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Abstract

We present a universal formula for the dimension of the Cartan powers of the adjoint
representation of a complex simple Lie algebra (i.e., a universal formula for the Hilbert functions
of homogeneous complex contact manifolds), as well as several other universal formulas. These
formulas generalize formulas of Vogel and Deligne and are given in terms of rational functions
where both the numerator and denominator decompose into products of linear factors with
integer coefficients. We discuss consequences of the formulas including a relation with Scorza
varieties.
© 2005 Elsevier Inc. All rights reserved.
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1. Statement of the main result

Vogel [17] defined a tensor category D′ intended to be a model for a universal simple
Lie algebra. His motivation came from knot theory, as D′ was designed to surject
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onto the category of Vassiliev invariants. While Vogel’s work remains unfinished (and
unpublished), it already has consequences for representation theory.

Let g be a complex simple Lie algebra. Vogel derived a universal decomposition of
S2g into (possibly virtual) Casimir eigenspaces, S2g = C⊕Y2(�)⊕Y2(�)⊕Y2(�) which
turns out to be a decomposition into irreducible modules. If we let 2t denote the Casimir
eigenvalue of the adjoint representation (with respect to some invariant quadratic form),
these modules, respectively, have Casimir eigenvalues 4t − 2�, 4t − 2�, 4t − 2�, which
we may take as the definitions of �, �, �. Vogel showed that t = � + � + �. He
then went on to find Casimir eigenspaces Y3(�), Y3(�), Y3(�) ⊂ S3g with eigenvalues
6t − 6�, 6t − 6�, 6t − 6� (which again turn out to be irreducible), and computed their
dimensions through difficult diagrammatic computations and the help of Maple [17]:

dim g = (�− 2t)(�− 2t)(�− 2t)

���
,

dim Y2(�) = − t (�− 2t)(�− 2t)(�+ t)(�+ t)(3�− 2t)

�2��(�− �)(�− �)
.

dim Y3(�) = − t (�− 2t)(�− 2t)(�− 2t)(�+ t)(�+ t)(t + �− �)(t + �− �)(5�− 2t)

�3��(�− �)(�− �)(2�− �)(2�− �)

and the formulas for Y2(�), Y2(�) and Y3(�), Y3(�) are obtained by permuting �, �, �.
These formulas suggest a completely different perspective from the usual description
of the simple Lie algebras by their root systems and the Weyl dimension formula
that can be deduced for each particular simple Lie algebra. The work of Vogel raises
many questions. In particular, what remains of these formulas when we go to higher
symmetric powers? If such formulas do exist in general, do we need to go to higher and
higher algebraic extensions to state them, as Vogel suggests? Vogel describes modules
in the third tensor power of the adjoint representation that require an algebraic extension
for their dimension formulas.

For the exceptional series of simple Lie algebras, explicit computations of Deligne,
Cohen and de Man showed that the decompositions of the tensor powers are well-
behaved up to degree 4, after which modules appear whose dimensions are not given
by rational functions whose numerator and denominator are products of linear factors
with integer coefficients (see [7,13] for proofs of such types of formulas). In both the
works of Vogel and Deligne et al., problems arise when there are different irreducible
modules appearing in a Schur component with the same Casimir eigenvalue.

In this paper, we show that some of the phenomena observed by Vogel and Deligne
do persist in all degrees. Let �0 denote the highest root of g, once we have fixed a
Cartan subalgebra and a set of positive roots.

Theorem 1.1. Use Vogel’s parameters �, �, � as above. The kth symmetric power of
g contains three (virtual) modules Yk(�), Yk(�), Yk(�) with Casimir eigenvalues 2kt −
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(k2 − k)�, 2kt − (k2 − k)�, 2kt − (k2 − k)�. Using binomial coefficients defined by(
y+x

y

) = (1+ x) · · · (y + x)/y!, we have

dim Yk(�) = t − (k − 1
2

)
�

t + �
2

(
− 2t

� −2+k

k

)( �−2t
� −1+k

k

)( �−2t
� −1+k

k

)
(
−�

�−1+k

k

)(
− �

�−1+k

k

) ,

and dim Yk(�) and dim Yk(�) are obtained by exchanging the role of � with � and �,
respectively.

The modules Yk(�), Yk(�) are described in Section 6. For Yk(�), we have the fol-
lowing refinement:

Theorem 1.2. Parametrize the complex simple Lie algebras as follows:

Series Lie algebra � � �

SP sp2n −2 1 n+ 2

SL sln −2 2 n

SO son −2 4 n− 4

EXC −2 a + 4 2a + 4

sl3 −2 3 2

g2 −2 10/3 8/3

so8 −2 4 4

f4 −2 5 6

e6 −2 6 8

e7 −2 8 12

e8 −2 12 20

F3r −2 a a(r − 2)+ 4

Then Yk(�) is the kth Cartan power g(k) of g (the module with highest weight k�0)
and

dim g(k) = �+ �− 3+ 2k

�+ �− 3

(
�+�/2−3+k

k

) (
�+�/2−3+k

k

) (
�+�−4+k

k

)
(−1+�/2+k

k

) (−1+�/2+k
k

) .

In the exceptional series EXC, we have a = −1,−2/3, 0, 1, 2, 4, 8. Here F3r denotes
the two-parameter series of Lie algebras in the generalized third row of Freudenthal’s
magic chart, gr (H, A) with a = 1, 2, 4 and r �3, which contains sp2r , sl2r , so4r , and
e7 when r = 3 [13]. We call F33 the subexceptional series.
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Fig. 1. Vogel’s plane.

The parameters (�, �, �) may be thought of as defining a point in P2/S3 which we
refer to as Vogel’s plane (Fig. 1). We say a collection of points lie on a line in Vogel’s
plane if some lift of them to P2 is a colinear set of points. The classical series sl, so,
sp all lie on lines by the description above and one can even make the points of so
and sp lie on the same line. The algebras in the exceptional series all lie on a line,
as do the algebras in each of the generalized third rows of Freudenthal’s magic chart.
Through each classical simple Lie algebra there are an infinite number of lines with at
least three points. Distinguished among these are the above-mentioned lines. For each
of these, there are natural inclusions of the Lie algebras as one travels north-east along
the line.

Dotted diagonal lines correspond to F3r .

Remark 1.3. The reason so and sp are split into two different lines is that we require
Yk(�) to be the Cartan powers of the adjoint representation. The formula for dim g(k)

applied to the sp series situated as (−2, 4,−2n) yields the dimensions of the modules
Yk(�).

1.1. Overview

In §2–4 we prove the main result, which is based on a careful analysis of the five step
grading of a simple Lie algebra defined by the highest root. In §5 we show how this
relates to other Z and Z2-gradings and give a dimension formula for dim g(k)Y2(�)(l).
In §6 we describe the modules Yk(�), Yk(�) explicitly. We show that the highest weight
of Yk(�) is the sum of k orthogonal long roots, and give geometric interpretations
of them related to Scorza varieties. We conclude with an infinite series of dimension
formulas for the Cartan powers of the Yk(�). These formulas show that the modules
Yk(�) and Yk(�) should be considered as universal in a very strong sense. Giving a
precise meaning to that last sentence is an interesting open problem.
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1.2. Further questions and comments

Remarkably, the numbers � and � also appear in [12] in connection with the McKay
correspondence. The numbers h, h′ are exponents of g. For g simply laced, they coincide
with the intermediate exponents of the functions z(t) in [12] having a linear factor.
Why?

