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Abstract: Determining the relationship between composite systems and their subsys-
tems is a fundamental problem in quantum physics. In this paper we consider the spectra
of a bipartite quantum state and its two marginal states. To each spectrum we can associate
a representation of the symmetric group defined by a Young diagram whose normalised
row lengths approximate the spectrum. We show that, for allowed spectra, the represen-
tation of the composite system is contained in the tensor product of the representations
of the two subsystems. This gives a new physical meaning to representations of the
symmetric group. It also introduces a new way of using the machinery of group theory
in quantum informational problems, which we illustrate by two simple examples.

I. Introduction

In 1930, Weyl observed with dry humour that the “group pest” seemed to be here to stay
([10], preface to second German edition). The theory of representations of groups, which
he did so much to develop, is indeed a firmly established component of modern physics,
appearing wherever the relation of a composite system to its parts is investigated. The
aim of this paper is to derive a novel connection between certain representations and the
properties of composite quantum systems.

Suppose a quantum system consists of two parts, A and B, and let ρAB be a density
operator on the composite system AB. The states ρA and ρB obtained by tracing out the
subsystems B and A, respectively, are constrained by the fact that they are derived from
a common state. For instance, subadditivity and the triangle inequality are informational
inequalities that relate the von Neumann entropies (the Shannon entropies of the spectra)
of ρAB , ρA and ρB . Even more fundamentally, however, one can ask what constraints
there are on the spectra of ρA and ρB once one knows the spectrum of ρAB . We prove
here a theorem that relates this problem to certain representations of the unitary and
symmetric groups.
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A familiar example of a composite system is two particles, one with spin j1 and the
other with spin j2. The addition of their angular momenta can be described in terms of
representations of SU(2); the product of two representations, one for each subsystem,
can be expressed as a sum of representations on the total system. This is the familiar
Clebsch-Gordan series, whose coefficients have been much studied and can be readily
calculated. There is an analogous expansion of the product of two representations of the
symmetric group Sk on k elements. The coefficients appearing in this alternative Cle-
bsch-Gordan series are known as Kronecker coefficients, and their evaluation is more
difficult: no simple algorithm is known at present.

To state our result, we need a little notation. As we shall see shortly, every irreduc-
ible representation of the symmetric group Sk can be labelled by an ordered partition
λ = (λ1, . . . , λq) of k; i.e. a set of non-negative integers λi with λi+1 ≤ λi and
∑

λi = k. Let λ̄ denote ( λ1
k

, . . . ,
λq

k
) and let gλµν denote the Kronecker coefficient that

counts the number of times (possibly zero) that the representation labelled by λ appears
in the product of those labelled by µ and ν. Finally, let spec(ρ) denote the spectrum
of ρ. Then our main result is that, given a density operator ρAB with spec(ρAB) = λ̄,
spec(ρA) = µ̄ and spec(ρB) = ν̄, there is a sequence λj , µj , νj with non-zero gλj µj νj

such that λ̄j , µ̄j and ν̄j converge to spec(ρAB), spec(ρA) and spec(ρB), respectively.

II. Young Diagrams and the Spectrum of a Density Operator

In this section we give a brief description of representations of the symmetric group Sk

and the special unitary group in d dimensions, SU(d), and review a theorem by Keyl
and Werner [6], which will play a key role in proving our main result.

If C
d denotes a d-dimensional complex vector space, Sk operates on (Cd)⊗k by

π{ei1 ⊗ ei2 ⊗ . . . ⊗ eik } = ei
π−1(1)

⊗ ei
π−1(2)

⊗ . . . ⊗ ei
π−1(k)

, (1)

for π ∈ Sk , where the e1, . . . ed are elements of some basis of C
d . The group SU(d)

acts by

ei1 ⊗ ei2 ⊗ . . . ⊗ eik → Uei1 ⊗ Uei2 ⊗ . . . ⊗ Ueik , (2)

for U ∈ SU(d).
These actions of Sk and SU(d) on (Cd)⊗k define representations of each group, but

both representations are reducible. Their irreducible components can be constructed as
follows. Let us write λ � k to mean that λ is an ordered partition with

∑
λi = |λ| = k.

This can be depicted by a Young frame, which consists of d rows, the ith row having λi

boxes in it. A Young tableau T is obtained from a frame by filling the boxes with the
numbers 1 to k in some order, with the constraint that the numbers in each row increase
on going to the right and the numbers in each column increase downwards.

