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 SHUFFLING CARDS AND STOPPING TIMES

 DAVID ALDOUS*

 Department of Statistics, University of California, Berkeley, CA 94720

 PERSI DIACONIS**

 Department of Statistics, Stanford University, Stanford, CA 94305

 1. Introduction. How many times must a deck of cards be shuffled until it is close to random?

 There is an elementary technique which often yields sharp estimates in such problems. The
 method is best understood through a simple example.

 EXAMPLE 1. Top in at random shuffle. Consider the following method of mixing a deck of
 cards: the top card is removed and inserted into the deck at a random position. This procedure is
 repeated a number of times. The following argument should convince the reader that about

 n log n shuffles suffice to mix up n cards. The argument depends on following the bottom card of

 the deck. This card stays at the bottom until the first time (T1) a card is inserted below it.

 Standard calculations, reviewed below, imply this takes about n shuffles. As the shuffles continue,
 eventually a second card is inserted below the original bottom card (this takes about n/2 further
 shuffles). Consider the instant (T2) that a second card is inserted below the original bottom card.
 The two cards under the original bottom card are equally hkely to be in relative order low-high or
 high-low.

 Similarly, the first time a third card is inserted below the original bottom card, each of the 6
 possible orders of the 3 bottom cards is equally likely. Now consider the first time T- 1 that the
 original bottom card comes up to the top. By an inductive argument, all (n - 1)! arrangements of
 the lower cards are equally likely. When the original bottom card is inserted at random, at time

 T =Tn _ ? 1, then all n! possible arrangements of the deck are equally likely.

 1 2 3 4 5 6 7 8 9

 a b c c a b a a d c
 b c a a b a d d c d

 c a b b d d c c a a

 d d d d c c b b b b

 T, T2 T3 T

 FIG. 1. Example of repeated top in at random shuffles of a 4-card deck.

 When the original bottom card is at position k from the bottom, the waiting time for a new
 card to be inserted below it is about n/k. Thus the waiting time T for the bottom card to come to
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 334 DAVID ALDOUS AND PERSI DIACONIS [May

 the top and be inserted is about

 n n n
 n?4- +?-? ?--nlogn.

 2 3 n

 This paper presents a rigorous version of the argument and illustrates its use in a variety of
 random walk problems. The next section introduces the basic mathematical set up. Section 3

 details a number of examples drawn from applications such as computer generated pseudo
 random numbers. Section 4 treats ordinary riffle shuffling, analyzing a model introduced by

 Gilbert, Shannon, and Reeds. Section 5 explains a sense in which the method of stopping times

 always works and compares this to two other techniques (Fourier analysis and coupling). Some

 open problems are listed.

 2. The Basic Set-Up. Repeated shuffling is best treated as random walk on the permutation

 group Sn. For later applications, we treat an arbitrary finite group G. Given some scheme for
 randomly picking elements of G, let Q(g) be the probability that g is picked. The numbers
 {Q(g): g E G} are a (probability) distribution: Q(g) > 0 and IQ(g) = 1. Repeated indepen-

 dent picks according to the same scheme yield random elements 41 I 23t-.- of G. Define the
 products

 X0 = identity

 Xi = 4

 Xk = (kk-l = (k k-1 ...1

 The random variables X0, X1, X2,..., are the random walk on G with step distribution Q. Think
 of Xk as the position at time k of a randomly-moving particle. The distribution of X2, that is the

 set of probabilities P(X2 = g), g E G, is given by convolution

 P(X2 = g) = Q*Q(g) = Z Q(h)Q(gh-1).
 heG

 For Q(h) Q(gh1-) is the chance that element h was picked first and gh1 was picked second; for
 any h, this makes the product equal to g. Similarly, P(Xk = g) = Qk*(g), where Qk* is the
 repeated convolution

 (2.1) Qk* = Q*Q(k-1)* = Q(h)Q(k-1)*(gh-1).
 heG

 In modelling shuffling of an n-card deck, the state of the deck is represented as a permutation

 7T E Sn, meaning that the card originally at position i is now at position 7T(i).
 In Example 1, G = Sn, and using cycle notation for permutations 7u,

 Q(i, i -1,)...,)1) =lln, I < i < n,
 Q( T) =0, else.

 Here (k is a randomly chosen cycle, Xk is the state of the deck after k shuffles, and Qk*(7T) is the

 chance that the state after k shuffles is 7T. In Fig. 1, 4j = (3, 2,1), 42 = (3, 2,1) and X2 = =1*42
 (1,2,3).

 We shall study the distribution Qk*. Note that Qk* can be defined by (2.1) without using the
 richer structure of the random walk (Xk); however, this richer structure is essential for our

 method of analysis.
 A fundamental result is that repeated convolutions converge to the uniform distribution U:

 (2.2) Qk*( g) __ U(g) = 1/jGj as k - oo,

 unless Q is concentrated on some coset of some subgroup. This was first proved by Markov
 (1906)-see Feller (1968), Section 15.10 for a clear discussion-and can nowadays be regarded as
 a special case of the basic limit theory of finite Markov chains. Poincare (1912) gave a Fourier
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 1986] SHUFFLING CARDS AND STOPPING TIMES 335

 analytic proof, and subsequent workers have extended (2.2) to general compact groups-see

 Grenander (1963), Heyer (1977), Diaconis (1982) for surveys. A version of this result is given here
 as Theorem 3 of Section 3.

