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In Kostant’s paper, which appears in this issue of the Annals, that
author studies the cohomology of certain subalgebras of a semi-simple Lie
algebra. One of his results is Theorem 5.14 from which he is able to deduce
the Borel-Weil theorem as generalized by R. Bott. I would like to point
out that the whole reasoning by which Kostant makes this deduction
effective can be inverted; therefore his result is equivalent to Borel-Weil-
Bott theorem.

Next, following an idea of Bott, he proceeds to prove H. Weyl’s well-
known character formula. The point is to interpret each character as a
ratio of two Euler-Poincaré characteristics which amount respectively for
the numerator and the denominator of Weyl’s formula. Unfortunately, as
pointed out by Kostant himself, one needs a very particular case of Weyl’s
formula in the course of proof of Theorem 5.14. We would like to sketch
a proof of Theorem 5.14 which does not use even this particular case of
Weyl’s formula. The point is to give a direct proof of Lemma 5.12 omit-
ting all of §§5.8 to 5.11. Such a proof follows. (We do not repeat all
notations).

A being the set of all roots, let ® be any subset of A; by {(®) we mean
the sum of all roots belonging to ® and g is 1/2¢A > (A, is the set of all
positive roots). There is a one-to-one correspondence between the set of
all subsets ® of A, and the set of all subsets ¥ of A such that A be a
disjoint union of ¥ and —W; this correspondence is expressed by the
formulas ®=V¥NA, and ¥ =® U — (A, N C®); furthermore, by an easy
computation we get

(1) g — <> = —1/2(¥5

when ® and ¥ are so related.

Let m be the Lie subalgebra of the semi-simple Lie algebra g generated
by the Cartan subalgebra § and the root vectors belonging to positive
roots. If V* is the space of an irreducible representation 7 of g with
maximal weight )\, one considers the natural representation ¢ of ) on the
space Am* ® V*. Using the well-known basis of an exterior algebra, one

sees the weights of ¢ are of the form:
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(2) E=pt— <D
where ptis a weight of = and ® is any subset of A,; furthermore the
multiplicity of £ is the sum of the multiplicities m, (for ¢ considered as a
weight of ) extended over all decompositions of £ in the form (2).

I claim

(3) lg+M =g+ &l
for any weight £ of ¢. Using (1) and (2) we get
(4) g+ E=p—1/2{¥>.

Since the set of weights of 7 is invariant under the Weyl group W, so it
is for the set of linear forms g + £€on b:

(5) 8@+ 8 =5 p— 18- W) = g + 5-p — (D))
where ®(s) = s+ ¥ N A,. We can therefore find an s in W so that s(g + &)

is dominant. As is well-known, s-#tis equal tox — Eimi-ai with positive
roots &, and non-negative integers m,; it implies:

(6) s(g+8&=(9+N -2 ma,
and finally

lg + AP =1]s(@+ O+ |2 mpa, |+ 2,ms(g + &), a)
=g+ EP+ | mia P+ 2, mKs(g + &), ).

Since s(g + &) is dominant, the scalar product {s(g + &), @) is non-negative
for each positive root a. It follows formula (8) immediately.

From this deduction of formula (3), one sees sign ‘‘equal’’ can occur
only for all m{ equal to 0, that is s(¢g + &) = g + )\ or € = €, with

(7) E=s89+N)—g.

Furthermore X\ is dominant and <{g, @) > 0 for any positive root «, so that
{g + N, @) > 0 under the same assumptions; as is well-known, this im-
plies s(g + \) #= g + M for s # 1 and there is a unique s in W for which
(7) holds. The map s — &, is bijective from W to the set of all weights &
of suchthat |[g + & =g + N]|.

It remains to show that the weight &, given by (7) has multiplicity one.
Since ) occurs with multiplicity one in =, it is sufficient to show &, has a
unique decomposition in the form (2) and M = ¢ in this decomposition.
But (2) implies (5) and using (7) one gets:

(8) A= —LD(s)y .

Recalling s-pt =\ — )_.m,;-@, with non-negative integers m,, this is
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possible only if all m, are 0 and ®(s) is empty, thatis» = pand s- ¥ NA,
empty which amounts to ¥ = s~*-A_, or finally ® = A, Ns*-A_. This
achieves the proof.

We have proved all of Lemma 5.12, the last assertion in it being trivial
any way. This concludes our task.
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