

Remarks on "Lie Algebra Cohomology and the Generalized Borel-Weil Theorem", By B. Kostant

P. Cartier

The Annals of Mathematics, 2nd Ser., Vol. 74, No. 2 (Sep., 1961), 388-390.

Stable URL:

http://links.jstor.org/sici?sici=0003-486X%28196109%292%3A74%3A2%3C388%3ARO%22ACA%3E2.0.CO%3B2-I

The Annals of Mathematics is currently published by Annals of Mathematics.

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/about/terms.html. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at http://www.jstor.org/journals/annals.html.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission.

JSTOR is an independent not-for-profit organization dedicated to creating and preserving a digital archive of scholarly journals. For more information regarding JSTOR, please contact support@jstor.org.

REMARKS ON

"LIE ALGEBRA COHOMOLOGY AND THE GENERALIZED BOREL-WEIL THEOREM", BY B. KOSTANT

By P. Cartier

(Received February 8, 1961)

In Kostant's paper, which appears in this issue of the *Annals*, that author studies the cohomology of certain subalgebras of a semi-simple Lie algebra. One of his results is Theorem 5.14 from which he is able to deduce the Borel-Weil theorem as generalized by R. Bott. I would like to point out that the whole reasoning by which Kostant makes this deduction effective can be inverted; therefore his result is *equivalent* to Borel-Weil-Bott theorem.

Next, following an idea of Bott, he proceeds to prove H. Weyl's well-known character formula. The point is to interpret each character as a ratio of two Euler-Poincaré characteristics which amount respectively for the numerator and the denominator of Weyl's formula. Unfortunately, as pointed out by Kostant himself, one needs a very particular case of Weyl's formula in the course of proof of Theorem 5.14. We would like to sketch a proof of Theorem 5.14 which does not use even this particular case of Weyl's formula. The point is to give a direct proof of Lemma 5.12 omitting all of §§ 5.8 to 5.11. Such a proof follows. (We do not repeat all notations).

 Δ being the set of all roots, let Φ be any subset of Δ ; by $\langle \Phi \rangle$ we mean the sum of all roots belonging to Φ and g is $1/2\langle \Delta_+ \rangle$ (Δ_+ is the set of all positive roots). There is a one-to-one correspondence between the set of all subsets Φ of Δ_+ and the set of all subsets Ψ of Δ such that Δ be a disjoint union of Ψ and $-\Psi$; this correspondence is expressed by the formulas $\Phi = \Psi \cap \Delta_+$ and $\Psi = \Phi \cup -(\Delta_+ \cap C\Phi)$; furthermore, by an easy computation we get

$$(1) g - \langle \Phi \rangle = -1/2 \langle \Psi \rangle$$

when Φ and Ψ are so related.

Let m be the Lie subalgebra of the semi-simple Lie algebra g generated by the Cartan subalgebra h and the root vectors belonging to positive roots. If V^{λ} is the space of an irreducible representation π of g with maximal weight λ , one considers the natural representation ζ of h on the space $\Lambda m^* \otimes V^{\lambda}$. Using the well-known basis of an exterior algebra, one sees the weights of ζ are of the form:

REMARKS 389

$$(2) \qquad \qquad \xi = \mu - \langle \Phi \rangle$$

where μ is a weight of π and Φ is any subset of Δ_+ ; furthermore the multiplicity of ξ is the sum of the multiplicities m_{μ} (for μ considered as a weight of π) extended over all decompositions of ξ in the form (2).

I claim

$$|g + \lambda| \ge |g + \xi|$$

for any weight ξ of ζ . Using (1) and (2) we get

$$(4) g + \xi = \mu - 1/2 \langle \Psi \rangle.$$

Since the set of weights of π is invariant under the Weyl group W, so it is for the set of linear forms $g + \xi$ on \mathfrak{h} :

$$(5) s(g+\xi) = s \cdot \mu - 1/2 \langle s \cdot \Psi \rangle = g + s \cdot \mu - \langle \Phi(s) \rangle$$

where $\Phi(s) = s \cdot \Psi \cap \Delta_+$. We can therefore find an s in W so that $s(g + \xi)$ is dominant. As is well-known, $s \cdot \mu$ is equal to $\lambda - \sum_i m_i \cdot \alpha_i$ with positive roots α_i and non-negative integers m_i ; it implies:

$$s(g+\xi)=(g+\lambda)-\sum_{i}m'_{i}\cdot\alpha_{i},$$

and finally

$$\mid g + \lambda \mid^2 = \mid s(g + \xi) \mid^2 + \mid \sum_i m_i' \cdot \alpha_i \mid^2 + \sum_i m_i' \langle s(g + \xi), \alpha_i \rangle$$

$$= \mid g + \xi \mid^2 + \mid \sum_i m_i' \cdot \alpha_i \mid^2 + \sum_i m_i' \langle s(g + \xi), \alpha_i \rangle.$$

Since $s(g + \xi)$ is dominant, the scalar product $\langle s(g + \xi), \alpha \rangle$ is non-negative for each positive root α . It follows formula (3) immediately.

From this deduction of formula (3), one sees sign "equal" can occur only for all m'_i equal to 0, that is $s(g + \xi) = g + \lambda$ or $\xi = \xi_s$ with

(7)
$$\xi_s = s^{-1}(g + \lambda) - g.$$

Furthermore λ is dominant and $\langle g, \alpha \rangle > 0$ for any positive root α , so that $\langle g + \lambda, \alpha \rangle > 0$ under the same assumptions; as is well-known, this implies $s(g + \lambda) \neq g + \lambda$ for $s \neq 1$ and there is a unique s in W for which (7) holds. The map $s \to \xi_s$ is bijective from W to the set of all weights ξ of ζ such that $|g + \xi| = |g + \lambda|$.

It remains to show that the weight ξ_s given by (7) has multiplicity one. Since λ occurs with multiplicity one in π , it is sufficient to show ξ_s has a unique decomposition in the form (2) and $\lambda = \mu$ in this decomposition. But (2) implies (5) and using (7) one gets:

(8)
$$\lambda = s \cdot \mu - \langle \Phi(s) \rangle.$$

Recalling $s \cdot \mu = \lambda - \sum_{i} m_{i} \cdot \alpha_{i}$ with non-negative integers m_{i} , this is

390 P. CARTIER

possible only if all m_i are 0 and $\Phi(s)$ is empty, that is $\lambda = \mu$ and $s \cdot \Psi \cap \Delta_+$ empty which amounts to $\Psi = s^{-1} \cdot \Delta_-$, or finally $\Phi = \Delta_+ \cap s^{-1} \cdot \Delta_-$. This achieves the proof.

We have proved all of Lemma 5.12, the last assertion in it being trivial any way. This concludes our task.

UNIVERSITY OF PARIS