 Despite this work on abstracting the asymptotic result (2.2), little attention has been paid until

 recently to the kind of non-asymptotic questions which are the subject of this paper.
 A natural way to measure the difference between two probability distributions Q1, Q2 on G is

 by variation distance

 1

 11Q1 - Q211I= 2 Q1(g) - Q2( g)1

 There are equivalent definitions

 (2.3) 1lQ1 - Q211= maxIQ1(A) - Q2(A)1 = - ma1aX AQ(f - Q2(f)I1
 AGG 2 j1f11=i

 where Q(A) = EgXAQ(g), Q(f) = Ef(g)Q(g), and l1f 11 = max1f(g)j. The string of equalities is
 proved by noting that the maxima occur for A = {g: Q1(g) > Q2(g)} and for f = 1A - 1A-
 Thus, two distributions are close in variation distance if and only if they are uniformly close on all

 subsets. Plainly 0 < IIQ1 - Q211 < 1.
 An example may be useful. Suppose, after well-shuffling a deck of n cards, that you happen to

 see the bottom card, c. Then your distribution Q on Sn is uniform on the set of permutations 7T
 for which 7(c) = n, and IIQ - Ull = 1 - l/n. This shows the variation distance can be very
 "unforgiving" of small deviations from uniformity.

 Given a distribution Q on a group G, (2.2) says

 def

 (2.4) dQ(k) - lQk* - Ull __ 0 as k -* oo.
 Where Q models a random shuffle, d(k) measures how close k repeated shuffles get the deck

 to being perfectly (uniformly) shuffled. One might suppose d(k) decreases smoothly from (near) 1
 to 0; and it is not hard to show d(k) is decreasing. However,

 THEOREM 1. For the "top in at random" shuffle, Example 1,
 (a) d(n log n + cn) S e-C; all c > 0, n > 2.

 (b) d(n log n -cnn) >- l as n -- oo; all cn -4oo.

 This gives a sharp sense to the assertion that n log n shuffles are enough. This is a particular
 case of a general cut-off phenomenon, which occurs in all shuffling models we have been able to

 analyze; there is a critical number ko of shuffles such that d(ko + o(ko)) 0 O but d(ko - o(ko))
 1. (See Fig. 2.)

 1

 d(k)

 ko

 FIr-').
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 336 DAVID ALDOUS AND PERSI DIACONIS [May

 Our aim is to determine ko in particular cases. This is quite different from looking at asymptotics
 in (2.4): it is elementary that d(k) -- 0 geometrically fast, and Perron-Frobenius theory says
 d(k) - aXk, where a, X have eigenvalue/eigenvector interpretation, but these asymptotics miss
 the cut-off phenomenon. For card players, the question is not "exactly how close to uniform is the
 deck after a million riffle shuffles?", but "is 7 shuffles enough?".

 The main purpose of this paper is to show how upper bounds on d(k), like (a) in Theorem 1,
 can be obtained using the notion of strong uniform times, which we now define in two steps.

 DEFINITION 1. Let G be a finite group, and G? the set of all G-valued infinite sequences

 g = (g1, g2,...). A stopping rule T is a function T: G?? {1, 2, 3,...; o } such that if T(g) =j,
 then T(g) =j for all A with A = gi, i < j.

 DEFINITION 2. Let 9 be a distribution on G, and let (Xk) be the associated random walk.
 Given a stopping rule T, the random time T = T(X1, X2,...) is a stopping time. Call T a strong

 uniform time (for U) if for each k < co
 (a) P(T = k, Xk = g) does not depend on g.

 REMARK (i). Note that (a) is equivalent to

 (b) P(Xk =gT= k) = 1/jG gc G

 and to

 (c) P(Xk =gT k) =1/GI; gE G.

 REMARK (ii). Picture the process of picking group elements and multiplying. A stopping time is

 a rule which tells you when to "stop" with the current value of the product. The time is strong

 uniform if, conditional on stopping after k steps, the value of the product is uniform on G.

 REMARK (iii). In Example 1, we defined a time T as the first time that the original bottom card

 has come to the top and been inserted into the deck. This is certainly a stopping time, and the

 inductive argument in Section 1 shows that, given T = k, all arrangements of the deck are equally
 likely.

 REMARK (iv). In practice it is often useful to have a slightly more general notion of stopping

 time, which allows the decision on whether or not to stop at n to depend not only on (X1, ...., Xn )
 but also on the value of some random quantity Y independent of the X process. Such a time T is
 called a randomized stopping time T; our results extend to this case without essential change.

 Here is a basic upper bound lemma which relates strong uniform times to the distance between
 Qk* and the uniform distribution.

 LEMMA 1. Let Q be a probability distribution on a finite group G. Let T be a strong uniform time

 for Q. Then

 d(k) jjQk* - Ullj P(T> k), all k> 0.

 Proof. For any A c G

 Qk* (A) = P(Xk c A)

 = EZP(Xk A, T =j) + P(Xk E A, T > k)
 j?k

 = Z U(A)P(T=j) + P(Xk EAIT> k)P(T> k)
 j< k

 = U(A) + {P(Xk EAIT> k)- U(A)}P(T> k)
 and so

 IQk*(A) - U(A) I < P(T > k). O
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 1986] SHUFFLING CARDS AND STOPPING TIMES 337

 We conclude this section by using Lemma 1 and elementary probability concepts to prove
 Theorem 1. Here is one elementary result we shall use in several examples.

