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GENERALIZATIONS OF STRASSEN'S EQUATIONS FOR SECANTVARIETIES OF SEGRE VARIETIESJ.M. LANDSBERG AND L. MANIVELAbstra
t. We de�ne many new examples of modules of equations for se
ant varieties of Segrevarieties that generalize Strassen's 
ommutation equations [7℄. Our modules of equations areobtained by 
onstru
ting subspa
es of matri
es from tensors that satisfy various 
ommutationproperties. 1. Introdu
tionLet V;A1; :::; An be ve
tor spa
es over an algebrai
ally 
losed �eld K of 
hara
teristi
 zero,and let Seg(PA1� � � �� PAn) � P(A1
 � � �
 An)denote the Segre variety of de
omposable tensors inside P(A1
 � � �
 An).Let X � PV be a proje
tive variety. De�ne �r = �r(X), the variety of se
ant Pr�1's to X by�r(X) = [x1;:::;xr2XPx1;:::;xrwhere Px1;:::;xr � PV denotes the linear spa
e spanned by x1; :::; xr (usually a Pr�1).For appli
ations to 
omputational 
omplexity, algebrai
 statisti
s and other areas, one wouldlike to have de�ning equations for se
ant varieties of triple Segre produ
ts, in parti
ular be
ausethe border rank r of a bilinear map T : A��B� ! C is the smallest r su
h that [T ℄ 2 �r(Seg(PA�PB�PC). Here, and throughout this paper, \de�ning equations" refers to set theoreti
 de�ningequations.De�ning equations are known only for the following 
ases: all se
ant varieties of the twofa
tor Segre (
lassi
al: these are just the (r+1)� (r+1) minors of the spa
e of a� b matri
es),the n-fa
tor Segre itself PA1� � � �� PAn � P(A1
 � � �
 An) (
lassi
al), its �rst se
ant variety�2(PA1� � � �� PAn) [3℄, �3(Pa�1�Pb�1�P
�1) [4℄, �4(P2�P2�P2) [7℄, �r(P1�Pb�1�P
�1) [4℄and several 
ases of the last nontrivial se
ant variety of P2�Pb�1�Pb�1 when the last nontrivialse
ant variety is a hypersurfa
e [7℄.Segre produ
ts and their se
ant varieties are invariant under the a
tion of the group G =GL(A1)� � � �� GL(An) and thus their de�ning equations are best des
ribed as G-modules. In[3℄ we explained how one 
an systemati
ally �nd G-modules in the ideal of the se
ant varietiesusing representation theory. We also observed that the expressions even for highest weightve
tors in the modules be
ome too 
ompli
ated to write down expli
itly very qui
kly, so thereare severe limits to the systemati
 approa
h.The equations for �2(PA1� � � �� PAn) may be thought of as those 
oming from the two fa
tor
ase, that is, as minors of ordinary matri
es by 
onsidering, e.g., A
B
C as A
 (B
C) andtaking the minors of the resulting a� b
 matrix and permutations of su
h.Strassen de�ned equations for �3(PA�PB�PC) when b = 
 and a = 3 by 
hoosing a basis ofA� and 
ontra
ting tensors to obtain subspa
es of B
C, and �nding 
losed 
onditions on su
hLandsberg supported by NSF grant DMS-0305829. 1