The formulas above, in addition to having zeros and poles, have indeterminacy loci.
For example, the point corresponding to so8 is in the indeterminacy locus of dim Y2(�).
For so8, Y2(�)⊕Y2(�) is the sum of the three isomorphic 35 dimensional representa-
tions 2�1, 2�3, 2�4. We obtain dim Y2(�) = 105 (and dim Y2(�) = 0) when considering
so8 as a member of the exceptional series and dim Y2(�) = 70 (and dim Y2(�) = 35)
when considering it as an element of the orthogonal series. The same phenomenon
occurs for sl2 which is also in the indeterminacy loci of dim Y2(�), dim Y2(�). While
these remarks apply already to Vogel’s results (although we are unaware of them being
pointed out before) with the increasing number of points in the indeterminacy loci as
k becomes large, it might be interesting to address this issue in more detail.

We remark that, for k sufficiently negative, the formulas above make sense and give
rise to dimensions of virtual modules. For example, in the exceptional and subexcep-
tional series, if one sets K = 2t/� + 1 − k then dim YK(�) = −dim Yk(�) and the
dimensions for k between −1 and 2t/� are zero. Similar phenomena occur for the
classical series.

Viewing the same equations with a different perspective, we mention the work of
Cvitanovic [4,5], El Houari [9,10] and Angelopolous [1] which preceeded the work
of Vogel and Deligne. Their works contain calculations similar to Vogel’s, but with
a different goal: they use the fact that dimensions of vector spaces are integers to
classify complex simple Lie algebras, and to organize them into series, using Casimirs
and invariants of the symmetric algebra to obtain diophantine equations.

If one restricts to the exceptional line, Cohen and deMan have observed that (just
using a finite number of dimension formulae), the only value of a nontrivially yielding
non-negative integers is, with our parametrization, a = 6. We account for this in [15]
with a Lie algebra which is intermediate between e7 and e8. It is an exceptional
analogue of the odd symplectic Lie algebras. In fact, the odd symplectic groups appear
to satisfy the formulas above when one allows � to be a half-integer in the symplectic
line. What other parameter values yield integers in all the formulas? Do the intermediate
Lie algebras considered in [15] belong in Vogel’s plane?

2. The role of the principal sl2

2.1. How to use the Weyl dimension formula

A vector X�0 ∈ g�0
belongs to the minimal (non-trivial) nilpotent orbit in g. We can

choose X−�0 ⊂ g−�0
such that

(X�0 , X−�0 , H�0 = [X�0 , X−�0 ])
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is a sl2-triple in g, generating a subalgebra of g which we denote by sl∗2. This is the
principal sl2. The semi-simple element H�0 defines a grading on g according to the
eigenvalues of ad(H�0):

g = g−2⊕ g−1⊕ g0⊕ g1⊕ g2.

The line g2 (resp. g−2) is generated by X�0 (resp. X−�0 ). The subalgebra g0 is reductive,
and splits into the sum of the line generated by H�0 and the centralizer h of the sl2-
triple. The h-module g1 is the sum of the root spaces g�, where � belongs to the set
�1 of positive roots such that �(H�0) = 1. Its dimension is twice the dual Coxeter
number of g, minus four [11].

Let � denote the half-sum of the positive roots. By the Weyl dimension formula,

dim g(k) = (�+ k�0, �0)

(�, �0)

∏
�∈�1

(�+ k�0, �)

(�, �)
.

We thus need to analyze the distribution of the values of (�, �) for � ∈ �1.

2.2. The Z2-grading

To do this, we slightly modify our grading of g. Let V = g1 be considered as an
irreducible h× �-module, where � is the automorphism group of the Dynkin diagram
of g. As an h-module, V is irreducible except in the case g = sln where h = gln−2 and
V = V�1 ⊕V�n−3 as an h-module.

The space V is endowed with a natural symplectic form � defined, up to scale, by
the Lie bracket g1 × g1 → g2. Thus, for each root � ∈ �1, �0 − � is again a root in
�1. Consider U = g�−�0

⊕ g� ⊂ g−1⊕ g1. U is stable under the adjoint action of sl∗2,
and is a copy of the natural two-dimensional sl2-module. As a sl∗2×h-module, we thus
get a Z2-grading of g as

g = geven⊕ godd = sl∗2 × h⊕U ⊗V.

The Lie bracket defines an equivariant map

∧ 2(U ⊗V ) = S2U ⊗ ∧2 V ⊕ ∧ 2U ⊗ S2V

↓ id⊗� ↓ �

sl∗2 ⊕ h.

Here we use the natural identifications sl∗2 = S2U , and ∧2U = C. Moreover, the
fact that h preserves the symplectic form � on V implies that the image of h in
End(V ) 
 V ⊗V must be contained in S2V 
 S2V ∗. The map �, up to scale, is dual
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to that inclusion.

Series g h V v

SL sln gln−2 Cn−2⊕ (Cn−2)∗ n− 2
SO son sl2 × son−4 C2⊗Cn−4 n− 4
SP sp2n sp2n−2 C2n−2 n− 1
EX g2 sl2 S3C2 2

so8 sl2 × sl2 × sl2 C2⊗C2⊗C2 4
f4 sp6 ∧ 〈3〉C6 7
e6 sl6 ∧ 3C6 10
e7 so12 V�6 = �+ 16
e8 e7 V�7 = z2(O) 28

Note that sl∗2 × h is a reductive subalgebra of the maximal rank of g. We choose a
Cartan subalgebra of g, by taking the direct sum of CH�0 , and a Cartan subalgebra
of h. The roots of g will then be the root �0 = 2�0 of sl∗2, the roots of h and the
weights of U ⊗V , i.e., the sums ±�0 + � with � a weight of V. We can choose a set
of positive roots of h, and if we choose the direction of �0 to be very positive, the
positive roots of g will be �0, the positive roots of h, and the weights �0 + � for �
any weight of V. Note that since V is symplectic, the sum of these weights must be
zero. Write 2v = dim V , we have

2� = 2�h + (1+ v)�0

and

�1 = {�0 + � | � a weight of V }.

The set of simple roots of g is easily described. If g is not of type A, denote the
highest weight of the irreducible h-module V by � so that its lowest weight is −�. For
type A, denote the highest weights by �1, �2, The simple roots of g are the simple
roots of h union �0−� (�0−�1, �0−�2 for type A). In particular the Dynkin diagram
of g is the diagram of h with a vertex attached to the simple roots � of g such that
(�, �) 
= 0, with the obvious analogue attaching two vertices for type A.

Remark. If we had chosen the directions of h to be much more positive than that of
sl∗2, we would have obtained a different set of positive roots and, except for g = g2,
the highest root �̃ of h would have been the highest root of g (here we suppose that h
itself is simple; otherwise we can take the highest root of any simple factor of h). We
suppose in the sequel that we are not in type g2: then �0 and �̃, considered as roots
of g, are both long.
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For type C, the root �0+� is short and it is long in all other cases. This is because,
except in type A which can be checked separately, �0 = k�i for some fundamental
weight �i , and �0 + �, being the second highest root, must equal k�i − �i . But then,

(k�i − �i , k�i − �i ) = (k�i , k�i )+ (1− k)(�i , �i ).

We conclude that �0 + � is long iff the adjoint representation is fundamental, i.e., iff
we are not in type C. Then

(�0 + �, �0 + �) = (�0, �0) = (�̃, �̃) = 4

3
(�, �).

Another interesting relation can be deduced from the fact that for any simple root � of
g, we have (2�, �) = (�, �), since � is the sum of the fundamental weights. Applying
this to � = �0 − �, we get

(�+ 2�h, �) = 2v + 1

4
(�0, �0).