 LEMMA 2. Sample uniformly with replacement from an urn with n balls. Let V be the number of

 draws required until each ball has been drawn at least once. Then

 P(V> n log n + cn) < ec; c > O, n > 1.

 Proof. Let m = n log n + cn. For each ball b let Ab be the event "ball b not drawn in the

 first m draws". Then

 P(V > m) = P(UAb) < ZP(Ab) = n ( _ )

 < nexp(-m/n) = e-c. O

 REMARK. This is the famous "coupon-collector's problem", discussed in Feller (1968). The

 asymptotics are P(V > n log n + cn) -1 1- exp(-e-c) as n -- oo, c fixed. So for c not small
 the bound in Lemma 2 is close to sharp.

 Proof of Theorem 1. Recall we have argued that T, the first time that the original bottom card
 has come to the top and been inserted into the deck, is a strong uniform time for this shuffling
 scheme. We shall prove that T has the same distribution as V in Lemma 2; then assertion (a) is a
 consequence of Lemmas 1 and 2.

 We can write

 (2.5) T= T1 + (T2 - T1) + *- (Tn-1- T-2) + (T- Ti-),
 where Ti is the time until the ith card is placed under the original bottom card. When exactly i
 cards are under the original bottom card b, the chance that the current top card is inserted below

 i + 1
 b is and hence the random variable T, + 1 - Ti has geometric distribution

 n

 i+1 i+ 1 J'
 (2.6) P(ilT J -;j> 1.

 n n

 The random variable V in Lemma 2 can be written as

 (2.7) V= (V V"V1) + ( Vn-1 Vn-2) + ? * * + (V2 - V0) + Vl,
 where Vi is the number of draws required until i distinct balls have been drawn at least once.
 After i distinct balls have been drawn, the chance that a draw produces a not-previously-drawn

 n-i
 ball is . So V - Vi- has distribution

 n-ii n-i\y-
 P(VI-ilj= - ; 1k.

 Comparing with (2.6), we see that corresponding terms (Ti + - Tj) and (Vn'> - "-i-1) have the
 same distribution; since the summands within each of (2.5) and (2.7) are independent, it follows
 that the sums T and V have the same distribution, as required.

 To prove (b), fix j and let A. be the set of configurations of the deck such that the bottom j
 original cards remain in their original relative order. Plainly U(Aj) = l/j! Let k = k(n) be of the
 form n log n - Cn n, cn -+ oo. We shall show

 (2.8) Qk*(Aj) -+ 1 as n oo; j fixed.

 Then d(k) > max {Qk*(Ai) - U(Aj)} -+ 1 as n oo, establishing part (b).

 To prove (2.8), observe that Qk*(Aj) > P(T - Tj > k). For T - Tj is distributed as the
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 338 DAVID ALDOUS AND PERSI DIACONIS [May

 time for the card initially jth from bottom to come to the top and be inserted; and if this has not
 occurred by time k, then the original bottom j cards must still be in their original relative order at
 time k. Thus it suffices to show

 (2.9) P(T- Tj < k) -0 as n -oo; j fixed.
 We shall prove this using Chebyshev's inequality:

 var(Z)
 P( IZ - EZI > a) < 2 where a > 0, and Z is any random variable.

 a

 From (2.6),

 E(Tl-TT)= var(T + 1 - n ) (1- i 1)

 and so from (2.5)

 n-i

 E(T-Tj)= E i+ =nlogn+O(n),

 var( T - T) = E ( 1)(1__ = O(n 2)

 and Chebyshev's inequality applied to Z = T - T3-1 readily yields (2.9). 0

 REMARK. Note that the "strong uniform time" property of T played no role in establishing the

 lower bound (b). Essentially, we get lower bounds by guessing some set A for which IQk*(A) -
 U(A) I should be large, and using the obvious (from (2.3)) inequality

 d( k) = jjQk* -Ull > [Qk*(A) - U(A) 1.

 3. Examples. We present constructions of strong uniform times for a variety of random walks:
 simple random walk on the circle, general random walks on finite groups, and a random walk
 arising in random number generation. Sometimes our arguments give the optimal rate, often they
 give the correct order of magnitude.

 EXAMPLE 2. Simple random walk on the integers mod n . Let n be a positive odd integer. Let Zn
 be the integers mod n, thought of as n points on a circle. Imagine a particle which moves by steps,

 each step being equally likely to move 1 to the right or 1 to the left. This random walk has step

 distribution Q on Zn;

 (3.1) Q(1) = Q( - 1)= 2

 The following theorem shows that the number of steps k required to become uniform is slightly
 more than n2.

 THEOREM 2. Let n > 3 be an odd integer. For simple random walk on the integers mod n defined
 by (3.1), fork > n2,

 d(k) < 6e-ak/n2

 with a = 4,g2/3.