2 J.M. LANDSBERG AND L. MANIVELsubspa
es 
oming from tensors in �3(PA�PB�PC). From this perspe
tive, one 
ould look forother 
losed 
onditions on su
h subspa
es, whi
h is one way to view our generalizations.Another perspe
tive on the equations for se
ant varieties is that in general, if X � Y , then�r(X) � �r(Y ) and the equations for �2(PA � PB � PC) 
omes from the observation thatSeg(PA�PB�PC)� Seg(PA�P(B
C)).More generally, one should look for natural varieties, whose de�ning equations are easilydes
ribed, that 
ontain �r(PA � PB � PC). From this perspe
tive, our new equations areindu
ed by equations of various types of varieties of subspa
es of matri
es that satisfy 
ertain
ommutation properties.For a partition � of d, we let S�A denote the 
orresponding irredu
ible GL(A) module and��A = S�0A where �0 is the 
onjugate partition to �. Our main result, theorem 4.2, may bephrased as follows:For ea
h r, and s suÆ
iently small (s � r=2 if r is even, s � r=3 if r is odd), we des
ribe anexpli
it realization of the moduleSr�s;s;sA
�r;sB
�r;sC � Sr+s(A
B
C)as a module of equations of �r(PA�
PB�
PC�), and ea
h of these modules is independent inthe ideal of �r(PA�
PB�
PC�).(We often reverse the roles of ve
tor spa
es with their duals to eliminate �-s from the modulesde�ning equations.)The determination of the generators of the ideal of �3(Pa�1� Pb�1� P
�1) in [4℄ relies on a
omputer 
al
ulation to prove the �3(P2� P2 � P2) 
ase is generated by Strassen's equations,and this 
omputer 
al
ulation was originally announ
ed in [1℄. In x5 we give a 
omputer freeproof that the modules inherited from Strassen's equations give set-theoreti
 de�ning equationsfor �3(Pa�1�Pb�1�P
�1). A key point in our proof is the irredu
ibility of the variety of pairs of
ommuting matri
es. This irredu
ibility fails for triples of 
ommuting matri
es. The followingnatural question appears to be 
losely related to our problem: Find equations that 
hara
terizethe irredu
ible 
omponent of the variety of triples of 
ommuting matri
es 
ontaining triples ofregular semisimple matri
es as an open subset.One 
an put our investigation in the broader 
ontext of the study of the geometry of orbit
losures: let G be a 
omplex semi-simple group, let V = Vl be an irredu
ible G module ofhighest weight l. Then Kostant showed that the ideal of the 
losed orbit G:[vl℄ = G=P � PV isgenerated in degree two by V2l? � S2V �. If we 
onsider other G-varieties in PV , what 
an wesay about their de�ning equations?1.1. Overview. In x2 we review inheritan
e and remark that using subspa
e varieties (de�nedin the se
tion) the problem of determining de�ning equations of se
ant varieties of Segre vari-eties is redu
ed to the 
ase of �r(Pr�1� � � �� Pr�1). In x3 we review Strassen's equations for�r(P2 � Pb�1 � Pb�1), reformulate them more invariantly, and des
ribe the modules of equa-tions asso
iated to his 
onditions. In x4 we generalize Strassen's equations and state our mainresult, theorem 4.2. In x5 we show that our generalizations signi�
antly redu
e the problemof determining de�ning equations in some 
ases, in parti
ular solving it when r = 3. In x6 wegeneralize our approa
h further and put it in a larger 
ontext, that of a 
lass of 
ontra
tions we
all 
oer
ive. Finally in x7 we �nish the proof of theorem 4.2, showing that many of the newmodules of equations we de�ned are indeed nontrivial.2. Inheritan
e and subspa
e varieties2.1. Inheritan
e. We review some fa
ts from [3℄. The varieties �r(PA�1 � � � � � PA�n), areinvariant under the a
tion of the group G = GL(A1)� � � �� GL(An). Thus their ideals are given
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t sums of irredu
ible submodules S�1A1
 � � �
 S�nAn � Sd(A1
 � � � 
An), where ea
h�j is a partition of d. If dimAj = aj then �j 
an have at most aj parts. We let l(�) denotethe number of parts of the partition �. For a variety X � PV , we let Id(X) � SdV � denote the
omponent of the ideal of X in degree d.Proposition 2.1. [3℄ If an irredu
ible module S�1A1
 � � �
 S�nAn � Id(�r(PA�1� � � �� PA�n)),then for all ve
tor spa
es A0j � A�j , we have (S�1A01
 � � � 
S�nA0n)� � Id(�r(PA01�� � ��PA0n)).Moreover, a module (S�1A01
 � � � 
S�nA0n)� where the length of ea
h �j is at most aj is inId(�r(PA01� � � � �PA0n)) i� the 
orresponding module is in Id(�r(PA1� � � � �PAn)).Thus a 
opy of a module S�1A1
 � � � 
S�nAn will be in I(�r(Pr�1 � � � � � Pr�1)) i� the
orresponding 
opy of the module S�1C l(�1 )
 � � � 
S�nC l(�n ) is in the ideal of �r(Pl(�1)�1 �� � � � Pl(�n)�1).2.2. Subspa
e varieties. Let Subb1;:::;bn � P(A�1
 � � � 
A�n) denote the set of tensors T su
hthat there exists subspa
es Bj � A�j with dimBj = bj and T 2 B1
 � � � 
Bn. Subb1;:::;bn isZariski 
losed and its ideal is easy to des
ribe. Id(Subb1;:::;bn) is the dire
t sum of the modulesS�1A1
 � � �
 S�nAn su
h that S�1A1
 � � �
 S�nAn � Sd(A1
 � � � 
An) and the length of some�j is greater than bj . (In [4℄ we prove the generators of the ideal are indeed the expe
ted ones.)Assuming all the bj are equal to say b0, then Subb0;:::;b0 is de�ned by equations of degreeb0+1, namely all the modules in Sb0+1(A1
 � � �
 An) 
ontaining an exterior power of some Aj .In other words, as a set, Subr;:::;r is the interse
tion of all the r-th se
ant varieties of 
atteningsof the form Ai
 (A1
 � � �
 Âi
 � � �
 An).In parti
ular, �r(PA�1� � � � � PA�n) � Subb1;:::;bn for all b1; :::; bn with bi � r. We summarizethe above dis
ussion:Proposition 2.2. De�ning equations for �r(PA�1�� � ��PA�n), when dimA�j � r may be obtainedfrom the union of the the modules inherited from de�ning equations for �r(Pr�1 � � � � � Pr�1)and de�ning equations for Subr;:::;r.Remark 2.3. For ordinary matri
es, i.e., points in the tensor produ
t of two ve
tor spa
es, thereis just one notion of rank, but it has several generalizations to tensor produ
ts of several ve
torspa
es. The �rst is the minimum number of monomials required to express a given tensor asa sum of monomials, whi
h is now 
ommonly 
alled the rank of the tensor. The se
ond is thesmallest se
ant variety of the Segre variety in whi
h the tensor lies, whi
h is 
alled the borderrank of the tensor. A third notion 
omes from Cayley's hyperdeterminant, a higher dimensionalgeneralization of the determinant. Already forP1�P1�P1 this notion diverges from the previoustwo, in the sense that every tensor in P1�P1�P1 has border rank at most two, but the zero set ofthe hyperdeterminant is a quarti
 hypersurfa
e. For P2�P2�P2 the hyperdeterminant des
ribesan irredu
ible hypersurfa
e of degree 36 whereas �4(P2�P2�P2) is a hypersurfa
e of degee 9.The hyperdeterminants indu
e \hyper-minors" by inheriting the 
orresponding modules, but thezero sets of these appear to have little relation with se
ant varieties. A fourth notion generalizesto the subspa
e varieties, be
ause T 2 A
B has rank r i� there exist A0 � A, B0 � B, bothof dimension r, with T 2 A0
B0. Tensors of border rank r are in general only 
ontained inSubr;:::;r. 3. Strassen's equations3.1. Strassen's theorem. For a tensor T 2 A
B
C and � 2 A�, let T� 2 B
C denote the
ontra
tion of T with �.



