(r � b) whereas a generi suh matrix has rank b. The tensors 	s;t are(s+ t)-oerive and partially (s + t + x)-oerive for small x.Partially oerive tensors � applied to T 2 �r for suÆiently small r give rise to tensors �(T )that belong to some type of seant variety. Sine our understanding of higher seant varieties isquite limited in general, it is not always lear how to use them. However, there is one ase weunderstand well, namely the seant varieties of two-fator Segre varieties, whih is what is usedfor the Strassen equations.Here is a more ompliated example of a oerive ontration:Example 3. Let m = 6 and p = 7, k1 = k2 = k3 = r� 4s and k4 = k5 = k6 = k7 = s. Then theontration  145;167;246;257;347;356 is r-oerive. (Here the grouped indies indiate whih are to beontrated together.) Indeed, the ontration 145 implies for the surviving terms that I1[I4[I5is a disjoint union, in other words I4 and I5 are disjoint and I1 is ontained in the omplementof their union. Taking the other ontrations into aount, we see that I4; I5; I6; I7 are pairwisedisjoint, and that I1; I2; I3 are ontained in, hene equal to beause of the ardinalities, theomplement of their union. In partiular they must be equal.Example 4. Here are some further examples of partially oerive equations, and further variantson these should be lear to the reader. In the propositions below we assume b = . Of ourse theorresponding modules indue equations when this is not the ase, but moreover when b � r � there are further modules of equations that are indued that are not inherited.Proposition 6.1. Let T 2 A�
B�
C� and �0; �1; �; �0 2 A. If T 2 �r(PA�� PB�� PC�),then rank [T�0� ; T�1�0 ℄ � 3(r � b):The relevant modules are the orresponding image of �2(Sb�1A)
�2A
�bB
B
�bC
C inS2b(A
B
C).Proposition 6.2. Let T 2 A�
B�
C� and �0; �1; :::; �k 2 A. If T 2 �r(PA�� PB�� PC�),then for any permutation � 2 Sk,rank �T�0�1 � � �T�0�k � T�0��(1) � � �T�0��(k)� � 2(k � 1)(r� b):The relevant modules are the orresponding image ofSk�1(Sb�1A)
�kA
 (�bB)
 k�1
B
 (�bC)
 k�1
Cin S(k�1)b+1(A
B
C).The proofs are similar to the proof of Strassen's theorem.Another variant is obtained by using produts of T��0 with di�erent �'s and permuted �0's.



GENERALIZATIONS OF STRASSEN'S EQUATIONS FOR SECANT VARIETIES OF SEGRE VARIETIES 117. Nontriviality of the (r; s)-oersive equationsWe study the image of	r;s : �2(SsA)
Sr�sA
 ^r B
 ^s B
 ^s C
 ^r C)! Sr+s(A
B
C):Reall that this may be thought of as �rst embeding �2(SsA)
Sr�sA
 ^rB
 ^sB
 ^sC
 ^rC in (A
B
C)
 r+s aording the the reipe in x4 and then projeting to the symmetrialgebra. We write the inlusion and projetion as follows:�2(SsA)
Sr�sA
 ^r B
 ^s B
 ^s C
 ^r C#SsA
Sr�sA
SsA
 ^s B
 ^r�s B
 ^s B
 ^s C
 ^r�s C 
 ^s CjjSsA
 ^s B
 ^s C
Sr�sA
 ^r�s B
 ^r�s C
SsA
 ^s B
 ^s C#Ss(A
B
C)
Sr�s(A
B
C)
Ss(A
B
C)#Sr+s(A
B
C):The �rst two maps are injetive, the last one is surjetive but not injetive and the problem isto understand whether its kernel may ontain the subspae we are interested in. For this weneed to understand the above maps in detail, whih are made of elementary maps that we writedown expliitly.First, we have the map^r B ,! ^sB
 ^r�s Bf1^ � � �^ fr 7! XI=(i1<���<is) "(I; Î)fi1^ � � �^ fis 
 f̂�1^ � � �^ f̂�r�s ;with the following notation: Î = (̂�1 < � � � < �̂r�s) is the omplementary sequene to I in(1; : : : ; r), and "(I; Î) is the sign of the permutation (1; : : : ; r) 7! (I; Î) (a shu�e).Seond, we have the mapSsA
 ^s B
 ^s C �! Ss(A
B
C)es
 f1^ � � �^ fs