Note that the scalar form here is the Killing form of g, more precisely the dual of its
restriction to the Cartan subalgebra. Restricted to the duals of the Cartan subalgebras
of sl∗2 or h, we can compare it to their Killing forms. Suppose that h = h1 × · · · × hm,
and V = V1⊗ · · ·⊗ Vm for some hi-modules Vi .

To simplify notation in the calculations that follow we use the normalization that the
Casimir eigenvalue of every simple Lie algebra is 1, i.e., we use for invariant quadratic
form the Killing form K(X, Y ) = trace(ad(X) ◦ ad(Y )).

Then for X ∈ sl∗2 and Y ∈ hi , we have

tracegad(X)2 = tracesl∗2ad(X)2 + 2vtraceUX2 =
(

1+ v

2

)
tracesl∗2ad(X)2,

tracegad(Y )2 = tracehi
ad(Y )2 + 2

dim V

dim Vi

traceVi
Y 2 = (1+ 4veVi

)tracehad(Y )2,

where eVi
is related to the Casimir eigenvalue cVi

of Vi by the identity eVi
= cVi

dim hi
.

Taking duals, we deduce that

(�0, �0) = 2

v + 2
(�0, �0)sl∗2 =

1

v + 2
,

(�̃, �̃)h = 4

3
(�, �)h = 1+ 4veV

v + 2
.
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Note that the dual Coxeter number of a simple Lie algebra is the Casimir eigenvalue
of the Lie algebra divided by the length of the longest root. We conclude that the dual
Coxeter number ȟ of g is ȟ = v + 2, while the dual Coxeter number of h, which
we denote by h, is equal to 1+4veV

v+2 . Remember that the normalization of the Killing
form is such that (�̃ + 2�h, �̃)h = 1, so that (2�h, �̃)h = (h − 1)(�̃, �̃)h, and thus
(2�h, �̃) = (h− 1)(�̃, �̃) as well.

3. The Casimir eigenvalues of S2g

3.1. A nontrivial component in the symmetric square of g

Vogel proved that S2g can contain at most four Casimir eigenspaces (allowing the
possibility of zero, or even virtual eigenspaces). Two irreducible components are ob-
vious: the Cartan square, whose highest, weight is 2�0, and the trivial line gener-
ated by the Killing form. We identify, for g not of type A1 (i.e., h 
= 0), another
component.

Proposition 3.1. The symmetric square S2g has a component Y2(�) of highest weight
�0 + �̃.

Proof. From our Z2-grading g = sl2 × h⊕U ⊗V , we deduce that

S2g = S2sl2⊕ S2h⊕ (S2U ⊗ S2V )⊕ (∧2U ⊗ ∧2 V )⊕ (sl2⊗ h)
⊕ (sl2⊗U ⊗V )⊕ (U ⊗ h⊗V ).

All the weights here are of the form k�0 + � for � in the weight lattice of h, and we
will call the integer k the level of the weight. The maximal level is four, the unique
weight of level four is 2�0, the highest weight of S2sl2. The corresponding weight
space, of dimension one, generates the Cartan square of g.

We will check that once we have suppressed the weights of the Cartan square with
their multiplicities, the highest remaining weight is �0 + �̃, which has level two.

At level three, we only get weights coming from sl2⊗U ⊗V . More precisely, let
e, f be a basis of U diagonalizing our Cartan subalgebra, in such a way that the semi-
simple element H of our sl2-triple has eigenvalues 1 on e, −1 on f , while X = f ∗ ⊗ e

and Y = e∗ ⊗ f . Then a weight vector of level three in sl2⊗U ⊗V is of the form
X⊗ e⊗ v, for some weight vector v ∈ V , and such a weight vector is contained in
g.X2 ⊂ S2g, and hence in the Cartan square of g. It is equal, up to a nonzero constant,
to (f ⊗ v).X2. We conclude that all weight vectors of level three belong to the Cartan
square of g.

We turn to level two. First observe that �0 + �̃ has multiplicity two inside S2g. It
is the highest weight of sl2⊗ h, which appears twice in the decomposition of S2g
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above: once as such, and once in a slightly more hidden way, as a component of
S2U ⊗ S2V . Indeed, recall that S2U and sl2 are equal, and that we defined a nontrivial
map � : S2V → h. We check that �0 + �̃ has only multiplicity one inside the Cartan
square of g, and our claim will follow.

Note that this Cartan square is U(n−)X2, where n− ⊂ g is the subalgebra generated
by the negative root spaces and U(n−) its universal enveloping algebra. As a vector
space, this algebra is generated by monomials on vectors of negative weight, hence of
nonpositive level. How can we go from X2, which is of level four, to some vector
of level two? We have to apply a vector of level −2, or twice a vector of level −1.
For the first case, the only possible vector is Y , which maps X2 to XH ∈ S2sl2.
For the second case, we first apply some vector f ⊗ v, with v ∈ V : this takes X2 to
X⊗ (e⊗ v), up to some constant. Then we apply another vector f ⊗ v′, and obtain,
again up to some fixed constants,

(e⊗ v′)(e⊗ v)+X⊗ �(vv′)+ �(v, v′)XH.

The first component belongs to S2(U ⊗V ), the second one to sl2⊗ h, and the third
one to S2sl2. The contribution of the first component to sl2⊗ h ⊂ S2(U ⊗V ) is
e2⊗ �(vv′) = X⊗ �(vv′). We conclude that the Cartan square of g does not contain
sl2⊗ h⊕ sl2⊗ h ⊂ S2U ⊗ S2V ⊕ sl2⊗ h, but meets it along some diagonal copy of
sl2⊗ h. This implies our claim. �

3.2. Interpretation of Vogel’s parameters

It is now easy to compute the Casimir eigenvalues of our two nontrivial components
of S2g:

CY2(�) = (2�0 + 2�, 2�0) = 2
v + 3

v + 2
,

CY2(�) = (�0 + �̃+ 2�, �0 + �̃) = v + h+ 2

v + 2
.

Corollary 3.2. Let h′ = v − h. Normalize Vogel’s parameters for g 
= g2, such that
� = −2. Then

� = h′ + 2, � = h+ 2, t = v + 2 = ȟ.

Proof. Vogel’s parameters are defined by the fact that, with respect to an invariant
quadratic form on g, the Casimir eigenvalue of g is 2t , the nonzero Casimir eigenvalues
of S2g are 2(2t − �), 2(2t − �), 2(2t − �), and t = � + � + �. We have been working
with the Killing form, for which the Casimir eigenvalue of g is 1. Rescaling t to be
v + 2 and plugging into the formulas for CY2(�), CY2(�)we obtain the result. �

Remark. Note that this does not depend on the fact that h is simple. If it is not simple,
we can choose the highest root for any simple factor and get a corresponding component
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of S2g, whose Casimir eigenvalue is given as before in terms of the dual Coxeter num-
ber of the chosen factor. This implies that we cannot have more than two simple factors,
and that when we have two, with dual Coxeter numbers h1 and h2, then v = h1 + h2.
This actually happens in type B or D. (Beware that this should be understood up to the
symmetry of the Dynkin diagram: in type D4 we get three different components in S2g,
but they are permuted by the triality automorphisms and their sum must be considered as
simple.)

If h is simple, the formula (�+ 2�h, �) = 2v+1
4 (�̃, �̃) gives cV = 2v+1

4h
, and we get

dim h = cV

eV

= v(2v + 1)

h′ + 2
.

In general, Vogel’s dimension formula is

dim g = d(h, h′) = (h+ h′ + 3)(2h+ h′ + 2)(h+ 2h′ + 2)

(h+ 2)(h′ + 2)
.