4 J.M. LANDSBERG AND L. MANIVELTheorem 3.1 (Strassen). [7℄ Let 3 � a � b = 
 � r. Let T 2 A
B
C and � 2 A� be su
hthat rankT� = b. For all �1; �2 2 A�, 
onsider the linear maps T�;�j : B ! B by 
onsideringT� : C� ! B and T�;�j = T�jT��1. If [T ℄ 2 �r(PA� PB� PC), thenrank [T�;�1; T�;�2℄ � 2(r � b):Moreover for a generi
 tensor T 2 A
B
C, [T�;�1; T�;�2℄ is of maximal rank.This theorem (together with an easy appli
ation of Terra
ini's lemma) implies �4(P2�P2�P2)is a hypersurfa
e. It also implies that the border rank of the multipli
ation of m�m matri
es isat least 3m22 . Here is a proof that is essentially Strassen's, rephrased more invariantly to enablegeneralizations.Proof. First note that it is suÆ
ient to prove the result for T of the form T = a1b1
1+� � �+arbr
ras these form a Zariski open subset of the irredu
ible variety �r. Here aj 2 A et
... andajbj
j = aj 
 bj 
 
j . Fix an auxiliary ve
tor spa
e D ' C r and write T� : C� ! B as a
omposition of maps C� i����! D Æ�����! D p����! B:To see this expli
itly, if T = a1b1
1 + � � �+ arbr
r and we assume b1; :::; bb, 
1; :::; 
b are basesof B;C, then letting d1; :::; dr be a basis of D, we have i(�) = Prj=1 �(
j)dj , Æ�(dj) = �(aj)dj,for 1 � s � b we have p(ds) = bs, and for b + 1 � x � r, writing bx = �sxbs, then we havep(dx) = �sxbs.Let D0 = i(C�), write i0 : C� ! D0 and set p� := p jÆ�(D0), so p� : Æ�(D0)! B is a linearisomorphism. Then we may write T��1 = (i0)�1Æ��1p��1.Note that rank [T�;�1; T�;�2℄ = rank (T�1T��1T�2 � T�2T��1T�1) be
ause T� is invertible. Wehave T�1T��1T�2 � T�2T��1T�1= (pÆ�1i0)((i0)�1Æ��1p��1)(pÆ�2i0)� (pÆ�2i0)((i0)�1Æ��1p��1)(pÆ�1i0)= p[Æ�1Æ��1p��1pÆ�2 � Æ�2Æ��1p��1pÆ�1 ℄i0= pÆ��1[Æ�1p��1pÆ�2 � Æ�2p��1pÆ�1 ℄i0where the last equality holds be
ause the Æ�'s 
ommute.Now p��1p jÆ�(D0)= Id, so write D = Æ�(D0)�D00, where we 
hoose any 
omplement toÆ�(D0) in D. We have dimD00 = r � b and we may write p��1p = IdÆ�(D0) + f for some mapf : D00 ! D. Thus T�1T��1T�2 � T�2T��1T�1 = pÆ��1[Æ�1fÆ�2 � Æ�2fÆ�1 ℄i0and is therefore of rank at most 2(r� b). �3.2. Towards a more invariant formulation of Strassen's theorem. As stated, there areseveral undesirable aspe
ts to Strassen's equations: the 
hoi
es of �; �1; �2, the requirement that� is su
h that T� invertible, and the way the equations are written makes it diÆ
ult to see whatequations will be inherited from them when we in
rease the dimensions of the spa
es. Moreover,say a = b = 
, then we 
an 
learly 
hange the roles of the spa
es - are the new equations soobtained redundant or not?A �rst step towards resolving these issues is to re
onsider matrix multipli
ation and inversesmore invariantly.For a linear map f : V ! W , let f^k : �kV ! �kW denote the indu
ed linear map. IfdimV = dimW = n and f is invertible, then as a tensor f^n�1 = (f�1)t
 det(f). Re
all thatfor a ve
tor spa
e of dimension n, that �n�1V = V �
�nV , so if V;W have dimension n, then
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�n�1W = Hom (W;V )
�bV 
�bW . f^n�1 has the advantage over f�1 of beingde�ned even if f is not invertible.For T 2 A
B
C, let T� := T^b�1� 2 �b�1B
�b�1C = �b�1B
C�
�bC. We may
ontra
t T�
T�j 2 �b�1B
C�
�bC
B
C to an elementT��j 2 �bB
C�
�bC
C = C�
C
�bB
�bC:Now 
onsider T��1 
T��2 2 C�
C
C�
C
 (�bB)
2
 (�bC)
 2and 
ontra
t on the se
ond and third fa
tors to obtain an element of C�
C
 (�bB)
2
 (�bC)
 2.This 
ontra
tion of 
ourse 
orresponds to matrix multipli
ation, as does 
ontra
tion in the �rstand fourth fa
tor, whi
h 
orresponds to multiplying the matri
es in the opposite order. We doboth 
ontra
tions and take their di�eren
e and 
all the result[T��1; T��2℄ 2 C�
C
 (�bB)
2
 (�bC)
 2:Strassen's theorem states that the rank of [T��1; T��2℄ is at most 2(r� b).Equivalent to Strassen's observation that rank [T�;�1; T�;�2℄ = rank (T�1T��1T�2�T�2T��1T�1),we 
an get away with a lower degree tensor by just 
ontra
ting on
e with T� to get elements ofB
C 
�bB
�bC.To eliminate the 
hoi
es of �; �1; �2, we may 
onsider the tensor T� without having 
hosen� as T (�) 2 Sb�1A
�b�1B
�b�1C, whi
h is obtained as the proje
tion of (A
B
C)
 b�1to the subspa
e Sb�1A
�b�1B
�b�1C. Similarly T�j 2 B
C, may be thought of as T(�) 2A
B
C. We then 
ontra
tT (�)
T(�)
T(�) 2 �b�1B
�b�1C 
B
C
B
C 
 (Sb�1A
A
A)in two di�erent ways, �rst 
ontra
ting the �rst fa
tor with the third and the se
ond with thesixth to obtain an element of B
C 
 (Sb�1A
A
A)
�bB
�bC, then 
ontra
ting the �rstwith the �fth and the se
ond with the fourth. We then take the di�eren
e of the two to obtainan element of B
C
�bB
�bC
 (Sb�1A
A
A). Call the resulting tensor �(T ), i.e.,� 2 (A�
B�
C�)
 b+1
 (Sb�1A
�2A)
�bB
B
�bC
Cand in fa
t des
ends to be an element of Sb+1(A�
B�
C�)
 (Sb�1A
�2A)
�bB
B
�bC
C.The proof of Strassen's theorem may be rephrased in this language. We leave this as anentertaining exer
ise for the reader. (Hint: the Pl�u
ker relations for the Grassmannian G(2; r)furnish the key to showing the bound on the rank of the 
ommutator.)3.3. Strassen's equations as modules. We �rst determine whi
h modules in�2A
Sb�1A
�bB
B
C
�bCmap nontrivially into Sb+1(A
B
C), when we use � to 
ompose the in
lusion�2A
Sb�1A
�bB
B
C 
�bC � (A
B
C)
 b+1with the proje
tion (A
B
C)
 b+1 ! Sb+1(A
B
C).Sin
e here b = dimB = dimC, we have�2A
Sb�1A
�bB
B
C
�bC = (Sb;1A�Sb�1;1;1A)
�b;1B
�b;1Cso there are two possible modules. By [4℄, Sb;1A
�b;1B
�b;1C does not o