 Proof. First consider n = 5 and the following 5 patterns

 ++ --, +-- -, -?+ + +, + ++, --

 A sequence of successive steps of the walk on Z5 yields a sequence of ? symbols. Consider the
 sequence in disjoint blocks of 4. Stop the first time T that a block of 4 equals one of the above 5
 patterns. Thus, if the sequence starts + + - +, + + + -, + + - -, T= 12.
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 1986] SHUFFLING CARDS AND STOPPING TIMES 339

 This stopping time is clearly a strong uniform time; given that T = 12, all 5 final positions in
 Z5 are equally likely. Such sets of k-tuples can be chosen for any odd n. It turns out that to get
 the correct rate of convergence, k should be chosen as a large multiple of n2. Here are some
 details.

 For fixed integers n and k, with n odd, let BJ be the set of binary k-tuples with j pluses
 (mod n).

 Let j* be the index corresponding to the smallest 1Bj*j. Partition the set of binary k-tuples
 into n groups of size lBj*1, the jth group being chosen arbitrarily from B.. The random walk
 generates a sequence of + symbols. Consider these in disjoint blocks of length k. Define T as the
 first time a block equals one of the chosen group. This clearly yields a strong uniform time. The

 following lemma gives an explicit upper bound for d(k).

 LEMMA 3. Let T be as defined above. For n > 3 and k > n2,

 P(T > k) < 6e-akln2

 with a = 4,r2/3.

 Proof. The number of elements in Bj is

 blok f g In t =- 1 e n (Cos- ) this being a classical identity due to C. Ramus (see Knuth (1973, p. 70)). The chance of a given

 block falling in the chosen group equals

 n n-1 2_ il_ 2 __ k df=ylJBj,lIEe n (Cos~).
 Now

 2 1 n-i 2~~~~lnk
 P(T > k) = p(l -p) + p(l -p) + _(-)+**=1p < E cosn|

 =1 n

 Straightforward calculus using quadratic approximations to cosine such as cos x < 1 - _<

 e-x /3 for 0 < x < Tr/2 leads to the stated result. Further details may be found in Chung,
 Diaconis, and Graham (1986). El

 REMARK. There is a lower bound for d(k) of the form ae- k/n2 for positive a and /3, so
 somewhat more than n2 steps really are required. One way to prove this is to use the central limit
 theorem; this implies that after k steps the walk has moved a net distance of order k1/2. Hence we
 need k of order n2 at least in order that the distribution after k steps is close to uniform. Further
 details are in Chung, Diaconis and Graham (1986).

 There is a sense in which the cutoff phenomenon does not occur for tlis example. It is possible
 to show there is a continuous function d*(t), with d*(t) -+ 0 as t -+ oo, such that for simple
 random walk on Zn,

 maxld(k) - d*(k/n 2)I _ 0 as n -+ oo.
 k

 Indeed, as n - oo0, a rescaled version of the random walk tends to Brownian motion on the circle.
 The function d*(t) is the variation distance to uniformity for Brownian motion at time t.

 EXAMPLE 3. A bound for general problems. Let G be a finite group and Q a probability on G.
 The following result shows that Q*k converges to the uniform distribution geometrically fast
 provided Q is not concentrated on a subgroup or a translate of a subgroup. To see the need for
 this condition, consider Example 2 above (simple random walk on Zn). If n is even, then the

This content downloaded from 165.91.113.103 on Mon, 25 Feb 2019 18:27:41 UTC
All use subject to https://about.jstor.org/terms



 340 DAVID ALDOUS AND PERSI DIACONIS [May

 particle is at an even position after an even number of steps-the distribution never converges to
 uniform.

 A simple way to force convergence is the following:

 (3.2) Suppose for some ko and 0 < c < 1, Q*ko(g) > cU(g) for all g E G.

 THEOREM 3. Condition (3.2) implies

 d(k) (1- c)lk/ko] for all k> Iek.

 Proof. The argument proceeds by constructing another process which behaves like the original

 random walk but easily exhibits a strong uniform time. Suppose first that ko = 1, so Q(g) > cU(g)
 for all g. Define

 R(g) = [Q(g) - cU(g)]/[1 - c].

 Observe that R(g) is a probability and

 (3.3) Q(g) = (1 - c)R(g) + cU(g).
 Consider a new random walk defined as follows. For each step, flip a coin with probability of
 heads c. If the coin comes up heads, take the step according to U(g). If the coin comes up tails,
 take the step according to R(g). Because of (3.3), each step is taken according to Q overall. Let T
 be the first time that the coin comes up heads. Then T is a (randomized) stopping time and
 because the convolution of the uniform distribution with any distribution is uniform, T is a strong
 uniform time.

 Clearly,

 P{T> k} = (1-C)k.

 For ko > 1, apply the argument to the probability Q*ko. El

 REMARK (i). The argument given is valid for a probability on a general compact group. In this
 form, Theorem 3 is due to Kloss (1959). The proof we give is very close to techniques exploited by
 Athreya and Ney (1977) for general state space Markov processes.

 REMARK (ii). While Theorem 3 seems quantitative, the simplicity of the argument should make
 one suspicious. The reader can see the difficulty by trying to get a rate of convergence for simple

 random walk on Z, Estimating c and ko is not an easy problem, we do not know how to use
 Theorem 3 to get the correct rate of convergence for any non-trivial problem.

 EXAMPLE 4. A random walk on Z,, arising in random number generation. Random number
 generators often work by recursively computing Xk+l = aXk + b (modulo n), where a, b and n
 are chosen carefully-see Knuth (1981). Of course the sequence Xk is really deterministic and
 exhibits many regularities. To improve things, various schemes have been suggested involving
 combining several generators. In one scheme, a and b are chosen each step from another
 generator. If this second source is considered truly random (it may bt the result of a physical
 generator using a radioactive source) one may inquire how long it takes Xk to become random.