We have the following curious consequence. Parametrize g by h and h′. We ask: What
values of h and h′ can give rise to a g such that h is simple and V is irreducible? In this
case h is parametrized by h′ and h−h′. Thus, d(h, h′) = d(h′, h−h′)+ 3+ 4(h+h′),
which is equivalent to the identity (h+ 1)(h− 2h′ + 2) = 0. Thus, such g must be in
the symplectic series h = −1, or the exceptional series h = 2h′ − 2!

3.3. Interpretation of h′

Suppose that we are not in type A, so that the adjoint representation is supported
on a fundamental weight �. Let �ad = �0 − � denote the corresponding simple root
dual to �. Since the highest root �̃ of h is not the highest root of g, one can find a
simple root � such that �̃+� is again a root, and the only possibility is � = �ad . Thus,
�̃+ �ad and by symmetry 	 = �0 − �̃− �ad both belong to �1. Suppose that V = V�
is fundamental, and let �� be the corresponding simple root.

Proposition 3.1. 
 = 	− �ad − �� is the highest root of g orthogonal to �0 and �̃.

Proof. We first prove that 
 is a root. First note that

(	, ��) = (�− �̃, ��) = (��, ��)/2− (�̃, ��).

If we are not in type C, then (�̃, ��) = 0. Indeed, �̃ is a fundamental weight and ��
is a simple root. So if this were nonzero we would get �̃ = �, which cannot be since
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we know that � is minuscule. Thus, (	, ��) > 0 and 	′ = 	− �� is a root. Moreover,

(	, �ad) = (�0, �0)/4− (�, �)+ (�, �̃) = −(�0, �0)/2+ (�̃, �̃)�(H�̃)/2,

where �(H�̃) is a positive integer (in fact equal to one, since we know that V is
minuscule). Thus, (	, �ad)�0 and (	′, �ad)� − (��, �ad) = (��, �) > 0. We conclude
that 	′ − �ad = 
 is a root.

Since 
 = 2� − �̃ − ��, it is clearly orthogonal to �0. Moreover, using again that
(�̃, ��) = 0 if we are not in type C, we have (
, �̃) = (2�− �̃, �̃) = 0, since we have
just computed that (�, �̃) = (�̃, �̃)/2. To conclude that 
 is the highest root orthogonal
to both �0 and �̃, we use the following characterization of the highest root of a root
system.

Lemma 3.2. The highest root of an irreducible root system is the only long root �
such that (�, �)�0 for any simple root �.

We apply this lemma to 
 = 2�− �̃− �� = −�̃−∑�
=��
c�,����, where � belongs

to the set of simple roots and c�,�� is the corresponding Cartan integer. Since � 
= ��,
we know that c�,�� �0, and hence (
, �)�0 for every simple root � 
= �ad .

It remains to check whether 
 is long. Remember that (�, �) = 3
4 (�̃, �̃), (�̃, ��) = 0

and (�̃, �) = (�̃, �̃)/2. We compute that (
, 
) = 2(�̃, �̃)− (��, ��)�(�̃, �̃). Therefore,

 is long (and we must have equality, so that �� is also long). �

Note that, say in the simply laced case,

(2�, 
) = (2�, �0)− (2�, �̃)− 3(�0, �0) = (v + 1− h+ 1− 3)(�0, �0)

= (h′ − 1)(�0, �0).

We have therefore isolated three roots �0, �̃, 
 of heights v+1, h−1, h′−1, respectively.

4. Proof of the main result

4.1. The weights of V and their heights

Our next observation concerns the distribution of the rational numbers (�h, �), when
� describes the set of weights of V . A natural scale for these numbers is the length
(�̃, �̃) of the long roots. We denote by Sp the string of numbers (p/2− x)(�̃, �̃)/2, for
x = 0, 1, . . . , p.

Proposition 4.1. The values (�h, �), for � a weight of V , can be arranged into the
union of the three strings Sv−1, Sh−1, Sh′−1.
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Our main theorem easily follows from this fact: a set of weights � in V contributing
to a string Sp of values of (�h, �) gives a set of roots � = �0 + � in �1 with

(�̃, �) = (�0, �0)/2,

(�, �) = 1+ v

2
(�0, �0)/2+ (�h, �) =

(
1+ v

2
+ p/2− x

)
(�0, �0)/2, 0�x�p.

The contribution of this subset of �1 to the Weyl dimension formula is therefore

Cp =
∏
�

(�+ k�̃, �)

(�, �)
=

p∏
x=0

1+ v + p

2
− x + k

1+ v + p

2
− x

=

(
v+p+1

2 +k

k

)
(

v−p−1
2 +k

k

) .

Our proof of the proposition is a case-by-case check. One has to be careful about
the case where h′�0, since the string Sh′−1

2
is no longer defined. Since for p > 0,

we have C−p = C−1
p+1, we should interpret S−p as suppressing a string Sp+1. We then

easily check the rather surprising fact that, interpreted that way, the proposition also
holds for h′ < 0.

4.2. Relation with Knop’s construction of simple singularities

Holweck observed that the fact that we can arrange the values of (�, �), for � ∈ �1,
in no more than three strings, has a curious relation with the work of Knop on simple
singularities. Knop proved [11] that if Y⊥ ⊂ Pg is a hyperplane Killing orthogonal to
a regular nilpotent element Y ∈ g, the intersection of this hyperplane with the adjoint
variety Xad ⊂ Pg (the projectivization of the minimal nontrivial nilpotent orbit) has an
isolated singularity which is simple, of type given by the subdiagram of the Dynkin
diagram of g obtained from the long simple roots.

We can choose Y = ∑�∈� X�, where � denotes the set of simple roots and X� is
a generator of the root space g�. The orthogonal hyperplane contains the lowest root
space g−�̃ ∈ Xad . Let P denote the parabolic subgroup of the adjoint group of g,
which stabilizes g�̃, and let U denote its unipotent radical. Being unipotent, U can be
identified, through the exponential map, with its algebra u, a basis of which is given
by the root spaces g� with � ∈ �1∪{�0}. The scalar product with Y defines on the Lie
algebra u the function f (X) = K(Y, exp(X)X�̃). The quadratic part of this function is

q(X, X′) = 1
2K(Y, ad(X′)ad(X)X�̃) = 1

2K(ad(X)Y, ad(X′)X�̃).

The kernel of this quadratic form thus contains the kernel of the map X �→ [Y, X],
X ∈ u.
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Suppose for simplicity that g is simply laced. Let

gl =
⊕

�∈�1∪{�0}, (�,�)=l

g�.

Then ad(Y ) maps gl to gl+(�̃,�̃)/2. In particular, the kernel of ad(Y )|gl
has dimension

at least dim gl − dim gl+(�̃,�̃)/2. Since gv = g�0
is one-dimensional, we deduce that for

all l,

dim gl �1+ corank(q).

The maximal dimension of gl is the minimal number of strings we need to arrange the
values of (�, �) for � ∈ �1. This number is bounded by three because, since f defines
a simple singularity, the corank of its quadratic part must be at most two.

Note that in Knop’s work there is no direct proof of this fact. It follows from a
numerical criterion and a trick attributed to Saito [11, Lemma 1.5].

5. Gradings

The highest roots �0 and �̃ both induce 5-gradings on g. Being orthogonal, they
induce a double grading

gij = {X ∈ g, [H�0 , X] = iX, [H�̃, X] = jX}.