ur in the ideal of�r(P1�Pb�1�P
�1) so by inheritan
e it 
annot o

ur when dimA > 2 either, so we are redu
edto a unique module.Taking minors 
orresponds to taking exterior powers in the B;C fa
tors and we 
on
lude:



6 J.M. LANDSBERG AND L. MANIVELProposition 3.2. As modules, the equations that implyrank [T��1; T��2℄ � 2(r� b):for all 
hoi
es of �; �1; �2 2 A� 
orrespond to the image of the in
lusion via � ofS2(r�b)+1(Sb�1;1;1A)
�2(r�b)+1(�b;1B)
�2(r�b)+1(�b;1C)into S(2(r�b)+1)(b+1)(A
B
C). When r = b we obtain the single moduleSb�1;1;1A
�b;1B
�b;1C:For P2 � P2 � P2 we obtain the same modules regardless of whi
h fa
tor we use to makethe proje
tions - all are the same 
opy of S211A
S211B
S211C for the 
ase of �3 and ofS333A
S333B
S333C for the 
ase of �4. This redundan
y fails for larger dimensional proje
tivespa
es.3.4. Example of Strassen's equations. We write down a basis of the modules of polynomials
orresponding to Sb�1;1;1A
�b;1B
�b;1C. Let �i; �j ; �k 2 A�, let �1; :::; �b, �1; :::; �b be basesof B�; C�. Consider the tensorP i;jjks;t = �i ^ �j 
 (�k)b�1
 �1 ^ � � � ^ �b
 �s
 �1 ^ � � � ^ �b
 �tApplying � we obtain (ignoring s
alars)(�2
�3 � �3
�2)
 (�1)b�1
 (Xj (�1)j+1��̂
 �j 
 �s)
 (Xk (�1)k+1�k̂ 
 �k
 �t)= (�1)j+k[((�1)b�1
��̂
 �k̂)
 (�2
 �j 
 �t)
 (�3
 �s
 �k)� ((�1)b�1
 ��̂
 �k̂)
 (�3
 �j 
 �t)
 (�2
 �s
 �k)℄:If we 
hoose dual bases for A;B;C and writeT =Xl al
Xlwhere the al are dual to the �l and Xl are represented as b� b matri
es with respe
t to the dualbases of B;C, then P i;jjks;t (T ) =Xu;v (�1)u+v(detX ûk;v̂)(Xui;tXsj;v �Xsi;vXuj;t)where X ûj;v̂ is Xj with its u-th row and v-th 
olumn removed.4. Generalizations of Strassen's 
onditionsWe now generalize Strassen's equations using our new perspe
tive. Re
all that the key pointfor Strassen's equations was that 
ontra
ting a tensor T 2 A
B
C in two di�erent waysyielded tensors that almost 
ommute when T 2 �r.Consider, for s; t su
h that s+ t � b and �; �j 2 A�, the tensorsT^s�j 2 �sB
�sC; T^t� 2 �tB
�tC(our old 
ase was s = 1; t = b � 1). We may 
ontra
t T^t� 
T^s�1 
T^s�2 to obtain elementsof �s+tB
�s+tC
�sB
�sC in two di�erent ways, 
all these 
ontra
tions  s;t�;�1;�2(T ) and s;t�;�2;�1(T ).



GENERALIZATIONS OF STRASSEN'S EQUATIONS FOR SECANT VARIETIES OF SEGRE VARIETIES 7Now say we may write T = a1
 b1
 
1+ � � �+ar 
 br
 
r for elements ai 2 A, bi 2 B, 
i 2 C.We have  s;t�;�1;�2(T ) = XjIj=s;jJj=t;jKj=shaI ; �1ihaJ ; �ihaK; �2i(bI+J 
 bK)
 (
I 
 