 For example, if a = 1 and b = 0, + 1, or -1 each with probability 1/3, the process becomes

 simple random walk on Zn: Xk = Xk-l + bk (mod n) with a slightly different step size than
 considered in Example 2. The argument given there can easily be adapted to show that slightly
 more than n2 steps are required to become random.

 We now consider the effect of a deterministic doubling:

 (3.4) Xk = 2Xk_l + bk(modn), bk = 0,?1withprobability-j.

 We will show that this dramatically speeds things up: from n2 down to log n log log n. The
 argument is presented as a non-trivial illustration of the method of strong uniform times. It
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 1986] SHUFFLING CARDS AND STOPPING TIMES 341

 involves a novel construction of an almost uniform time. For simplicity, we take n = 2' - 1 (a

 common choice in the application).

 THEOREM 4. Let Qk be the probability distribution of Xk defined by (3.4) with n = 2' - 1. Let

 d(k) = IlQk - Ull. Then

 d(cllogl) -O as l oo, forc > l 3

 Proof. Observe first that if 8i takes values ? 1 with probability 1/2, then

 U* = 2'81 + 21-282 + *-.

 is very close to uniformly distributed mod 2' - 1. Indeed,

 I # 0,
 P(U* =j(mod21- 1))= O 21

 Thus

 2 1
 (3.5) IIU* - Ull= 21-1 - 2'-1

 The argument proceeds by finding a stopping time T such that the process stopped at time T has
 distribution at least as close to uniform as U*. An appropriate modification of the upper bound
 lemma will complete the proof. We isolate the steps as a sequence of lemmas. The first and second
 lemmas are elementary with proofs omitted.

 LEMMA 4. Let X1, X2,. ... be a process with values in a finite group G. Write Qk for the
 probability distribution of Xk. Let T be a stopping time with the property that for some E > 0,

 IlQk(-IT =j) -Ull < E; allj < k.

 Then

 IIQk-Ull EU + P(T> k).

 LEMMA 5. Let Q1 and Q2 be probability distributions on a finite group G. Then

 IIQ1*Q2 - Ull -< IlQ1 - Ull.

 To state the third lemma, an appropriate stopping time T must be defined. Using the defining
 recurrence Xk = 2Xk_l + bk(mod n),

 (3.6) Xk = 2kb l?b + 2k-2 b2 + ... +bk(mod n).

 Since n = 2' - 1, 2 = 1(mod n). Group the terms on the right side of (3.6) by distinct powers
 of 2:

 Xk = 2-'1Al + 21-2A2 + * ?+A1(mod n)

 with

 A1 = b, + bj+l + b21+1 ..., A2 = b2 + b,+2 + * , etc.

 Define T as the first time each of the sums A1, A2,... , Al contains at least one non-zero
 summand.

 LEMMA 6. The probability distribution of Xk given T = j < k is the convolution of U* defined
 above with an independent random variable.
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 342 DAVID ALDOUS AND PERSI DIACONIS [May

 Proof. Let 8' be the first non-zero summand in Ai. Write

 Xk = [2I-1S* + 2I-28* + -+8*] + [2'-'(Al - 8) + +(A, - )]-

 Clearly the first term on the right has distribution U*. Further,, given all the remaining values of
 bk, and the labels of 8*, all 2' values of 8 ., are equally likely, so the decomposition of Xk
 is into independent parts. 101

 Using Lemmas 5, 6, along with the bound (3.5) allows us to take e = 2/2' in Lemma 4 for this
 stopping time T. To complete the proof of Theorem 4, it only remains to estimate P(T > k).

 Toward this end, consider k = al for integer a,

 P(T > al) = 1-(1 -(3

 For large 1, this is approximately 1 - exp{ - le-a log3 }. If a - lg 1 for some value of c, this
 log 3

 becomes 1 - exp{ e- c } which is well approximated by e-c for large c. It follows that for c

 large, log 3 + ci steps suffice to be close to uniform. This is more than was claimed in Theorem

 4.0C

 REMARK. Chung, Diaconis and Graham (1986) give a more detailed analysis, showing that
 1 log I is the correct order of magnitude.

 4. An Analysis of Riffle Shuffles. In this section we analyze the most commonly used method
 of shuffling cards-the ordinary riffle shuffle. This involves cutting the deck approximately in
 half, and interleaving (or riffling) the two halves together. We begin by introducing a mathemati-

 cal model for shuffling suggested by Gilbert, Shannon and Reeds. Following Reeds, we introduce
 a strong uniform time for this model and show how the calculations reduce to simple facts about
 the birthday problem.

 The diagram gives the result of a single riffle shuffle of a 10 card deck in the usual i - (i)
 format

 i -rr(i)

 0 1 1 2
 0 0 2 4
 0 1 3 5
 0 0 4 7
 1 0 5 1
 1 1 6 3

 0 7 6

 1 - 1 8 8
 1 - - - 1 9 9
 1 1 10 10

 This shuffle is the result of cutting 4 cards off the top of a 10 card "deck" and riffling the packets
 together, first dropping cards 10, 9, 8, then card 4, then 7, and so on.