Proposition 5.1. With the normalization t = ȟ, for g of rank at least three, the dimen-
sions of the components of this double grading are given by the following diamond:

1
� 2�− 8 �

1 2�− 8 ∗ 2�− 8 1
� 2�− 8 �

1

Proof. Let gij denote the dimension of gij . Since the dual Coxeter number of g is t ,
the dimension of the positive part of the 5-grading of g is 2g11 + g01 + 1 = 2t − 3 =
2� + 2� − 7. Since the dual Coxeter number of h is h, the dimension of the positive
part of the 5-grading of h is g01 + 1 = 2h− 3 = 2�− 7. Hence the claim. �

Corollary 5.2. With the normalization t = ȟ, the integer � is the number of roots � in
�1 such that �̃+ � is still a root.

Proof. Let � ∈ �1 be such that g� ⊂ g11. This means that �(H�̃) = 1. Then �∗ = �0−�
is also a root, and �∗(H�̃) = −1; thus s�̃(�

∗) = �̃+ �∗ is a root. Conversely, if �̃+ �∗



J.M. Landsberg, L. Manivel / Advances in Mathematics 201 (2006) 379–407 393

is a root, (�̃+ �∗)(H�̃) = 2+ �∗(H�̃), as well as �∗(H�̃), belongs to {−2,−1, 0, 1, 2},
and hence �∗(H�̃) = −1 and we can recover � ∈ �1. The g2 case may be verified
directly. �

Let g∗00 ⊂ g00 denote the common centralizer of X�0 and X�̃. We have g00 =
g∗00⊕CH�0 ⊕CH�̃.

Proposition 5.3. g11 is endowed with a g∗00-invariant nondegenerate quadratic form.

Proof. For Y, Z ∈ g11, let

Q(Y, Z) = K([X�̃, Y ], [X−�0 , Z]).

This bilinear form is obviously g∗00-invariant. We check whether it is symmetric:

Q(Y, Z) = K(X�̃, [Y, [X−�0 , Z]])
= K(X�̃, [Z, [X−�0 , Y ]])+K(X�̃, [X−�0 , [Y, Z]])
= Q(Z, Y )+ �(Y, Z)K(X�̃, H�0)

= Q(Z, Y ).

Recall that K(g�, g�) 
= 0 if and only if �+ � = 0. To prove that Q is nondegenerate,
we must therefore check whether for each root space g� in g11, �̃+ � is a root—this
follows from the corollary above. �0 − (�̃ + �) is also a root—this follows from the
fact that �̃+ � is in �1. �

We thus get an invariant map g∗00 → so�, which turns out to be surjective. We can
thus write g00 = C2×so�× k for some reductive subalgebra k of g. Our double grading
of g takes the form

C

C� U2�−8 C�

C U2�−8 C2 × so� × k U2�−8 C

C� U2�−8 C�

C

Note that U is a symplectic k-module. Now, consider the 5-step simple grading that
we obtain by taking diagonals. Since so�⊕C�⊕C�⊕C = so�+2, we get

g = C�+2⊕V 4�−16⊕ (C× so�+2 × k)⊕V 4�−16⊕C�+2.
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Remarkably, this induces a very simple Z2-grading

g = (so�+4 × k)⊕W 8�−32.

The subalgebra k and the module W 8�−32 are given by the following table:

� g k so�+4 W

1 sp2n sp2n−4 so5 = sp4 A4⊗B2n−4

2 sln gln−4 so6 = sl4 A∗4⊗Bn−4⊕A4⊗B∗n−4

4 son son−8 so8 A8⊗Bn−8

5 f4 so9 �

6 e6 C so10 �+ ⊕�−
8 e7 sl2 so12 A2⊗�+

12 e8 so16 �+
a F3G(a, r) F3G(a, r − 2) soa+4 C8a(r−2)

5.1. More dimension formulas

Recall from Proposition 3.1 that Y2(�) has the highest weight �̃ + �0. Therefore,
the diamond of Proposition 5.1 also gives the number of roots having a given scalar
product with the highest weights of g and Y2(�). From Corollary 4.1, we know the
values of (�, �) when � describes the roots in �1. Among these, the � positive roots
from g1,−1 (and g1,1, symmetrically) contribute a string of length � − 1, the middle
point having multiplicity two (just like the weights of the natural representation of so�,
in accordance with Proposition 5.3). Finally, since g0,1 is part of the 5-step adjoint
grading of h, its contribution can be described by Proposition 4.1 with the pair h, h′
changed into h′, h− h′. Using the Weyl dimension formula, we get

Theorem 5.4. The dimensions of the Cartan products of powers of g and Y2(�) are
given by the universal formula

dim g(k)Y2
(l) = F(�, �, k, l)A(�, �, k + l)B(�, �, l)C(�, �, k + 2l)C(�, �, k − �+ 3)

with

F(�, �, k, l) = (�+ �− 3+ 2k + 2l)(�− 3+ 2l)(�/2+ �− 3+ k + 2l)(�/2+ k)

(�+ �− 3)(�− 3)(�/2+ �− 3)�/2
,

A(�, �, k) =
(

�+�/2−3+k
k

) (
�+�/2−4+k

k

) (
�−3+k

k

)
(

�/2+k
k

) (−1+�+k
k

) (−1+�/2+k
k

) ,



J.M. Landsberg, L. Manivel / Advances in Mathematics 201 (2006) 379–407 395

B(�, �, k) =
(

�−�/2−3+k
k

) (
�/2+�/2−3+k

k

) (
�−4+k

k

)
(

�/2−1+k
k

) (
�/2−�/2−1+k

k

) ,

C(�, �, k) =
(

�+�−4+k
k

)
(

�−3+k
k

) .

6. The modules Yk(�) and Yk(�)

For each simple Lie algebra g we have obtained a general formula for the dimension
of its kth Cartan power as a rational function of �, �, �, symmetric with respect to �
and �. Following Vogel, the three numbers should play a completely symmetric role,
and by permutation we should get the dimensions of (virtual) g-modules Yk(�) and
Yk(�). We first check whether this is indeed the case. The formula predicts that these
modules must be zero when k becomes large, but an interesting pattern shows up in
the classical cases.

6.1. Identification

The formula for the dimension of Yk(�) is

dim Yk(�) = 2�− (2k − 3)�− 4

2�− (k − 3)�− 4

k∏
i=1

×(2�− (i − 3)�− 2)(2�− (i − 3)�− 4)((�− (i − 3)�− 4)

i�((i − 1)�+ 2)(�− (i − 1)�)
.

When k is small enough, Yk(�) is an irreducible module whose highest weight is
given by Proposition 6.1 below. But the formula above may give a nonzero integer
when k is too big for the hypothesis of this proposition to hold. We check case by
case whether, nevertheless, this integer is still the dimension of an irreducible module,
or possibly the opposite of the dimension of an irreducible module. This means that
Yk(�) should be interpreted as a virtual module, which is a true module for small
k, possibly the opposite of a module for intermediate values of k, and zero for k

sufficiently large. In the second situation, we put a minus sign before the highest
weight of the corresponding module in the lists below.