J+K);where we used the notation aI+J = aI ^ aJ et
.. For this to be nonzero, we need I and J tobe disjoint subsets of f1; : : : ; rg. Similarly, J and K must be disjoint. If s + t = r this impliesI = K. We 
on
lude:Proposition 4.1. For T 2 �s+t(PA� PB� PC), for all �; �1; �2 2 A� s;t�;�1;�2(T )�  s;t�;�2;�1(T ) = 0:We have the bilinear map(�2(SsA)
StA)� � (A
B
C)
2s+t ! �s+tB
�s+tC
�sB
�sC:whose image is  s;t�;�1;�2(T )�  s;t�;�2;�1(T ). We rewrite it as a polynomial map	s;t : A
B
C ! (�2(SsA)
StA)
�s+tB
�s+tC
�sB
�sC:If we want to 
onsider polynomial equations on A
B
C, they are the image of the transposeof 	s;t. So just as with Strassen's equations, we no longer need to make 
hoi
es of elements ofA�. The only 
at
h is we don't yet know whether or not 	s;t(T ) is identi
ally zero for all tensorsT . This is addressed in x7.We write r = s+ t and 
all the image of 	s;r�s the (r; s)-
oer
ive equations.The modules for the (r; s)-
oer
ive equations are the irredu
ible submodules of�2(SsA)
Sr�sA
�rB
�sB
�sC
�rCthat map isomorphi
ally into Sr+s(A
B
C) under the transpose of 	s;t. There are many su
hsubmodules and we 
an des
ribe them expli
itly (see the formulas (4) below), but there is no easyto implement formula for the de
omposition of Sr+s(A
B
C). There are 
ertain modules thatare easily seen to o

ur in both Sr+s(A
B
C) and �2(SsA)
Sr�sA
�rB
�sB
�sC
�rC,and we will show that at least most of the time, these modules map isomorphi
ally, so that mostof the (r; s)-
oer
ive 
onditions lead to nontrivial equations.Theorem 4.2. For s odd, r even, and 2s � r, or r; s odd and 3s � r, the multipli
ity one
omponent of Sr+s(A
B
C) of type Sr�s;s;sA
�r;sB
�r;sC indu
ed from the (r; s)-
oer
iveequations is a nontrivial set of equations of �r(PA��PB��PC�). All these modules of equationsfor �r are independent elements of the ideal of �r as s varies.The proof of nontriviality is given in x7. To see the independen
e, 
onsider equations of degreesr+s1 and r+s2 with s1 < s2. Were the se
ond set indu
ed by the �rst, the 
orresponding tableaufor Sr�s1;s1;s1A would have to �t inside the tableau for Sr�s2;s2;s2A. But sin
e r � s1 > r � s2the �rst tableau has a longer �rst row than the se
ond.5. CommrAWe study the spe
ial 
ase s = 1. Then we have the de
ompositions�2A
Sr�1A = Sr;1A�Sr�1;1;1A;B
�rB = �r+1B��r;1B;C
�rC = �r+1C��r;1C:



8 J.M. LANDSBERG AND L. MANIVELWe may ignore the modules 
ontaining an (r+1)-st exterior power as we already know all thoseare 
ontained in the ideal, and we may eliminate Sr;1A
�r;1B
�r;1C as above. Thus we areredu
ed to studying the modules inherited from Strassen's equations.De�nition 1. We let CommrA � P(A
B
C) be the set of tensors T su
h that 	1;r�1(T ) = 0.This set is Zariski 
losed whose ideal is generated by the image of the transpose of 	1;r�1. The
ase a = 3, r = b = 
 
orresponds to the tensors obeying Strassen's 
ommutation 
ondition[T�;�1; T�;�2℄ = 0 for all �; �1; �2 2 A� su
h that T� is invertible.Note that these equations are of the minimal degree r + 1 (see [3℄).Proposition 5.1. For a = 3 � r � b; 
,CommrA = �r(PA�� PB��PC�) [ Sub3;r�1;r [ Sub3;r;r�1:Proof. The set of de�ning equations for CommrA is S211A
�r;1B
�r;1C. In parti
ular theyall involve terms 
ontaining partitions of length r in B and C, thus they vanish on Sub3;r;r�1 [Sub3;r�1;r. We also already saw that CommrA � �r, so we haveCommrA � �r(PA�� PB��PC�) [ Sub3;r;r�1 [ Sub3;r�1;r:Let T 2 CommrA be su
h that T =2 Sub3;r;r�1[Sub3;r�1;r. Let B0 � B, C 0 � C be the smallestsubspa
es su
h that T 2 A
B0
C 0. T 2 CommrA implies that B0; C0 both have dimension atmost r and T =2 Sub3;r;r�1 [ Sub3;r�1;r, implies further that both have dimension exa
tly r.Fix �0 2 A and 
onsider the abelian subalgebra fT�0;�1 ; T�0;�2g � End(C 0). Now the 
ru
ialpoint is that any pair of 
ommuting matri
es 
an be approximated by simultaneously diagonal-izable matri
es. (This statement is the only pla
e where we use the hypothesis that a = 3. It is aslightly more pre
ise statement than the well-known irredu
ibility of the 
ommuting variety [6℄.Note that the 
orresponding statement is not true for three or more 
ommuting matri
es.) Thatis, our tensor T is in the 
losure of the set of those T 0's for whi
h we 
an �nd a basis b1; : : : ; br ofB0, and a basis 
1; : : : ; 
r of C 0, su
h that any T 0(�) is a linear 
ombination of b1
 
1; : : : ; br
 
r.But then we 
an �nd a1; : : : ; ar in A, su
h that T 0 = a1
 b1
 
1+ � � �+ar
 br
 
r. In parti
ularsu
h a T 0 belongs to �r, hen
e so does T . �Now, sin
e �3(P2�P2�P1) is the entire ambient spa
e, Sub3;3;2[Sub3;2;3 � �3(Pa�1�Pb�1�P
�1) and we 
on
lude:Corollary 5.2. As sets, for a; b; 
� 3,�3(Pa�1�Pb�1� P
�1) = Comm3A \ Sub333 = Comm3B \ Sub333 = Comm3C \ Sub333:That is �3(Pa�1� Pb�1� P
�1) is the zero set of S211A
S211B
S211C � S4(A
B
C) andmodules in degree four 
ontaining a fourth exterior power (i.e., �4A
�4(B
C) plus permu-atations). In parti
ular, �3 is 
ut out set-theoreti
ally by equations of degree four.Remark 5.3. In fa
t, the stronger statement that the ideal of �3 is generated by the abovemodules holds, see [4℄, but the proof relies on a 
omputer 
al
ulation.Proposition 5.4. For a � b; 
 and r � 4,CommrA = �r(PA�� PB��PC�)[ Suba;r�1;r [ Suba;r;r�1:Proof. The proof is the same as above ex
ept that at the point where we used a = 3 we useinstead that for r � 4, an r-dimensional abelian subalgebra of glr 
an be approximated byCartan subalgebras (subalgebras of matri
es that are diagonal in some �xed basis) [2℄ and we
on
lude as above. �



GENERALIZATIONS OF STRASSEN'S EQUATIONS FOR SECANT VARIETIES OF SEGRE VARIETIES 9Remark 5.5. It is likely that 5-dimensional abelian subalgebra of gl5 
an be approximated byCartan subalgebras so proposition 5.4 should still hold for r = 5, [2℄. On the other hand, itis not possible to approximate r-dimensional abelian subalgebras of glr by Cartan algebras forr > 5.Corollary 5.6. As sets, for a; b; 
� 3, �4(Pa�1� Pb�1�P
�1) is the zero set of(1) (S311A
S2111B
S2111C)� (S2111A
S311B
S2111C)� (S2111A
S2111B
S311C) �S5(A
B
C), i.e., the equations of Comm4.(2) equations inherited from �4(P2�P2�P3)(3) modules in S5(A
B
C) 
ontaining a �fth exterior power, i.e., the equations for Sub4;4;4.Remark 5.7. The known de�ning modules for �4(P2� P2� P3) are S321A
S321B
S3111C indegree 6 and S333A
S333B
S333C in degree 9, [3℄. We do not have an interpretation forS321A
S321B
S3111C, and it would be useful to have one in order to determine if the knownmodules for �4(P2� P2� P3) are suÆ
ient to de�ne it. In [3℄ there is a typographi
al error inthe statement of proposition 6.3, in
orre
tly giving the modules in degree six, although they arewritten 
orre
tly in the proof. 6. Coer
ive 
ontra
tionsWe now pla
e the dis
ussion of x4 in a more general 
ontext. Let m and k be integers, withm even. Consider the proje
tionSk(A1
 � � �
 Am) �! �kA1
 � � �
 �kAm;sending T =Pi ai1
 � � �
 aim to ^kT = XjIj=k aI1
 � � �
 aIm;where if I = (i1 < � � � < ik), then aI = ai1^ � � �^ aik .Let T = X1�i�r ai0
 � � �
 aim 2 A�0
 � � �
 A�mfor some ve
tors aij 2 A�j . For any � 2 A0, let T (�) 2 A�1
 � � �
 A�m denote the 
ontra
tion ofT by �. Then ^kT (�) = XjIj=khaI0; �iaI1
 � � �
 aIm:Now 
onsider the produ
t of p su
h tensors,^k1 T (�1)
 � � �
 ^kp T (�p)(1) = XjI1j=k1;:::;jIpj=kphaI10 ; �1i � � � haIp0 ; �pi(aI11 
 � � �
 aIp1 )
 � � �
 (aI1m
 � � �
 aIpm):Note that we put together the di�erent terms involving wedge powers of ea
h A�j . This is be
ausewe want to take more skew-symmetrizations, that is, we want to apply natural maps of type(2) �m1A�1
 � � �
 �mtA�1 ! �m1+���+mtA�1to our tensor.De�nition 2. A 
ontra
tion(3) � : A�p0 � (A�0
 � � �
 A�m)! (�k1A�1
 � � � 
�k1A�m)
 � � � 
 (�kpA�1
 � � � 
�kpA�m)



10 J.M. LANDSBERG AND L. MANIVELgiven by (1) followed by maps of the form (2) is r-
oer
ive if when restri
ted to tensors of theform T = a10
 � � �
 a1m + � � �+ ar0
 � � �
 arm the only nonzero terms in the right hand side of(1) are terms with I1 = I2 (or more generally the only nonzero terms are those where twoof the multi-indi
es Ij 
oin
ide). Generalizing our previous dis
ussion, r-
oer
ive 
ontra
tionsfurnish equations for �r(PA�0� � � �� PA�m), by taking (���0)(T ) where �0 is the same as � onlyswit
hing the roles of the 
oin
iding multi-indi
es.Su
h a 
ontra
tion is 
alled partially r-
oer
ive if when restri
ted to tensors of the formT = a10
 � � �
 a1m+ � � �+ ar0
 � � �
 arm the 
ontra
ted tensor is nongeneri
 among tensors in theimage of � � �0.Strassen's tensors � are partially r-
oer
ive be
ause the 
ontra
ted tensor 
an have rank (asa matrix) at most 2(r � b) whereas a generi
 su
h matrix has rank b. The tensors 	s;t are(s+ t)-
oer
ive and partially (s + t + x)-
oer
ive for small x.Partially 
oer
ive tensors � applied to T 2 �r for suÆ
iently small r give rise to tensors �(T )that belong to some type of se
ant variety. Sin
e our understanding of higher se
ant varieties isquite limited in general, it is not always 
lear how to use them. However, there is one 
ase weunderstand well, namely the se
ant varieties of two-fa
tor Segre varieties, whi
h is what is usedfor the Strassen equations.Here is a more 
ompli
ated example of a 
oer
ive 
ontration:Example 3. Let m = 6 and p = 7, k1 = k2 = k3 = r� 4s and k4 = k5 = k6 = k7 = s. Then the
ontra
tion  145;167;246;257;347;356 is r-
oer
ive. (Here the grouped indi
es indi
ate whi
h are to be
ontra
ted together.) Indeed, the 
ontra
tion 145 implies for the surviving terms that I1[I4[I5is a disjoint union, in other words I4 and I5 are disjoint and I1 is 
ontained in the 
omplementof their union. Taking the other 
ontra
tions into a