 This permutation has two rising sequences

 St(1) < St(2) < gt(3) < -7(4) and 7r(5) < 7r(6) < 1T(7) < 7r(8) < so(9) < gr(10)-

 In general, a permutation so of n cards made by a riffle shuffle will have exactly 2 rising sequences
 (unless it is the identity, which has 1). Conversely, any permutation of n cards with 1 or 2 rising
 sequences can be obtained by a physical riffle. Thus the mathematical definition of a riffle shuffle
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 is "a permutation with 1 or 2 rising sequences". Suppose c cards are initially cut off the top. Then

 there are (sc) possible riffle shuffles (1 of which is the identity). To see why, label each of the c
 cards cut with "0 " and the others with "1". After the shuffle, the labels form a binary n-tuple with

 c "O"s: there are ('n) such n-tuples and each corresponds to a unique riffle shuffle. Finally, the
 total number of possible riffle shuffles is

 n

 1+ n _ I =1 2n n.

 Some stage magicians can perform "perfect" shuffles, but for most of us the result of a shuffle
 is somewhat random. The actual distribution of one shuffle (that is, the set of probabilities of each

 of the 2n - n possible riffle shuffles) will depend on the skill of the individual shuffler. The

 following model for random riffle shuffle, suggested by Gilbert and Shannon (1955) and Reeds
 (1981), is mathematically tractable and qualitatively similar to shuffles done by amateur card
 players.

 Ist description. Begin by choosing an integer c from 0,1,..., n according to the binomial

 distribution P{C = c} = n (). Then, c cards are cut off and held in the left hand, and n - c

 cards are held in the right hand. The cards are dropped from a given hand with probability
 proportional to packet size. Thus, the chance that a card is first dropped from the left hand packet
 is c/n. If this happens, the chance that the next card is dropped from the left packet is

 (c -1)/(n -1).

 There are two other descriptions of this shuffling mechanism that are useful.

 2nd description. Cut an n card deck according to a binomial distribution. If c cards are cut off,

 pick one of the ('n) possible shuffles uniformly.

 3rd description. This generates 7T-1 with the correct probability. Label the back of each card
 with the result of an independent, fair coin flip as 0 or 1. Remove all cards labelled 0 and place

 them on top of the deck, keeping them in the same relative order.

 LEMMA 7. The three descriptions yield the same probability distribution.

 Proof. The second and third descriptions are equivalent. Indeed, the binary labelling chooses a

 binomially distributed number of zeros, and conditional on this choice, all possible placements of
 the zeros are equally likely.

 The first and second descriptions are equivalent. Suppose c cards have been cut off. For the

 first description, a given shuffle is specified by a sequence D1, D2,..., DnS where each D, can be
 L or R and c of the Di's must be L. Under the given model, the chance of all such sequences,
 determined by multiplying the chance at each stage, is c!(n - c)!/n! El

 The argument to follow analyzes the repeated inverse shuffle. This has the same distance to
 uniform as repeated shuffling because of the following lemma.

 LEMMA 8. Let G be a finite group, T: G -* G one-to-one, and Q a probability on G. Then

 jjQ - Ullj = jQT-1 - Ull,

 where QT-1(g) = Q(T-1(g)) is the probability induced by T. E1

 The results of repeated inverse shuffles of n cards can be recorded by forming a binary matrix
 with n rows. The first column records the zeros and ones that determine the first shuffle, and so

 on. The i th row of the matrix is associated to the i th card in the original ordering of the deck,
 recording in coordinate j the behavior of this card on the jth shuffle.
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 1 2 3 4

 a 1101 c 0010 c 0010 f 1000 f 1000
 b 1100 e 0110 d 1011 a 1101 b 1100

 c 0010 a 1101 f 1000 b 1100 c 0010

 d 1011 b 1100 e 0110 c 0010 e 0110

 e 0110 d 1011 a 1101 d 1011 a 1101

 f 1000 f 1000 b 1100 e 0110 d 1011

 LEMMA 9 (Reeds). Let T be the first time that the binary matrix formed from inverse shuffling has

 distinct rows. Then T is a strong uniform time.

 Proof. The matrix can be considered as formed by flipping a fair coin to fill out the i, j entry.

 At every stage, the rows are independent binary vectors. The joint distribution of the rows,

 conditional on being all distinct, is invariant under permutations.
 After the first inverse shuffle, all cards associated to binary vectors starting with 0 are above

 cards with binary vectors starting with 1. After two shuffles, cards associated with binary vectors
 starting (0, 0) are on top followed by cards associated to vectors beginning (1, 0), followed by

 (0,1), followed by (1,1) at the bottom of the deck.
 Inductively, the inverse shuffles sort the binary vectors (from right to left) in lexicographic

 order. At time T the vectors are all distinct, and all sorted. By permutation invariance, any of the
 n cards is equally likely to have been associated with the smallest row of the matrix (and so be on
 top). Similarly, at time T, all n! orders are equally likely. [1

 To complete this analysis, the chance that T > k must be computed. This is simply the
 probability that if n balls are dropped into 2k boxes there are not two or more balls in a box. If
 the balls are thought of as people, and the boxes as birthdays, we have the familiar question of the
 birthday problem and its well-known answer. This yields:

