Remarks on "Lie Algebra Cohomology and the Generalized Borel-Weil Theorem", By B. Kostant

P. Cartier

Stable URL:
http://links.jstor.org/sici?sici=0003-486X%28196109%292%3A74%3A2%3C388%3AR%22ACA%22%3EO%3B2-I

Your use of the JSTOR archive indicates your acceptance of JSTOR’s Terms and Conditions of Use, available at http://www.jstor.org/about/terms.html. JSTOR’s Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at http://www.jstor.org/journals/annals.html.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission.

JSTOR is an independent not-for-profit organization dedicated to creating and preserving a digital archive of scholarly journals. For more information regarding JSTOR, please contact support@jstor.org.

http://www.jstor.org/
Tue Oct 11 16:20:21 2005
REMARKS ON
“LIE ALGEBRA COHOMOLOGY AND THE GENERALIZED BOREL-WEIL THEOREM”, BY B. KOSTANT

BY P. CARTIER
(Received February 8, 1961)

In Kostant’s paper, which appears in this issue of the Annals, that author studies the cohomology of certain subalgebras of a semi-simple Lie algebra. One of his results is Theorem 5.14 from which he is able to deduce the Borel-Weil theorem as generalized by R. Bott. I would like to point out that the whole reasoning by which Kostant makes this deduction effective can be inverted; therefore his result is equivalent to Borel-Weil-Bott theorem.

Next, following an idea of Bott, he proceeds to prove H. Weyl’s well-known character formula. The point is to interpret each character as a ratio of two Euler-Poincaré characteristics which amount respectively for the numerator and the denominator of Weyl’s formula. Unfortunately, as pointed out by Kostant himself, one needs a very particular case of Weyl’s formula in the course of proof of Theorem 5.14. We would like to sketch a proof of Theorem 5.14 which does not use even this particular case of Weyl’s formula. The point is to give a direct proof of Lemma 5.12 omitting all of §§ 5.8 to 5.11. Such a proof follows. (We do not repeat all notations).

Δ being the set of all roots, let Φ be any subset of Δ; by \(\langle \Phi \rangle\) we mean the sum of all roots belonging to Φ and \(g = 1/2\langle \Delta_+ \rangle\) (\(\Delta_+\) is the set of all positive roots). There is a one-to-one correspondence between the set of all subsets Φ of \(\Delta_+\) and the set of all subsets \(\Psi\) of Δ such that Δ be a disjoint union of \(\Psi\) and \(-\Psi\); this correspondence is expressed by the formulas \(\Phi = \Psi \cap \Delta_+\) and \(\Psi = \Phi \cup -(\Delta_+ \cap C\Phi)\); furthermore, by an easy computation we get

\[
g - \langle \Phi \rangle = -1/2\langle \Psi \rangle
\]

when \(\Phi\) and \(\Psi\) are so related.

Let \(\mathfrak{m}\) be the Lie subalgebra of the semi-simple Lie algebra \(\mathfrak{g}\) generated by the Cartan subalgebra \(\mathfrak{h}\) and the root vectors belonging to positive roots. If \(V^\lambda\) is the space of an irreducible representation \(\pi\) of \(\mathfrak{g}\) with maximal weight \(\lambda\), one considers the natural representation \(\zeta\) of \(\mathfrak{h}\) on the space \(\Lambda m^* \otimes V^\lambda\). Using the well-known basis of an exterior algebra, one sees the weights of \(\zeta\) are of the form:
where μ is a weight of π and Φ is any subset of Δ_+; furthermore the multiplicity of ξ is the sum of the multiplicities m_{μ} (for μ considered as a weight of π) extended over all decompositions of ξ in the form (2).

I claim

\begin{equation}
| g + \lambda | \geq | g + \xi | \tag{3}
\end{equation}

for any weight ξ of ζ. Using (1) and (2) we get

\begin{equation}
g + \xi = \mu - 1/2 \langle \Psi \rangle \tag{4}
\end{equation}

Since the set of weights of π is invariant under the Weyl group W, so it is for the set of linear forms $g + \xi$ on \mathfrak{h}:

\begin{equation}
s(g + \xi) = s \cdot \mu - 1/2 \langle s \cdot \Psi \rangle = g + s \cdot \mu - \langle \Phi(s) \rangle \tag{5}
\end{equation}

where $\Phi(s) = s \cdot \Psi \cap \Delta_+$. We can therefore find an s in W so that $s(g + \xi)$ is dominant. As is well-known, $s \cdot \mu$ is equal to $\lambda - \sum_i \alpha_i$ with positive roots α_i and non-negative integers m_i; it implies:

\begin{equation}
s(g + \xi) = (g + \lambda) - \sum_i m_i \cdot \alpha_i, \tag{6}
\end{equation}

and finally

\begin{align*}
| g + \lambda |^2 &= | s(g + \xi) |^2 + | \sum_i m_i \cdot \alpha_i |^2 + \sum_i m_i \langle s(g + \xi), \alpha_i \rangle \\
&= | g + \xi |^2 + | \sum_i m_i \cdot \alpha_i |^2 + \sum_i m_i \langle s(g + \xi), \alpha_i \rangle .
\end{align*}

Since $s(g + \xi)$ is dominant, the scalar product $\langle s(g + \xi), \alpha \rangle$ is non-negative for each positive root α. It follows formula (3) immediately.

From this deduction of formula (3), one sees sign "equal" can occur only for all m_i equal to 0, that is $s(g + \xi) = g + \lambda$ or $\xi = \xi_s$ with

\begin{equation}
\xi_s = s^{-1}(g + \lambda) - g. \tag{7}
\end{equation}

Furthermore λ is dominant and $\langle g, \alpha \rangle > 0$ for any positive root α, so that $\langle g + \lambda, \alpha \rangle > 0$ under the same assumptions; as is well-known, this implies $s(g + \lambda) \neq g + \lambda$ for $s \neq 1$ and there is a unique s in W for which (7) holds. The map $s \rightarrow \xi_s$ is bijective from W to the set of all weights ξ of ζ such that $| g + \xi | = | g + \lambda |$.

It remains to show that the weight ξ_s given by (7) has multiplicity one. Since λ occurs with multiplicity one in π, it is sufficient to show ξ_s has a unique decomposition in the form (2) and $\lambda = \mu$ in this decomposition. But (2) implies (5) and using (7) one gets:

\begin{equation}
\lambda = s \cdot \mu - \langle \Phi(s) \rangle. \tag{8}
\end{equation}

Recalling $s \cdot \mu = \lambda - \sum_i m_i \cdot \alpha_i$ with non-negative integers m_i, this is
possible only if all m_i are 0 and $\Phi(s)$ is empty, that is $\lambda = \mu$ and $s \cdot \Psi \cap \Delta_+$ empty which amounts to $\Psi = s^{-1} \cdot \Delta_-$, or finally $\Phi = \Delta_+ \cap s^{-1} \cdot \Delta_-$. This achieves the proof.

We have proved all of Lemma 5.12, the last assertion in it being trivial any way. This concludes our task.