ount, we see that I4; I5; I6; I7 are pairwisedisjoint, and that I1; I2; I3 are 
ontained in, hen
e equal to be
ause of the 
ardinalities, the
omplement of their union. In parti
ular they must be equal.Example 4. Here are some further examples of partially 
oer
ive equations, and further variantson these should be 
lear to the reader. In the propositions below we assume b = 
. Of 
ourse the
orresponding modules indu
e equations when this is not the 
ase, but moreover when b � r � 
there are further modules of equations that are indu
ed that are not inherited.Proposition 6.1. Let T 2 A�
B�
C� and �0; �1; �; �0 2 A. If T 2 �r(PA�� PB�� PC�),then rank [T�0� ; T�1�0 ℄ � 3(r � b):The relevant modules are the 
orresponding image of �2(Sb�1A)
�2A
�bB
B
�bC
C inS2b(A
B
C).Proposition 6.2. Let T 2 A�
B�
C� and �0; �1; :::; �k 2 A. If T 2 �r(PA�� PB�� PC�),then for any permutation � 2 Sk,rank �T�0�1 � � �T�0�k � T�0��(1) � � �T�0��(k)� � 2(k � 1)(r� b):The relevant modules are the 
orresponding image ofSk�1(Sb�1A)
�kA
 (�bB)
 k�1
B
 (�bC)
 k�1
Cin S(k�1)b+1(A
B
C).The proofs are similar to the proof of Strassen's theorem.Another variant is obtained by using produ
ts of T��0 with di�erent �'s and permuted �0's.
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oersive equationsWe study the image of	r;s : �2(SsA)
Sr�sA
 ^r B
 ^s B
 ^s C
 ^r C)! Sr+s(A
B
C):Re
all that this may be thought of as �rst embeding �2(SsA)
Sr�sA
 ^rB
 ^sB
 ^sC
 ^rC in (A
B
C)
 r+s a

ording the the re
ipe in x4 and then proje
ting to the symmetri
algebra. We write the in
lusion and proje
tion as follows:�2(SsA)
Sr�sA
 ^r B
 ^s B
 ^s C
 ^r C#SsA
Sr�sA
SsA
 ^s B
 ^r�s B
 ^s B
 ^s C
 ^r�s C 
 ^s CjjSsA
 ^s B
 ^s C
Sr�sA
 ^r�s B
 ^r�s C
SsA
 ^s B
 ^s C#Ss(A
B
C)
Sr�s(A
B
C)
Ss(A
B
C)#Sr+s(A
B
C):The �rst two maps are inje
tive, the last one is surje
tive but not inje
tive and the problem isto understand whether its kernel may 
ontain the subspa
e we are interested in. For this weneed to understand the above maps in detail, whi
h are made of elementary maps that we writedown expli
itly.First, we have the map^r B ,! ^sB
 ^r�s Bf1^ � � �^ fr 7! XI=(i1<���<is) "(I; Î)fi1^ � � �^ fis 
 f̂�1^ � � �^ f̂�r�s ;with the following notation: Î = (̂�1 < � � � < �̂r�s) is the 
omplementary sequen
e to I in(1; : : : ; r), and "(I; Î) is the sign of the permutation (1; : : : ; r) 7! (I; Î) (a shu�e).Se
ond, we have the mapSsA
 ^s B
 ^s C �! Ss(A
B
C)es
 f1^ � � �^ fs
 g1^ � � �^ gs 7! X�2Ss "(�)(ef1g�(1)) � � �(efsg�(s)):In prin
iple, this information is enough to 
he
k if a given irredu
ible 
omponent of�2(SsA)
Sr�sA
 ^r B
 ^s B
 ^s C
 ^r Cis mapped to zero, or to an isomorphi
 
opy inside Sr+s(A
B
C). And we just need to testthis alternative on some highest weight ve
tor.Re
all the de
omposition formulas (e.g. [5℄):�2(SsV ) = Mj:oddS2s�j;jV�aV 
�bV = Mu+v=a+bv� min (a;b)�u;vV(4) Sa1;a2V 
SbV = M�+��ba2+��a1 Sa1+�;a2+�;b����V