 g1^ � � �^ gs 7! X�2Ss "(�)(ef1g�(1)) � � �(efsg�(s)):In priniple, this information is enough to hek if a given irreduible omponent of�2(SsA)
Sr�sA
 ^r B
 ^s B
 ^s C
 ^r Cis mapped to zero, or to an isomorphi opy inside Sr+s(A
B
C). And we just need to testthis alternative on some highest weight vetor.Reall the deomposition formulas (e.g. [5℄):�2(SsV ) = Mj:oddS2s�j;jV�aV 
�bV = Mu+v=a+bv� min (a;b)�u;vV(4) Sa1;a2V 
SbV = M�+��ba2+��a1 Sa1+�;a2+�;b����V



12 J.M. LANDSBERG AND L. MANIVELSine we don't have a losed form formula for �a1+�;a2+�;b����(B
C), or more preisely thefators in it of the form �u;vB
�u0;v0C we annot give a losed form formula for all the possiblerelevant fators appearing in Sr+s(A
B
C). Even if we did have suh a list, for any givenmodule, we would still have to hek that the resulting map was nonzero before onluding itwas present.We fous on ases that are of length three in A beause those of length two are inherited from�r(P1� Pb�1�P�1) whih is treated in [4℄.For example, note that for s odd and r � 2s, Sr�s;s;sA � Ss;sA
Sr�sA with multipli-ity one. Also ^rB
 ^s B ontains �r;sB with multipliity one. We prove that the moduleSr�s;s;sA
�r;sB
�r;sC is not mapped to zero in Sr+s(A
B
C) in many ases.We write down a highest weight vetor. The tensor produt f1^ � � �^ fr 
 f1^ � � �^ fs givesa highest weight vetor for �r;sB inside ^rB
 ^s B, where the fi de�ne a weight basis of Bsuh that the ordering of the weights orresponds to the ordering of the indiies. Similarlyg1^ � � �^ gr
 g1^ � � �^ gs gives a highest weight vetor for �r;sC. To �nd a highest weightvetor for Sr�s;s;sA inside Sr�sA
SsA
SsA we use Young symmetrizers [8℄. The symmetrizer(r�s;s;s) applied to eah of the s fators of A
A
A yields the highest weight vetor� = P�1;:::;�s2S3 "(�1) � � �"(�s)er�2s1 e�1(1) � � �e�s(1)
 e�1(2) � � �e�s(2)
 e�1(3) � � �e�s(3):where e1; e2; e3 is an ordered weight basis for A and �(�) denotes the sign of the permutation �.Considering the ontributions of the six di�erent permutations in S3, we get� = X�1+���+�6=s(�1)�2+�4+�6�s��er�2s+�1+�21 e�3+�42 e�5+�63 
 e�4+�51 e�1+�62 e�2+�33 
 e�3+�61 e�2+�52 e�1+�43 :where �s�� = � s�1� � � �� s�6�. Now we take the tensor produt of our three highest weight vetorsand examine the tensor �0 that we get inside Sr+s(A
B
C). To show this tensor is nonzero,we hek that the oeÆient of(e1f1g1) � � �(e1fr�sgr�s)(e2f1gr) � � �(e2fsgr+1�s)(e3frg1) � � �(e3fr+1�sgs)is nonzero. The ontributions to this monomial in �0 is the sum of the ontributions from termsof the former�2s+�1+�21 e�3+�42 e�5+�63 fÎgĴ 
 e�4+�51 e�1+�62 e�2+�33 f1���sgJ 
 e�3+�61 e�2+�52 e�1+�43 fIg1���s;with some oeÆient. The �rst (resp. seond, third) of the three terms in this produt willontribute to �0 by a produt of terms of the form (eifjgk), where for eah given i, the index kdesribes a set Ai (resp. Bi, Ci), withA1 [ A2 [A3 = ĴB1 [B2 [ B3 = JC1 [ C2 [ C3 = f1; : : : ; sg:To ontribute to our preferred monomial, we also need the onditionsA1 [ B1 [ C1 = f1; : : : ; r� sgA2 [ B2 [ C2 = f1; : : : ; sgA3 [ B3 [ C3 = fr� s+ 1; : : : ; rg:



GENERALIZATIONS OF STRASSEN'S EQUATIONS FOR SECANT VARIETIES OF SEGRE VARIETIES 13Now onsider the index j in the di�erent terms (eifjgk). We need j = k if k � r � s, andj = �k := r + 1� k otherwise. This leads to one more set of identities,A1 [ �A2 [ �A3 = ÎB1 [ �B2 [ �B3 = f1; : : : ; sg;C1 [ �C2 [ �C3 = I;where �A denotes the image of A by the map k 7! �k. Note that all these unions are betweenpairwise disjoint sets.The �rst two relations involving C3 imply that C3 = ;. Sine �B2 � f1; : : : ; sg, we deduethat B2 = ;, hene C1 = A2. In partiular, �1 = �4 = �6 = 0. Sine also �B1 � f1; : : : ; sg, weget that A1 = A0 [ fs+ 1; : : : ; r� sg where A0 is the omplement to A2 [B1 inside f1; : : : ; sg.Comparing I and Î we dedue that �A3 = B1, hene A3 = �B1 and B3 = �A0 [ �A2. In partiular,I and J are determined by A0 and A2. Note that one we have I and J , we an easily omputethe signs "(I; Î) and "(J; Ĵ). The result is that"(I; Î)"(J; Ĵ) = (�1)(s+�2)(r�s+�2):We dedue that the total ontribution to our monomial isTs;r�2s := X�2+�3+�5=s(�1)�2+(s+�2)(r�s+�2)�s��2(r� 2s+�2)!�3!�5!�5!(�2+�3)!�3!(�2+ �5)!:Indeed, for a given � we have �s�� hoies for A0; A2, and one these are �xed, the number ofpermutations sending the ei's to the gk suh that k 2 Ai is #A1!#A2!#A3! = (r�2s+�2)!�3!�5!,and so on.So what remains to prove is that Ts;r�2s 6= 0. Observe that sine s is odd, the produt(s+ �2)�2 is even. So(�1)�2+(s+�2)(r�s+�2) = � (�1)�2 for r � s even�1 for r � s odd:In partiular, Ts;r�2s is nonzero for r even. We are not able to prove all the remaining ases,but we are able to show:Lemma 5. The integerTs;t = 1(s!)2 X�+�+=s(�1)� (�+ t)!(�+ �)!(�+ )!�!�!is nonzero for s; t odd and t � s.Proof. Write s = 2m+ 1.(s!)2Ts;t = � mXp=0 2m+1�(2p+1)X�=0 (2p+ 1 + t)!(2p+ 1 + �)!(2m + 1� �)!(2p+ 1)!(2p+ 1)! + mXp=0 2m+1�2pX�=0 (2p+ t)!(2p+ �)!(2m + 1 � �)!(2p)!(2p)!= � mXp=0f2m+1�(2p+1)X�=0 (2p+ 1 + t)(2p+ t)!(2p+ 1 + �)(2p+ �)!(2m + 1 � �)!(2p+ 1)(2p)!(2p+ 1)(2p)!� 2m+1�(2p+1)X�=0 (2p+ t)!(2p+ �)!(2m + 1 � �)!(2p)!(2p)! � (2p+ t)!(2m+ 1)!(2p)!(2p)!(2p)! g= � mXp=0f2m+1�(2p+1)X�=0 [ (2p+ t)!(2p+ �)!(2m + 1� �)!(2p)!(2p)! ( (2p+ 1 + t)(2p+ 1 + �)(2p+ 1)(2p+ 1) � 1)℄ � (2p + t)!(2m+ 1)!(2p)!(2p)!(2p)! g= � mXp=0 (2p+ t)!(2p)! f2m+1�(2p+1)X�=0 [ (2p+ �)!(2m + 1� �)!(2p+ 1)2(2p)! ((2p + 1)(t+ �) + t�)℄ � (2m+ 1)!g



14 J.M. LANDSBERG AND L. MANIVELIn the ase t � 2m + 1 this gives the result immediately just by looking at the � = 0 term inthe summation and noting it is not the only term. �We expet Ts;t to be always nonzero when s; t > 1 and both are odd, but were unable to proveit. Note that it would be suÆient to prove the ase t = 1 if we ould show we always have thesame sign. Referenes[1℄ Luis David Garia, Mihael Stillman, Bernd Sturmfels, Algebrai Geometry of Bayesian Networks, J. Sym-boli Comput. 39(2005), no. 3-4, 331{355.[2℄ Iliev A., Manivel L., Varieties of redutions for gln, arXiv:math.AG/0501329. To appear in in ProjetiveVarieties with Unexpeted Properties, ed. by C. Ciliberto, A.V. Geramita, B. Harbourne, R. Miro-Roig, K.Ranestad, Walter de Gruyter 2005, pp. 287-316.[3℄ Landsberg, J.M., Manivel, L. On the ideals of seant varieties of Segre varieties Found. Comput. Math. 4(2004), no. 4, 397{422[4℄ Landsberg, J.M., Weyman, J. On the ideals of seant varieties of Segre varieties II, preprint.[5℄ Madonald, I.G., Symmetri funtions and Hall polynomials. Seond edition. With ontributions by A.Zelevinsky. Oxford Mathematial Monographs. Oxford Siene Publiations. The Clarendon Press, OxfordUniversity Press, New York, 1995. x+475 pp.[6℄ T. S. Motzkin, O. Taussky, Pairs of matries with property L. II, Trans. Amer. Math. So. 80 (1955), 387{401;[7℄ Strassen V., The asymptoti spetrum of tensors, Crelles J. Reine. Angew. Math. 384 (1988), 102-152.[8℄ Weyl, H., The lassial groups, Prineton Univ. Press, 1939, 320pp.
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