a. Yk(�) for sp2l (note that we have the fold of sl2l+2):

k 0 1 2 . . . l l+1,l+2 l+3 . . . 2l+2 2l+3 �2l+4

Yk(�) C 2�1 2�2 · · · 2�l 0 −2�l · · · −2�1 C 0
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b. Yk(�) for sll+1, for l = 2m− 1 odd and l = 2m even, respectively:

k 0 1 · · · m−1 m

Yk(�) C �1 +�2m−1 · · · �m−1 +�m+1 2�m

m+1 m+2 · · · 2m+1 2m+2 � 2m+3

−2�m −(�m−1 +�m+1) · · · −(�1 +�m) −C 0

k 0 1 . . . m m+1

Yk(�) C �1 +�2m · · · �m +�m+1 0
m+2 . . . 2m+1 2m+2 � 2m+3

−(�m +�m+1) · · · −(�1 +�2m) −C 0

c. Yk(�) for so2l+1, for l = 2m− 1 odd and l = 2m even, respectively:

k 0 1 · · · m−1 m m+1 · · · l=2m−1 � l+1

Yk(�) C �2 · · · �2m−2 2�2m−1 �2m−3 · · · �1 0

k 0 1 · · · m−1 m m+1 · · · l=2m � l+1

Yk(�) C �2 · · · �2m−2 2�2m �2m−1 · · · �1 0

d. Yk(�) for so2l , l�4, for l = 2m− 1 odd and l = 2m even, respectively:

k 0 1 · · · m−2 m−1,m m+1 · · · 2m−1 �2m

Yk(�) C �2 · · · �2m−4 �2m−2 + �2m−1 �2m−3 · · · �1 0

k 0 1 · · · m−1 m m+1 · · · 2m � l+1

Yk(�) C �2 · · · �2m−2 0 �2m−2 · · · C 0

e. Yk(�) for the exceptional Lie algebras:

k 0 1 2 3 4 5 6 �7

g2 Yk(�) C �2 2�1 �1 0 0 0 0
f4 Yk(�) C �1 2�4 �3 �4 0 0 0
e6 Yk(�) C �2 �1 + �6 �1 + �6 �2 C 0 0
e7 Yk(�) C �1 �6 2�7 0 0 0 0
e8 Yk(�) C �8 �1 0 −�1 −�8 −C 0

f. Yk(�):

k 2 3 4 �5

sp2l Yk(�) �2 0 0 0
sll Yk(�) �1 + �l−1 C 0 0
som Yk(�) 2�1 0 0 0
e, f, g Yk(�) 0 −g −C 0
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Note that the Yk(�)’s travel nicely along the Dynkin diagram in a wave (that gets
reflected when it hits the end of a diagram or collides with something else in the
diagram, becoming negative if there is no arrow).

6.2. Gradings and the Yk(�)’s

Let �1 = �0 denote the highest root, let �2 = �̃ denote the highest long root
orthogonal to �0, �3 the highest long root orthogonal to �0 and �2, etc.

Proposition 6.1. If �i = �1 + �2 + �3 + · · · + �i is dominant for i�k, then �k is the
highest weight of an irreducible component of Skg.

This module turns out to be Yk(�), the module that we identified from its dimension.
Of course this does not explain what happens when Yk(�) is only a virtual module,
and in fact there are also cases for which Yk(�) is an actual module whose presence
is not accounted for by the proposition. To be precise, this happens when k�m for
so4m−3, so4m−2, so4m−1 or so4m, when k�2 for g2, when k�3 for f4 and e6.

Note that the dominance condition in the hypothesis of Proposition 6.1 is not auto-
matic, and will be essential in the following construction. We associate to the k roots
�1, . . . , �k a Zk-grading of g,

gl1···lk = {X ∈ g, [H�i
, X] = liX, i = 1 . . . k}.

Lemma 6.2. Suppose that l1, . . . , lk �0 and gl1···lk 
= 0. Then l1 + · · · + lk �2.

Note that for a given g which is not son for some n�5, there is no ambiguity in
defining the integer �. This implies that for any k as above, the components g0..1..1..0 of
our k-dimensional grading have the same dimension, �, by Proposition 5.1; in particular
they are nonzero.

If g = son for some n�5, the Lie subalgebra we denoted h is the product of sl2
and son−4, and we can choose for �2 the highest root of either algebra. If we choose
that of sl2, we cannot go further: �1+ �2+ �3 will not be dominant. If we choose the
highest root of son−4, we can go further, but there is no more choice, we can only
take �i = ε2i−1+ ε2i and again the components g0..1..1..0 of the grading have the same
dimension, four.

Example. For g = e7, the highest root is �0 = �1 = �1. The highest root orthogonal
to �0 is the highest root of a subsystem of type D6. We get �2 = �6 − �1 and
�1 + �2 = �6 is dominant. For the next step, the roots orthogonal both to �1 and �2,
i.e., both to �1 and �6, form a reducible subsystem of type D4 × A1, and we have
two candidates for the next highest root. If we choose �3 = �4−�1−�6, the highest
root of the D4 part, then �1 + �2 + �3 is not dominant. The only possible choice is
therefore �3 = �7 = 2�7 − �6, for which �1 + �2 + �3 = 2�7 is dominant. Then the
process stops.
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We obtain a three-dimensional grading of e7 with three types of nonzero compo-
nents: the six components g±200, g0±20, g00±2 are one-dimensional; the 12 components
g±1±10, g±10±1, g0±1±1 have dimension eight and must be interpreted as copies of the
(complexified) octonions; the central component g000 = C3⊕ so8. This is very close to
the triality construction of e7 as g(O, H) [13].

Corollary 6.3. For each 1� i < k, we have (2�, �i − �i+1) = �(�0, �0).

Proof. Recall that 2� is the sum of the positive roots. If � is such a positive root, then
g� is contained in one of the gl1...lk , and the fact that �1 + · · · + �j is dominant for
all j implies that l1 + · · · + lj �0 for all j. Conversely, such a component gl1...lk is the
sum of positive root spaces, except of course the central component g0...0.

The integer �(H�i
) is equal to 2 if g� = g0...2...0 with the 2 in position i, 1 if

g� ⊂ g0..1..1..0 or g0..1..−1..0, both of dimension �, 1 again for g0..1..0, of dimension with
the 1 in position i, and zero otherwise. Since g0..1..0 has dimension 2�− 8− 2(k− 2)�,
we conclude that

2�(H�i
) = (k − 1+ k − i)�+ 2�− 8− 2(k − 2)�+ 2 = 2�+ (3− i)�− 6,

and the claim follows. �

Corollary 6.4. The Casimir eigenvalue of Yk(�) is 2kt − k(k − 1)�.

Proof of the Lemma. Let � be some root such that g� ⊂ gl1···lk . If some li equals 2,
then � must equal �i and the other coefficients vanish. So we suppose that li1 = · · · =
lip = 1, and the other coefficients are zero. Using the orthogonality of �i’s, we can
write

� = 1

2
(�i1
+ �i2

+ · · · + �ip
+ �),

where � is orthogonal to �i’s. Suppose that i1 is smaller than the other iq ’s and apply
the symmetry s = si2 · · · sip . We conclude that

s(�) = 1

2
(�i1
− �i2

− · · · − �ip
+ �)

is again a root. Since (s(�), �1 + · · · + �i1
) > 0, it must be a positive root. But

(�1 + · · · + �k, s(�)) = 1− (p − 1) = 2− p.

Since �1 + · · · + �k is supposed to be dominant, this must be a nonnegative integer.
Hence p�2, which is what we wanted to prove. �
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Proof of Proposition 6.1. The case k > 3 only happens for the classical Lie algebras,
for which we can exhibit the highest weight vector of weight �k as a determinant, or
a Pfaffian, in terms of the basis of the natural representation preserved by the maximal
torus:

sln det(ep⊗ e∗n+1−q)1�p,q �k,

sp2n det(ep ◦ eq)1�p,q �k,

son Pf(ep ∧ eq)1�p,q �k.