To each tableau T , we associate the Young symmetry operator e(T ) given by

e(T ) =
( ∑

π∈C(T )

sgn (π)π
)( ∑

π∈R(T )

π
)
, (3)

where R(T ) and C(T ) are sets of permutations of Sk , R(T ) being those that are obtained
by permuting the integers within each row of T , and C(T ) those obtained by permuting
integers within each column of T [10].
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Each e(T ) satisfies e(T )2 = re(T ) for some integer r , so e(T )/r is a projection
which we denote by p(T ). The action of SU(d) on the image subspace of p(T ) in
(Cd)⊗k gives an irreducible representation of SU(d). If T ′ is another tableau of the
same frame, the representations of SU(d) are equivalent (under the permutation that
takes T to T ′). Thus the irreducible representations of SU(d) are labelled by Young
frames, or equivalently, by partitions λ � k.

Now pick a vector v in the subspace defined by p(T ), and apply all elements π ∈ Sk

to it. The subspace of (Cd)⊗k spanned by {πv : π ∈ Sk} defines an irreducible repre-
sentation of Sk . Distinct frames yield distinct representations, so we can also label the
irreducible representations of Sk by partitions λ � k.

From the above construction, it can be shown that the subspaces Uλ and Vλ of the
irreducible representations of Sk and SU(d), respectively, are related in the following
elegant manner:

(
C

d
)⊗k =

⊕

λ�k

Uλ ⊗ Vλ. (4)

This is sometimes called the Weyl-Schur duality of Sk and SU(d).
A systematic way to generate Vλ for a tableau T is to apply p(T ) to all vectors

v = ei1 ⊗ ei2 ⊗ . . . ⊗ eik , where we identify the j th component of the tensor product
with the j th box in the numbering of the tableau T . If we count the number of times each
basis element ei occurs in v, this defines a partition ν � k. We say ν is majorized by λ,
and write ν ≺ λ, if

∑q
i=1 νi ≤ ∑q

i=1 λi for q = 1, . . . , d − 1 and
∑d

i=1 νi = ∑d
i=1 λi .

The vector v will project to zero under p(T ) unless ν ≺ λ, since otherwise there must
be two boxes in the same column of T , with numberings i and j , for which ei = ej . In
particular, for any Young diagram with more than d rows, Vλ = 0.

The dimensions of Vλ and Uλ are given by [5]

dim Vλ =
∏

i<j (λi − λj − i + j)
∏d−1

m=1 m!
(5)

and

dim Uλ = k!
∏

i hook(i)
, (6)

where the index i in the latter formula runs over all boxes in the Young diagram of λ,
and hook(i) is the hook-length of box i, i.e. the number of boxes vertically below i and
to the right of i within the diagram, including box i. Useful bounds for these dimensions
are

dim Vλ ≤ (k + 1)d(d−1)/2 (7)

and

k!
∏

i (λi + d − i)!
≤ dim Uλ ≤ k!

∏
i λi!

. (8)

A remarkable connection between Young frames and density operators was discov-
ered by Keyl and Werner [6] (see also R.Alicki, S. Rudnicki and S. Sadowski “Symmetry
properties of product states for the system of N n-level atoms” J. Math. Phys. vol.29 no.5
pp. 1158–1162 (1988)). Suppose ρ is a density operator with spectrum spec(ρ). Keyl
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and Werner showed that, for large k, the quantum state ρ⊗k will project with high prob-
ability into the Young subspaces λ � k such that λ̄ approximates spec(ρ). Their proof
was somewhat elaborate. A succinct argument was found by Hayashi and Matsumoto
[4], and we give it here, correcting an algebraic slip in their derivation.

Theorem 1. Let ρ be a density operator with spectrum r = spec(ρ), and let Pλ be the
projection onto Uλ ⊗ Vλ. Then

tr Pλρ
⊗k ≤ (k + 1)d(d−1)/2 exp

(−kD(λ̄||r)) (9)

with D(p||q) = ∑
i pi(log pi − log qi) the Kullback-Leibler distance of two normalised

probability distributions p and q. Note that D(p||q) = 0 if and only if p = q.