12 J.M. LANDSBERG AND L. MANIVELSin
e we don't have a 
losed form formula for �a1+�;a2+�;b����(B
C), or more pre
isely thefa
tors in it of the form �u;vB
�u0;v0C we 
annot give a 
losed form formula for all the possiblerelevant fa
tors appearing in Sr+s(A
B
C). Even if we did have su
h a list, for any givenmodule, we would still have to 
he
k that the resulting map was nonzero before 
on
luding itwas present.We fo
us on 
ases that are of length three in A be
ause those of length two are inherited from�r(P1� Pb�1�P
�1) whi
h is treated in [4℄.For example, note that for s odd and r � 2s, Sr�s;s;sA � Ss;sA
Sr�sA with multipli
-ity one. Also ^rB
 ^s B 
ontains �r;sB with multipli
ity one. We prove that the moduleSr�s;s;sA
�r;sB
�r;sC is not mapped to zero in Sr+s(A
B
C) in many 
ases.We write down a highest weight ve
tor. The tensor produ
t f1^ � � �^ fr 
 f1^ � � �^ fs givesa highest weight ve
tor for �r;sB inside ^rB
 ^s B, where the fi de�ne a weight basis of Bsu
h that the ordering of the weights 
orresponds to the ordering of the indi
ies. Similarlyg1^ � � �^ gr
 g1^ � � �^ gs gives a highest weight ve
tor for �r;sC. To �nd a highest weightve
tor for Sr�s;s;sA inside Sr�sA
SsA
SsA we use Young symmetrizers [8℄. The symmetrizer
(r�s;s;s) applied to ea
h of the s fa
tors of A
A
A yields the highest weight ve
tor� = P�1;:::;�s2S3 "(�1) � � �"(�s)er�2s1 e�1(1) � � �e�s(1)
 e�1(2) � � �e�s(2)
 e�1(3) � � �e�s(3):where e1; e2; e3 is an ordered weight basis for A and �(�) denotes the sign of the permutation �.Considering the 
ontributions of the six di�erent permutations in S3, we get� = X�1+���+�6=s(�1)�2+�4+�6�s��er�2s+�1+�21 e�3+�42 e�5+�63 
 e�4+�51 e�1+�62 e�2+�33 
 e�3+�61 e�2+�52 e�1+�43 :where �s�� = � s�1� � � �� s�6�. Now we take the tensor produ
t of our three highest weight ve
torsand examine the tensor �0 that we get inside Sr+s(A
B
C). To show this tensor is nonzero,we 
he
k that the 
oeÆ
ient of(e1f1g1) � � �(e1fr�sgr�s)(e2f1gr) � � �(e2fsgr+1�s)(e3frg1) � � �(e3fr+1�sgs)is nonzero. The 
ontributions to this monomial in �0 is the sum of the 
ontributions from termsof the former�2s+�1+�21 e�3+�42 e�5+�63 fÎgĴ 
 e�4+�51 e�1+�62 e�2+�33 f1���sgJ 
 e�3+�61 e�2+�52 e�1+�43 fIg1���s;with some 
oeÆ
ient. The �rst (resp. se
ond, third) of the three terms in this produ
t will
ontribute to �0 by a produ
t of terms of the form (eifjgk), where for ea
h given i, the index kdes
ribes a set Ai (resp. Bi, Ci), withA1 [ A2 [A3 = ĴB1 [B2 [ B3 = JC1 [ C2 [ C3 = f1; : : : ; sg:To 
ontribute to our preferred monomial, we also need the 
onditionsA1 [ B1 [ C1 = f1; : : : ; r� sgA2 [ B2 [ C2 = f1; : : : ; sgA3 [ B3 [ C3 = fr� s+ 1; : : : ; rg:
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onsider the index j in the di�erent terms (eifjgk). We need j = k if k � r � s, andj = �k := r + 1� k otherwise. This leads to one more set of identities,A1 [ �A2 [ �A3 = ÎB1 [ �B2 [ �B3 = f1; : : : ; sg;C1 [ �C2 [ �C3 = I;where �A denotes the image of A by the map k 7! �k. Note that all these unions are betweenpairwise disjoint sets.The �rst two relations involving C3 imply that C3 = ;. Sin
e �B2 � f1; : : : ; sg, we dedu
ethat B2 = ;, hen
e C1 = A2. In parti
ular, �1 = �4 = �6 = 0. Sin
e also �B1 � f1; : : : ; sg, weget that A1 = A0 [ fs+ 1; : : : ; r� sg where A0 is the 
omplement to A2 [B1 inside f1; : : : ; sg.Comparing I and Î we dedu
e that �A3 = B1, hen
e A3 = �B1 and B3 = �A0 [ �A2. In parti
ular,I and J are determined by A0 and A2. Note that on
e we have I and J , we 
an easily 
omputethe signs "(I; Î) and "(J; Ĵ). The result is that"(I; Î)"(J; Ĵ) = (�1)(s+�2)(r�s+�2):We dedu
e that the total 
ontribution to our monomial isTs;r�2s := X�2+�3+�5=s(�1)�2+(s+�2)(r�s+�2)�s��2(r� 2s+�2)!�3!�5!�5!(�2+�3)!�3!(�2+ �5)!:Indeed, for a given � we have �s�� 
hoi
es for A0; A2, and on
e these are �xed, the number ofpermutations sending the ei's to the gk su
h that k 2 Ai is #A1!#A2!#A3! = (r�2s+�2)!�3!�5!,and so on.So what remains to prove is that Ts;r�2s 6= 0. Observe that sin
e s is odd, the produ
t(s+ �2)�2 is even. So(�1)�2+(s+�2)(r�s+�2) = � (�1)�2 for r � s even�1 for r � s odd:In parti
ular, Ts;r�2s is nonzero for r even. We are not able to prove all the remaining 
ases,but we are able to show:Lemma 5. The integerTs;t = 1(s!)2 X�+�+
=s(�1)� (�+ t)!(�+ �)!(�+ 
)!�!�!is nonzero for s; t odd and t � s.Proof. Write s = 2m+ 1.(s!)2Ts;t = � mXp=0 2m+1�(2p+1)X�=0 (2p+ 1 + t)!(2p+ 1 + �)!(2m + 1� �)!(2p+ 1)!(2p+ 1)! + mXp=0 2m+1�2pX�=0 (2p+ t)!(2p+ �)!(2m + 1 � �)!(2p)!(2p)!= � mXp=0f2m+1�(2p+1)X�=0 (2p+ 1 + t)(2p+ t)!(2p+ 1 + �)(2p+ �)!(2m + 1 � �)!(2p+ 1)(2p)!(2p+ 1)(2p)!� 2m+1�(2p+1)X�=0 (2p+ t)!(2p+ �)!(2m + 1 � �)!(2p)!(2p)! � (2p+ t)!(2m+ 1)!(2p)!(2p)!(2p)! g= � mXp=0f2m+1�(2p+1)X�=0 [ (2p+ t)!(2p+ �)!(2m + 1� �)!(2p)!(2p)! ( (2p+ 1 + t)(2p+ 1 + �)(2p+ 1)(2p+ 1) � 1)℄ � (2p + t)!(2m+ 1)!(2p)!(2p)!(2p)! g= � mXp=0 (2p+ t)!(2p)! f2m+1�(2p+1)X�=0 [ (2p+ �)!(2m + 1� �)!(2p+ 1)2(2p)! ((2p + 1)(t+ �) + t�)℄ � (2m+ 1)!g
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ase t � 2m + 1 this gives the result immediately just by looking at the � = 0 term inthe summation and noting it is not the only term. �We expe
t Ts;t to be always nonzero when s; t > 1 and both are odd, but were unable to proveit. Note that it would be suÆ
ient to prove the 
ase t = 1 if we 
ould show we always have thesame sign. Referen
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