So we focus on the case k = 3. We have a Z3-grading of g with 6 terms of dimension
one, 12 of dimension �, 6 of dimension 2� − 2� − 8, and the central term g000. The
six terms of type g200 can be represented as the vertices of a square pyramid; then the
12 terms of type g110 are the middle points of the edges.

We have chosen vectors X±�i
generating three commuting sl2-triples. We next choose

generators X� for the roots � ∈ �110 such that the corresponding root space g� ⊂ g110.
We then take bases of g−110, g1−10 and g−1−10 by letting

X�−�1
= [X−�1

, X�], X�−�2
= [X−�1

, X�], X�−�1−�2
= [X−�1

, X�−�2
].

An easy consequence of the Jacobi identity is that [X�1
, X�−�1

] = X�. Note that
�− �1 − �2 = s�1

s�2
(�) is a root, and that its opposite

�′ = �1 + �2 − �



400 J.M. Landsberg, L. Manivel / Advances in Mathematics 201 (2006) 379–407

corresponds to another root space in g110. (We will use the notation �′ = �1 + �2 − �
repeatedly in what follows.) Then [X�, X�′−�2

], which is equal to [X�′ , X�−�2
] by the

Jacobi identity, is a nonzero multiple of X�1
. We normalize our root vectors from g110

so that this multiple is in fact X�1
itself. This means that for all � ∈ �110,

K(X�1
, X−�1

) = K([X�, X�′−�2
], X−�1

) = K(X�, [X�′−�2
, X−�1

]) = −K(X�, X−�).

We use the same normalization for g101 and g011. Note that 2K(X�1
, X−�1

) =
K(H�1

, H�1
) = 2/(�1, �1), twice the inverse of the square length of a long root. In

particular, K(X�, X−�) does not depend on � ∈ �±1±10, �±10±1 or �0±1±1.
Now we introduce the symmetric tensor

S12 =
∑

�∈�110

X�X�′ .

Here and in what follows, if X, Y ∈ g or a symmetric power of g, XY will denote the
symmetric product X ◦ Y .

Lemma 6.5. For Y, Z ∈ g−1−10, the bilinear forms

∑
�∈�110

K(X�, Y )K(X�′ , Z) and K([X�1
, Y ], [X�2

, Z])

are multiples of one another.
In particular, S12 is invariant under the common centralizer of �1 and �2.

Proof. Let Y = X−�′ and Z = X−�′ for some roots �, � ∈ �110. Then [X�1
, Y ]

= X�−�2
and [X�2

, Z] = X�−�1
, and hence

K([X�1
, Y ], [X�2

, Z]) = K(X�−�2
, X�−�1

) = −K(X−�′ , X�) = 
�′,�K(X−�1
, X�1

).

Since
∑

�∈�110
K(X�, Y )K(X�′ , Z) = 
�′,�K(X−�1

, X�1
)2, the claim follows. �

We deduce a different proof of Proposition 3.1. We must prove that S2g contains a
tensor of weight �0 + �̃ = �1 + �2 which is the highest weight vector, i.e., which is
annihilated by any positive root vector.

Corollary 6.6. The tensor � = X�1
X�2
− 1

2S12 ∈ S2g is the highest weight vector of
weight �1 + �2.

Proof. We must prove that � is annihilated by any positive root vector. Since �1 and
�1 + �2 are both dominant, a positive root must belong either to �00, �1−1 or �pq
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with p, q �0 and p + q > 0. Since g1+p,1+q = 0, our assertion is clear for the latter
case. For the first case, it follows from the previous lemma.

It remains to be proven that ad(X�−�2
)� = 0 for � ∈ �11. We use the structure

constants N�,� such that [X�, X�] = N�,�X�+�. Note that ad(X�−�2
)X�1

X�2
= X�1

X�.
On the other hand,

ad(X�−�2
)S12 = 2

∑
�∈�11

N�−�2,�X�+�−�2
X�′ .

But �+ �− �2 belongs to �200, and hence must be equal to �1, which forces � = �′.
Our normalization is N�−�−2,�′ = −1, thus ad(X�−�2

)S12 = 2X�1
X�. This concludes

the proof. �

Now we define a tensor T ∈ g110⊗ g101⊗ g011 ⊂ S3g, with the help of which we
will construct the highest weight vector of weight �1 + �2 + �3:

T =
∑

�∈�011,�∈�101,�∈�110
�+�+�=�1+�2+�3

N�3−�,�1−�X�X�X�. (1)

We will need the following properties of the structure constants.

Lemma 6.7. If � ∈ �1−10 and � ∈ �01−1, then

N�,� = −N�+�2,�−�2
, (2)

N�,� = N�−�1,�, (3)

N�,� = N�,−�−�. (4)

Of course, we have similar identities when we permute the indices, e.g., N�,� =
−N�+�3,�−�3

if � ∈ �10−1 and � ∈ �0−11.

Proof. By definition, X� = [X−�2
, X�+�2

]. In the Jacobi identity

[[X−�2
, X�+�2

], X�] + [[X�+�2
, X�], X−�2

] + [[X�, X−�2
], X�+�2

] = 0,

the first bracket of the second term is in g12−1, and hence equal to zero. Since
[X�, X−�2

] = −X�−�2
, the first identity follows. To prove the second one, we use

the Jacobi identity

[[X−�1
, X�], X�] + [[X�, X�], X−�1

] + [[X�, X−�1
], X−�] = 0.
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Here the first bracket of the last term is in g−11−1, and hence equal to zero, and we
deduce the second identity. Finally, the invariance of the Killing form gives

N�,�K(X�+�, X−�−�) = K([X�, X�], X−�−�) = K(X�, [X�, X−�−�])
= N�,−�−�K(X�, X�).

But in the normalization we use, we have seen that K(X�+�, X−�−�) = K(X�, X�),
and the third identity follows. �

Proposition 6.8. The tensor � ∈ S3g defined as

� = X�1
X�2

X�3
−X�1

S23 −X�2
S13 −X�3

S12 + T ,

is the highest weight vector of weight �1 + �2 + �3.

Proof. We must check that � is annihilated by any positive root vector X�. If
�(H�i

)�0 for i = 1, 2, 3, and at least one is positive, this is clear since X� annihilates
every space of type g200 or g110. If these three integers vanish, that is, X� ∈ g000, this
follows from the fact that for X ∈ g0−1−1, Y ∈ g−10−1 and Z ∈ g−1−10,

∑
�∈�011,�∈�101,�∈�110

�+�+�=�1+�2+�3

N�−�3,�−�1
K(X�, X)K(X�, Y )K(X�, Z)

= K([[X�1
, Y ], [X�2

, Z]], [X�3
, X]),

which shows that T must be annihilated by any vector commuting with X�1
, X�2

and
X�3

—and X� has this property.
Now, since � is positive, we know that �(H�1

), �(H�1
) + �(H�2

) and �(H�1
) +

�(H�2
) + �(H�3

) are nonnegative, so if one of the �(H�i
)’s is negative, X� must

belong to g1−10, g10−1 or g01−1. Since [g1−10, g01−1] = g10−1, what remains to be
checked is whether � is annihilated by any Z ∈ g1−10 or Y ∈ g01−1. This is equivalent
to the four identities

[Z3, T ] = (ad(Z)S23) ◦X�1
, (5)

[Y1, T ] = (ad(Y )S13) ◦X�2
, (6)

[Z1, T ] = S13 ◦ ad(Z)X�2
, (7)

[Y2, T ] = S12 ◦ ad(Y )X�3
, (8)
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where [Z3, T ], for example, means that we take the bracket of Z only with the terms
in T coming from g110.

Proof of (5). To prove the first identity, we can let Z = X
−�2
for some 
 ∈ �110.