Proof. In the procedure for generating Vλ described above, we can choose the eigenvec-
tors of ρ as a basis for C

d . When eigenvectors of ρ⊗k are projected onto Uλ ⊗ Vλ, the
result is non-zero only if µ ≺ λ, where µi is the multiplicity of the i-th basis element in
the eigenvector. The ‘surviving’ eigenvalues

∏
i r

µi

i , are therefore smaller than
∏

i r
λi

i .
Using the bounds (7) and (8), it follows that

tr Pλρ
⊗k ≤ dim Uλ dim Vλ

∏

i

r
λi

i (10)

≤ (k + 1)d(d−1)/2 k!
∏

i λi!

∏

i

r
λi

i (11)

≤ (k + 1)d(d−1)/2 exp
(−kD(λ̄||r)) . (12)

This completes the proof. �	

Corollary 1. If ρ is a density operator with spectrum r = spec(ρ),

tr PXρ⊗k ≤ (k + 1)d(d+1)/2 exp(−k min
λ�n:λ̄∈S

D(λ̄||r)), (13)

where PX := ∑
λ�k:λ̄∈S Pλ for a set of spectra S .

This follows from the theorem if we simply pick the Young frame with the slowest
convergence and multiply it by the total number of possible Young frames with k boxes
in d rows. This number is certainly smaller than (k + 1)d .

Let Bε(r) := {r ′ :
∑ |r ′

i − ri | < ε} be the ε-ball around the spectrum r . If we take
S to be the complement of Bε(r), it becomes clear that for large k, ρ⊗k will project into
a Young subspace λ with λ̄ close to r with high probability. More precisely

Corollary 2. Given an operator ρ with spectrum r = spec(ρ), and given ε1 > 0, let
PX = ∑

λ�k:λ̄∈Bε1 (r) Pλ. Then for any ε2 > 0 there is a k0 > 0 such that for all k ≥ k0,

tr PXρ⊗k > 1 − ε2. (14)
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III. The Content Expansion

Suppose now we have a bipartite system AB made up of systems A and B with spaces
C

m and C
n, respectively. SU(mn) thus acts on C

mn, the space of AB, and hence on the
k-fold tensor product (Cmn)⊗k according to Eq. (2). Similarly, SU(m) and SU(n) act
on A and B, respectively, which gives an action of SU(m) × SU(n) on AB. If Rλ is
an irreducible representation of SU(mn) on the Young subspace λ of AB, its restriction
to SU(m) × SU(n) is not necessarily irreducible, and can generally be expressed as
a sum of terms Rµ ⊗ Rν , where Rµ and Rν are irreducible representions of SU(m)

and SU(n), respectively. We call this sum the content expansion of λ, borrowing some
terminology from [3, 5].

In the remainder of this section we follow [8] closely. The content expansion can
be conveniently described in terms of the characters of the underlying representations.
The conjugacy class of a unitary matrix in SU(d), for some dimension d, is given
by its d eigenvalues x1, . . . , xd . The character sλ of the representation Vλ of SU(d)

is therefore a function of x1, . . . , xd . Define the homogeneous power sums by hr =∑
i1≤i2≤···≤ir

xi1xi2 · · · xir . Then

sλ(x) = det(hλi−i+j )1≤i,j≤d . (15)

The polynomial sλ(x) is called the Schur function or S-function of λ. The sλ form a basis
for the symmetric polynomials in d variables of degree |λ|.

Now take the character sλ(z) = sλ(z1, . . . , zmn) of the representation λ of SU(mn).
When restricted to SU(m) × SU(n), this can be regarded as the function sλ(xy), where
x1, . . . xm are eigenvalues of an element of SU(m), and y1, . . . yn those of an element
of SU(n), and xy denotes the set of all products xiyj . The products sµ(x)sν(y) of Schur
functions over all µ and ν with |µ| = |ν| = |λ| are the characters of the irreducible
representations of SU(m)×SU(n). Hence we can write sλ(xy) in this basis, and obtain
the content expansion:

sλ(xy) =
∑

µ,ν

gλµνsµ(x)sν(y). (16)

The relationship between representations of SU(d) corresponding to Eq. (16) can be
written

Rλ ↓SU(m)⊗SU(n)
∼=

⊕

µ,ν

gλµνRµ ⊗ Rν, (17)

where the left hand side denotes the representation Rλ of SU(mn) restricted to the sub-
group SU(m)×SU(n). Note that the underlying subspace of Rµ ⊗Rν is not in general
Vµ ⊗ Vν , but is embedded in (Uµ ⊗ Vµ) ⊗ (Uν ⊗ Vν) by some unitary action.