 THEOREM 5. For Q the Gilbert-Shannon-Reeds distribution defined in Lemma 7,

 (4.1) IIQ*k - Ull < P(T > k) = 1- (1 - k

 Standard calculus shows that if k = 2log2(n/c),

 C2

 P(T> k) 1-e 2 - C2 2
 In this sense, 2 1og2 n is the cut off point for this bound. Exact computation of the right side of
 (4.1) when n = 52 gives the bounds

 k upper bound
 10 .73

 11 .48

 12 .28

 13 .15

 14 .08

 REMARK (a). The lovely new idea here is to consider shuffling as inverse sorting. The argument
 works for any symmetric method of labelling the cards. For example, biased cuts can be modeled

 by flipping an unfair coin. To model cutting off exactly j cards each time, fill the columns of the
 matrix with the results of n draws without replacement from an urn containing j balls labelled
 zero and n - j balls labelled one. These lead to slightly unorthodox birthday problems which turn
 out to be easy to work with.
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 REMARK (b). The argument can be refined. Suppose shuffling is stopped slightly before all
 rows of the matrix are distinct-e.g., stop after 2 log n shuffles. Cards associated to identical
 binary rows correspond to cards in their original relative positions. It is possible to bound how far

 such permutations are from uniform and get bounds on IIQ*k - Ull. Reeds (1981) has used such
 arguments to show that 9 or fewer shuffles make the variation distance small for 52 cards.

 REMARK (c). A variety of ad hoc techniques have been used to get lower bounds. One simple
 method that works well is to simply follow the top card after repeated shuffles. This executes a
 Markov chain on n states with a simple transition matrix. For n in the range of real deck sizes,
 n X n matrices can be numerically multiplied and then the variation distance to uniform
 computed. Reeds (1981) has carried this out for decks of size 52 and shown that IIQ*6 - UII > .1.
 Techniques which allow asymptotic verification that k = (3/2)1og2 n is the right cutoff for large n
 are described in Aldous (1983a). These analyses, and the results quoted above, suggest that seven
 riffle shuffles are needed to get close to random.

 REMARK (d). Other mathematical models for riffle shuffling are suggested in Donner and
 Uppulini (1970), Epstein (1977), and Thorp (1973). Borel and Cheron (1955) and Kosambi and
 Rao (1958) discuss the problem in a less formal way. Where conclusions are drawn, 6 to 7 shuffles
 are recommended to randomize 52 cards.

 REMARK (e). Of course, our ability to shuffle cards depends on practice and agility. The model
 produces shuffles with single cards being dropped about 1/2 of the time, pairs of cards being
 dropped about 1/4 of the time, and i cards blocks being dropped about 1/2' of the time.
 Professional dealers drop single cards 80% of the time, pairs about 18% of the time and hardly
 ever drop 3 or more cards. Less sophisticated card handlers drop single cards about 60% of the
 time. Further discussion is in Diaconis (1982) or Epstein (1977).

 It is not clear if neater shuffling makes for a better randomization mechanism. After all, eight
 perfect shuffles bring a deck back to order. Diaconis, Kantor, and Graham (1983) contains an
 extensive discussion of the mathematics of perfect shuffles, giving history and applications to
 gambling, computer science and group theory.

 The shuffle analyzed above is the most random among all single shuffles with a given
 distribution of cut size, being uniform among the possible outcomes. It may therefore serve as a
 lower bound; any less uniform shuffle might take at least as long to randomize things. Further
 discussion is in Mellish (1973).

 REMARK (f). One may ask, "Does it matter?" It seems to many people that if a deck of cards is
 shuffled 3 or 4 times, it will be quite mixed up for practical purposes with none of the esoteric
 patterns involved in the above analysis coming in.

 Magicians and card cheats have long taken advantage of such patterns. Suppose a deck of 52
 cards in known order is shuffled 3 times and cut arbitrarily in between these shuffles. Then a card
 is taken out, noted and replaced in a different position. The noted card can be determined with
 near certainty! Gardner (1977) describes card tricks based on the inefficiency of too few riffle
 shuffles.

 Berger (1973) describes a different appearance of pattern. He compared the distribution of
 hands at tournament bridge before and after computers were used to randomize the order of the
 deck. The earlier, hand shuffled, distribution showed noticeable patterns (the suit distributions
 were too near "even" 4333) that a knowledgeable expert could use.

 It is worth noting that it is not totally trivial to shuffle cards on a computer. The usual method,
 described in Knuth (1981), goes as follows. Imagine the n cards in a row. At stage i, pick a
 random position between i and n and switch the card at the chosen position with the card at
 position i. Carried out for 1 < i < n - 1, this results in a uniform permutation. In the early days
 of computer randomization, we are told that Bridge Clubs randomized by choosing about 60
 random transpositions (as opposed to 51 carefully randomized transpositions). As the analysis of

This content downloaded from 165.91.113.103 on Mon, 25 Feb 2019 18:27:41 UTC
All use subject to https://about.jstor.org/terms



 346 DAVID ALDOUS AND PERSI DIACONIS [May

 Diaconis and Shahshahani (1981) shows, 60 is not enough.

 REMARK (g). While revising this paper we noted the following question and answer in a
 newspaper bridge column ("The Aces", by Bobby Wolff).

 Q: How many times should a deck be shuffled before it is dealt? My fellow players insist on at
 least seven or eight shuffles. Isn't this overdoing it?