Then

[Z3, T ] =
∑

�∈�011,�∈�101,

�+�=
+�3

N�3−�,�1−�X�1
X�X�′+
−�2

.

But

N�3−�,�1−� = −N−�,�3+�1−� (2)

= N�2−�,�3−� (3) twice
= N�2−�,�−

= N�2−�,
−�2

(4)

= N�′,
−�2
(3).

This allows us to write [Z3, T ] as

∑
�∈�011

N�′,
−�2
X�1

X�X�′+
−�2
= 1

2

⎛
⎝ad(Z)

⎛
⎝ ∑

�∈�011

X�X�′

⎞
⎠
⎞
⎠X�1

= (ad(Z)S23) ◦X�1
.

This proves (5). The proof of (6) is similar and will be left to the reader.

Proof of (8). The proofs of (7) and (8) involve the same type of arguments and we
will focus on (8). We use the invariance of S12 from Lemma 6.5. Let Y = X�−�3

, with
� ∈ �011. We have ad(X�)S12 = 0 since g121 = 0. Thus, for � ∈ �011,

ad(X�)ad(X−�)S12 = ad([X�, X−�])S12.

If � 
= �, [X−�, X�] is either zero or a root vector in g000, thus annihilating S12. Hence

X�ad([X�, X−�])S12 = ∑
�∈�011

X�ad(X�)ad(X−�)S12

= ∑
�∈�011,�∈�110

N−�,�′N�′−�,�X�X�′−�+�X�

= ∑
�∈�011,�∈�101,�∈�110

�+�+�=�1+�2+�3

N−�,�′N�′−�,�X�X�+�−�3
X�.
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But N�′−�,� = N�−�3,� = −N�,�−�3
by (2), and N−�,�′ = N−�,�+�−�3

= N�3−�,�+�−�3= −N�3−�,−� = −N�3−�,�1−�, where we used successively (3), (4) and (3) again. Thus

X�ad([X�, X−�])S12 = ∑
�∈�011,�∈�101,�∈�110

�+�+�=�1+�2+�3

N�3−�,�1−�N�,�−�3
X�X�+�−�3

X�,

= ∑
�∈�011,�∈�101,�∈�110

�+�+�=�1+�2+�3

N�3−�,�1−�X�[X�, X�−�3
]X�

= −[Y2, T ].

There remains to compute ad([X�, X−�])S12. We have [X�, X−�] = t�H�, where t�
can be computed as follows:

t�K(H�, H�) = K([X�, X−�], H�) = K(X�, [X−�, H�]) = 2K(X�, X−�).

And since we know that 2K(X�, X−�) = −2K(X�2
, X−�2

) = −K(H�2
, H�2

), we get
that

t� = −
K(H�2

, H�2
)

K(H�, H�)
= − (�, �)

(�2, �2)
= − (�, �)

(�1, �1)
.

Then ad([X�, X−�])S12 = t�ad(H�)S12 is equal to

t�

∑
�∈�110

(�(H�)+ �′(H�))X�X�′ = t�(�1(H�)+ �2(H�))S12.

But since � ∈ �011, �1(H�) = �(H�1
) = 0, while

�2(H�) = (�2, �2)

(�, �)
�(H�2

) = −t−1
� .

We thus get that [Y2, T ] = S12[Y, X�2
], as required. This concludes the proof of identity

(8), and hence of Proposition 6.1. �

6.3. Geometric interpretation of the Yk(�)’s

Zak defines the Scorza varieties to be the smooth nondegenerate varieties extremal
for higher secant defects in the sense that the defect of the i-th secant variety of
Xn ⊂ PN is i times the defect 
 of the first and the [n
 ]-th secant variety fills the
ambient space. He then goes on to classify the Scorza varieties, all of which turn out
to be homogeneous [18].

More precisely, the Scorza varieties are given by the projectivization of the rank one
elements in the Jordan algebras Jr (A), where A is the complexification of the reals,
complex numbers or quaternions, or, when r = 3, the octonions [3].
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Recall that for a simple Lie algebra, the adjoint group has a unique closed orbit
in Pg, the projectivization Xad of the minimal nilpotent orbit. This adjoint variety
parametrizes the highest root spaces in g.

Proposition 6.9. Let Zk ⊂ Xad denote the shadow of a point of the closed orbit
Xk(�) ⊂ PYk(�). Then the Zk’s are Scorza varieties on the adjoint variety.

The shadow of a point is defined as follows: let G denote the adjoint algebraic group
associated to the Lie algebra g. We have maps

Xk(�) = G/Q
q←− G

p−→ G/P = Xad

and the shadow of x ∈ Xk(�) is the subvariety p(q−1(x)) of Xad . Tits [16] showed
how to determine these shadows using Dynkin diagrams, and Proposition 6.9 follows
from a straightforward case-by-case check.

Example. Let g be sll+1 or so2l . On the Dynkin diagram of g, we let the ∗’s encode
the highest weight of the fundamental representation, and the •’s encode that of Yk(�).
When we suppress the •’s, we get weighted diagrams encoding homogeneous varieties,
respectively, Pk−1 × Pk−1 and a Grassmannian G(2, 2k) which are two examples of
Scorza varieties.

It is natural that the Scorza varieties arrive as subsets of polynomials of degree k

on g because the determinant on Jk(A) is a polynomial of degree k. If we take the
linear span of Zk and then take the cone over the degree k hypersurface in 〈Zk〉 with
vertex a Killing-complement to 〈Zk〉, we obtain a hypersurface of degree k in g. Xk(�)

parametrizes this space of hypersurfaces and its span gives the space Yk(�).

6.4. Universal dimension formulas

We finally extend our formula for the dimension of the Cartan powers of g to obtain
a universal formula for the Cartan powers of the Yl(�)’s. Again, our approach is based
on Weyl’s dimension formula: we check whether the relevant integers can be organized
into strings whose extremities depend only on Vogel’s parameters � and �. In fact, this
really makes sense only in type A, B, D, and in the exceptional cases (excluding f4)
when l = 2. In type C and F4, there are some strange compensations involving half
integers, but the final formula holds in all cases.
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We will just give the main statements leading to Theorem 6.10 below. Let �l =
�1 + · · · + �l denote the highest weight of Yl(�). Let �l,i denote the set of positive
roots � such that �l (H�) = i. By Lemma 6.2, we have

#�l,1 = 2l(�+ 2�− 4− �l),

#�l,2 = �
l(l − 1)

2
+ l,

#�l,i = 0 for i > 2.

Facts. (1) The values of �(H�), for � in �l,2, can be organized into l intervals [� −
(2l − i − 3)�/2− 3, �− (i − 3)�/2− 3], where 1� i� l.

(2) The values of �(H�), for � in �l,1, can be organized into 3l intervals [�/2− (i−
1)�/2, �/2− (l− i− 2)�/2− 3], [i�/2, �− (l+ i− 4)�/2− 3] and [(i− 1)�/2+ 1, �−
(l + i − 3)�/2− 4], with 1� i� l.

Applying the Weyl dimension formula, we obtain the following:

Theorem 6.10.

dim(Yl(�))(k)

=
l∏

i=1

(2k+�−(i−3)�/2−3
2k

)(
k+�−(l+i−3)�/2−3

k

)(
k+�−(l+i−4)�/2−4

k

)(
k+�/2−(l−i−2)�/2−3

k

)
(2k+�−(2l−i−3)�/2−4

2k

)(
k+i�/2−1

k

)(
k+(i−1)�/2

k

)(
k+�/2−(i−1)�/2−1

k

) .
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