The integers gλµν are sometimes called the Kronecker coefficients; this name alludes
to another context they occur in, as we now explain.

Let χλ(τ) denote the character of the representation Uλ of Sk on the conjugacy class
τ . The conjugacy class of a permutation in Sk is determined by the lengths of the cycles
in the permutation, so τ is a partition of k whose parts τi represent the lengths of those
cycles. Let pr(x1, . . . , xd) = ∑

i xr
i be the r th power sum and let pλ = pλ1pλ2 · · · pλq .

Then the character of the representation of SU(d) × Sk given by Eqs. (1) and (2) takes
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the value pτ (x) = pτ (x1, . . . , xd) at an element of SU(d) with eigenvalues x1, . . . , xd

and a permutation with class τ � k. In terms of characters, therefore, Eq. (4) becomes

pτ (x) =
∑

λ

χλ(τ )sλ(x). (18)

Thus

pτ (x)pτ (y) =
∑

µν

χµ(τ)χν(τ )sµ(x)sν(y), (19)

but since pτ (x)pτ (y) = pτ (xy), by Eq. (16) we have

pτ (x)pτ (y) =
∑

λµν

gλµνχλ(τ )sµ(x)sν(y). (20)

Comparing Eqs. (19) and (20), and noting that the products sµ(x)sν(y) are linearly
independent, we have for each µ,

χµ(τ)χν(τ ) =
∑

λ

gλµνχλ(τ ), (21)

with |λ| = |µ| = |ν|. This implies that the corresponding representation subspaces
satisfy

Uµ ⊗ Uν
∼=

⊕

λ

gλµνUλ. (22)

Thus the Kronecker coefficients gλµν appear in the Clebsch-Gordan series for the
symmetric group Sk , i.e. in the series that represents the Kronecker (or tensor) product
of two irreducible representations of Sk as a sum of irreducible representations, where
the latter are weighted by the number of times they occur. This is analogous to the
Clebsch-Gordan series for SU(d),

sµ(x)sν(x) =
∑

λ

cλ
µνsλ(x), (23)

where |λ| = |µ| + |ν|. The coefficients cλ
µν can be calculated using the famous Little-

wood-Richardson rule [8], whereas finding an efficient computational rule for the gλµν

is a fundamental open problem (see e.g. [7]).
Equation (21) and orthogonality of characters implies

gλµν = 1

k!

∑

τ∈Sk

χλ(τ )χµ(τ)χν(τ ), (24)

which shows that the Kronecker coefficients are symmetric under interchange of the
indices.
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IV. Main Result

We now show that there is a close correspondence between the spectra of a density oper-
ator ρAB and its traces ρA and ρB and Young frames λ, µ, ν with positive Kronecker
coefficients. More precisely,

Theorem 1. For every density operator ρAB , there is a sequence (λj , µj , νj ) of parti-
tions, labelled by natural numbers j , with |λj | = |µj | = |νj |, such that

gλj µj νj

= 0 for all (25)

and

lim
j→∞

λ̄j = spec(ρAB), (26)

lim
j→∞

µ̄j = spec(ρA), (27)

lim
j→∞

ν̄j = spec(ρB). (28)

Proof. Let rAB = spec(ρAB), rA = spec(ρA), rB = spec(ρB). Let P AB
λ denote the

projector onto the Young subspace Uλ ⊗ Vλ in system AB, and let P A
µ , P B

ν be the cor-
responding projectors onto Young subspaces in A and B, respectively. By Corollary 2,
for given ε > 0, we can find a k0 such that the following all hold for all k ≥ k0,

tr PX(ρA)⊗k ≥ 1 − ε, PX :=
∑

µ̄∈Bε (rA)

P A
µ , (29)

tr PY (ρB)⊗k ≥ 1 − ε, PY :=
∑

ν̄∈Bε (rB)

P B
ν , (30)

tr PZ(ρAB)⊗k ≥ 1 − ε, PZ :=
∑

λ̄∈Bε (rAB)

P AB
λ . (31)

Equations (29) and (30) can be combined to yield

tr (PX ⊗ PY )(ρAB)⊗k ≥ 1 − 2ε. (32)

This follows from

tr (P ⊗ Q)ξAB ≥ tr PξA + tr QξB − 1, (33)

which holds for all projectors P and Q and density operators ξAB since tr [(1 − P) ⊗
(1 − Q)ξAB ] ≥ 0.