 A: The laws stipulate that the deck must be " thoroughly shuffled". While no specific number
 is stated, I would guess that five or six shuffles would be about right; seven or eight would
 not be out of order.

 5. Other Techniques and Open Problems. A number of other natural random walks admit
 elegant analyses with strong uniform times. For example, Andre Broder (1985) has given stopping

 times for simple random walk on the "cube" Z2, and for the problem of randomizing n cards by
 random transpositions. We can similarly analyze nearest neighbor random walks on a variety of 2
 point homogeneous spaces. It is natural to inquire if a suitable stopping time can always be found.
 This problem is analyzed in Aldous and Diaconis (1985): let us merely state two results.

 We need to introduce a second notion of distance to the uniform distribution. Let Q be a
 probability on a finite group G. The separation of Qk* to the uniform distribution U after k steps
 is defined as

 s( k) = IGI max{ U(g) - Qk*(g)}.
 g

 Clearly 0 S s(k) S 1 with s(k) = 0 if and only if Qk* = U. The separation is an upper bound
 for the variation distance:

 d(k) < s(k)

 because

 IIQk* - Ul= {U(g) -Q(g)}
 g:Q k*(g)< U(g)

 The following result generalizes Lemma 1.

 THEOREM 6. If T is a strong uniform time for the random walk generated by Q on G, then

 (5.1) s(k) < P(T> k); all k > 0.

 Conversely, for every random walk there exists a randomized strong uniform time T such that
 (5.1) holds with equality.

 While separation and variation distance can differ, for random walk problems there is a sense
 in which they only differ by a factor of 2. For 0 < E < 4, define

 )= 1 - (1 - 2e1/2)(1 _1/2)2

 and observe that +(E) decreases as e decreases, and ?(E) 4E1/2 as O0.

 THEOREM 7. For any distribution Q on any finite group G,

 s(2k) s +(2d(k)): k > 1, provided d(k) < 8

 Thus, if k steps suffice to make the variation distance small, at most 2k steps are required to
 make the separation small.

 Coupling is a probabilistic technique closely related to strong uniform times which achieves the
 exact variation distance. The coupling technique applies to Markov chains far more general than
 random walks on groups: see Griffeath (1975, 1978), Pitman (1976), Athreya and Ney (1977).

 Random walk involves repeated convolution and it is natural to try to use Fourier analysis or
 its non-commutative analog, group representation. Such techniques can sometimes give very sharp
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 bounds. Letac (1981) and Takacs (1982) are readable surveys. Diaconis and Shahshahani (1981,
 1984) present further examples. Robbins and Bolker (1981) use other techniques.

 Despite this range of available techniques, there are some shuffling methods for which we do
 not have good results on how many shuffles are needed; for example:

 (i) Riffle shuffles where there is a tendency for successive cards to be dropped from opposite

 hands.

 (ii) Overhand shuffle. The deck is divided into K blocks in some random way, and the order

 of the blocks is reversed.

 (iii) Semi-random transposition. At the kth shuffle, transpose the kth card (counting modulo

 n) with a uniform random card.

 From a theoretical viewpoint, there are interesting questions concerning the cut-off phenomenon.

 This occurs in all the examples we can explicitly calculate, but we know no general result which

 says that the phenomenon must happen for all "reasonable" shuffling methods.

 Acknowledgment. We thank Brad Efron, Leo Flatto, and Larry Shepp for help with Example
 1, and Jim Reeds for help with Section 4.
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 WHAT IS A DIFFERENTIAL?

 A NEW ANSWER FROM THE GENERALIZED RIEMANN INTEGRAL

 SOLOMON LEADER

 Mathematics Department, Hill Center, Busch Campus, Rutgers University, New Brunswick, NJ 08903

 Unlike derivatives which gained a solid basis in Cauchy's theory of limits, differentials found
 no effective accommodation with the rising level of rigor in calculus. Justly castigated by Berkeley
 as "ghosts of departed quantities", differentials clung fortuitously to the notational niche in
 calculus created for them by Leibniz. In this century they came to be presented as functionals on
 tangent spaces, a constricted role that made them respectable but evaded the issue of their wider
 role in integration. The resurrection of infinitesimals by nonstandard analysis rekindled interest in
 Leibniz' original concept of differential.

 We present here a completely new approach to differentials in one dimension. This approach is
 motivated by the following considerations: (i) differentials spring directly from the integration
 process, (ii) the utility of differentials in integration extends beyond conventional differential
 forms, (iii) a viable theory of differentials is readily attainable by standard analysis, and (iv) the
 generalized Riemann integral fills a vital gap in analysis and should have an innovative impact on
 our calculus and real variables courses. In the theory expounded here differentials on a 1-cell K
 form a Riesz space (lattice-ordered linear space). So for each differential a we have the
 differentials

 Jau = a v -a, a+ = a v 0, and a- = (-a)+= -(a A 0)

 Solomon Leader: I wrote my Ph.D. thesis in analysis at Princeton in 1952 under the late Salomon Bochner. For

 the past 33 years I have been at Rutgers figuring out how calculus should be taught. My main interests have been in
 measure theory, integration, proximity spaces, and fixed points. In warm weather my favorite diversion is
 body-surfing off Long Beach Island. My wife and I enjoy snorkeling in the Virgin Islands and welcome any excuse
 to visit Switzerland.
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