Because (ρAB)⊗k maps eachYoung frame into itself, writing σ = (ρAB)⊗k , we have
∑

λ�k

PλσPλ = σ. (34)

Defining PZ̄ := 1 − PZ , Eqs. (32) and (34) imply

tr [(PX ⊗ PY )(PZσPZ + PZ̄σPZ̄)] ≥ 1 − 2ε. (35)
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We now insert tr [(PX ⊗ PY )PZ̄σPZ̄] ≤ ε (from Eq. (31)) and obtain

tr [(PX ⊗ PY )PZσPZ] ≥ 1 − 3ε. (36)

Clearly, there must be at least one triple µ ∈ Bε(r
A), ν ∈ Bε(r

B) and λ ∈ Bε(r
AB)

with tr [(P A
µ ⊗ P B

ν )P AB
λ σP AB

λ ] 
= 0. Thus (P A
µ ⊗ P B

ν )P AB
λ 
= 0 and by Eq. (17) this

implies gλµν 
= 0. �	

Next we consider some consequences of the above theorem. The von Neumann
entropy, S(ρ), of the operator ρ is defined by S(ρ) = −tr (ρ log(ρ)) = H(r), where r

is the spectrum of ρ.

Proposition 1. Von Neumann entropy is subadditive; i.e. for all ρAB , S(ρAB) ≤ S(ρA)+
S(ρB).

Proof. The Clebsch-Gordan expansion for the symmetric group, Eq. (22), implies

gλµν dim Uλ ≤ dim Uµ dim Uν . (37)

Theorem 1 tells us that, for every operator ρAB , there is a sequence of non-vanish-
ing gλj µj νj

with λ̄j , µ̄j , ν̄j converging to the spectra of ρAB , ρA and ρB . Since the
Kronecker coefficients are always non-negative integers, if gλj µj νj


= 0, we have

dim Uλj
≤ dim Uµj

dim Uνj
. (38)

This holds for all j , and in the limit of large j Stirling’s approximation and inequality (8)
imply that 1

k
log(dim Uλj

) tends to S(ρAB), where k = |λj |, and similarly for systems
A and B. Thus we obtain subadditivity. �	

Proposition 2. The triangle inequality [1], S(ρAB) ≥ |S(ρA) − S(ρB)|, holds for all
ρAB .

Proof. The symmetry of the coefficients implied by Eq. (24) tells us that in addition
to Eq. (38) we also have the two equations obtained by cyclically permuting λ, µ, ν;
e.g. dim Uµj

≤ dim Uλj
dim Uνj

. The triangle inequality then follows by applying the
reasoning in the proof of the preceding proposition. �	

Note that our proof of the triangle inequality is very different in spirit from the
conventional one that applies subadditivity to the purification of the state.

Finally, we show that the non-vanishing of a Kronecker coefficient implies a rela-
tionship between entropies.

Proposition 3. Let λ, µ, ν � k. If gλµν 
= 0, then H(λ̄) ≤ H(µ̄) + H(ν̄), where
H(λ̄) = − ∑

i λ̄i log(λ̄i) is the Shannon entropy of λ̄.

Proof. Kirillov has announced ([7], Theorem 2.11) that gλµν 
=0 implies gNλ Nµ Nν 
= 0,
for any integer N , where Nλ means the partition with lengths Nλi . Since

1
Nk

log(dim UNλ) tends to H(λ̄) for large N , inequality (38) implies the result we seek. �	
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V. Conclusions

The ideas we introduce here build on concepts that were much in vogue in the parti-
cle physics of the 1960s. The SU(m) × SU(n) content of a representation of SU(mn)

expresses the types of symmetry possible in nuclei and elementary particles, e.g. in the
multiplet theory of Wigner and in the eight-fold way of Ne’eman and Gell-Mann [11,
9, 2]. The connection that we derive between these concepts and the spectra of quan-
tum states is novel and leads to surprisingly simple proofs of subadditivity of the von
Neumann entropy and the triangle inequality. There are many ways to generalise these
ideas, and exploration of them is likely to be fruitful.
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Note. After this work was completed (quant-ph/0409016) Klyachko announced some very interesting
results (quant-ph/0409113). These included a theorem closely related to our theorem 2, and also a con-
verse that states that, if gmλ,mµ,mν 
= 0 for some positive integer m, then there is a density operator with
the triple of spectra λ, µ, ν.
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