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1. The starting point:

Given any
z1, . . . zd+1 ∈ C

and
a1, . . .ad+1 ∈ C,

there is a unique polynomial f ∈ C[z] of degree at most d such
that

f (zi) = ai , i = 1, . . . ,d + 1.
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Problem:

What can we say along the same lines for polynomials in
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variables has dimension N, can we find a polynomial with
assigned values at N points zα ∈ Cr ?
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The first thing to observe is that this problem doesn’t have a
uniform answer: for example, if we consider linear polynomials
ax + by + c in two variables, we can find one with assigned
values at three points unless the points lie on a line.

In general, linear algebra describes the answer to our problem
in case d = 1; we want to know what we can say for d > 1.
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First, introduce some language/notation. Denote by Vd the
vector space of polynomials of degree at most d in r variables.

The “starting point” statement says that in case r = 1, for any
subset Γ = {z1, . . . , zd+1} ⊂ C the evaluation map

ρΓ : Vd → Cd+1 = ⊕Czi

given by evaluation at z1, . . . , zd+1 is an isomorphism.
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More generally, for any n ∈ N and any Γ = {z1, . . . , ze} ∈ C, the
evaluation map

ρΓ : Vd → Cn = ⊕Czi

is injective if d + 1 ≤ n and surjective when d + 1 ≥ n—in other
words, it has maximal rank.

The same is true if we evaluate derivatives as well as values,
as long as we consider all derivatives up to a certain order at
each point zi .
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More generally: if Γ is a configuration of points zα ∈ Cr with
multiplicities mα,

n =
∑
α

(
mα + r − 1

r

)
,

and
ρΓ : Vd → Cn

the map given by evaluating all derivatives up to order mα − 1
at zα, again: when does ρΓ fail to have maximal rank, and by
how much?



Algebraic geometry language: we say that such a configuration
Γ imposes independent conditions on polynomials of degree d
if ρΓ is surjective.

We also denote the rank of the evaluation map ρΓ by hΓ(d); this
is called the Hilbert function of the configuration Γ.
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2. give bounds on by how much they may fail: that is, how
small the rank hΓ(d) of ρΓ may be.



Our goals:

1. characterize geometrically configurations that fail to
impose independent conditions; and

2. give bounds on by how much they may fail: that is, how
small the rank hΓ(d) of ρΓ may be.



We will separate two cases:

A) when Γ consists of simple points (all multiplicities are 1); and

B) when Γ is a union of “fat points”—that is, multiplicities may
be arbitrary.

As we’ll see, these two cases give rise to very different
questions and answers, but there is a common thread to both.
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2. Simple points

In this case, the first observation is that general points always
impose maximal conditions—in other words, in the space (Cr )n

of configurations Γ of n points, those that impose maximal
conditions form a dense open subset.

In fact, if we choose a basis for the space of polynomials and
write out the matrix representative for ρΓ, the minors of this
matrix are polynomials on Cnr . Thus to prove the above, we
have only to show these minors are not all 0; that is, we have to
exhibit a single configuration Γ that imposes maximal
conditions.

To do this, pick the points zi ∈ Γ one at a time; as long as zi+1
doesn’t lie in the common zero locus of the polynomials of
degree d vanishing at z1, . . . , zi , Γ will impose independent
conditions.
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So, we ask when special configurations of points may fail to
impose maximal conditions, and by how much—that is, how
small hΓ(d) can be.

Elementary result: Any d + 1 distinct points in Cr impose
independent conditions on polynomials of degree d ; and d + 2
distinct points will fail to impose independent conditions if and
only if they lie on a line.
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To see this, observe that for any p1, . . . ,pd+1 ∈ Cr we can find a
polynomial vanishing at all but any one of the pi by taking a
product of d linear forms, each vanishing at exactly one of the
points.



For the second part, observe that this will work for d + 2 points
as long as the configuration contains three non-colinear points.



More generally, the question as posed isn’t very challenging:
hΓ(d) is minimal for Γ contained in a line.

And even if we require that Γ spans, the answer isn’t all that
interesting: configurations Γ with hΓ(d) minimal will consist of
n − r + 1 points on a line, plus r − 1 points off it so as to span.
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Theorem (Castelnuovo)
If Γ ⊂ Cr is a collection of n points in linear general position,
then

hΓ(d) ≥ min{rd + 1,n}.
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The proof is surprisingly simple: we exhibit polynomials of
degree d vanishing at rd points of Γ and no others by taking
products of linear polynomials each vanishing on r points.



There are two remarkable aspects of Castelnuovo’s theorem.
The first is that, even though this argument may seem crude, in
fact this inequality is sharp!

For example, in case r = 2 consider any configuration
Γ ⊂ C ⊂ C2 lying on a conic curve C
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A conic curve can be given parametrically as the image of a
map

φ : C→ C2

t 7→
(
q1(t),q2(t)

)
with qi rational functions of degree 2.

If f (x , y) is any polynomial of degree d on C2, then, the
pullback φ∗f is a rational function of degree 2d .

In particular, if f vanishes on 2d + 1 points of Γ, it must vanish
identically on C and hence on all of Γ.

Thus, hΓ(d) = min(2d + 1,n).
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This generalizes readily to higher dimensions. First, a definition:
if f0, . . . , fr is any basis for the vector space of polynomials of
degree at most r in one variable t , we call the arc

t 7→ (
f1
f0
, . . . ,

fr
f0

)

a rational normal curve. For example, the arc

t 7→ (t , t2, t3, . . . , t r )

is a rational normal curve.



Now, under the map

t 7→ (t , t2, t3, . . . , t r )

a polynomial of degree d on Cr pulls back to a polynomial of
degree dr in t .

It follows that any polynomial of degree d vanishing at dr + 1
points of a rational normal curve vanishes identically on the
rational normal curve.

Thus, any configuration of points on a rational normal curve
imposes the minimal number of conditions of polynomials of
degree d .
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much deeper: it’s that we have a converse.

Theorem (Castelnuovo)
If Γ ⊂ Cr is a collection of n ≥ 2r + 3 points in linear general
position, and

hΓ(2) = 2r + 1

then Γ is contained in a rational normal curve.

Thus we have a complete characterization of at least the
extremal examples of failure to impose independent conditions.
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Note a couple aspects of this statement. The first is that it’s
actually stronger in one respect than a literal converse, in that it
needs only a hypothesis on hΓ(2), not on the whole function hΓ.

The second is the requirement that the number of points is
n ≥ 2r + 3. We need some lower bound on n; if n were 2r + 1
or less the condition hΓ(2) ≤ 2r + 1 would be vacuous. But it’s
worth noting that the statement is actually false in case
n = 2r + 2.
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To understand where Castelnuovo’s theorem is coming from,
note that to any algebraic variety X ⊂ Cr we can associate a
Hilbert function hX (d); this is defined to be the codimension, in
the space of polynomials of degree d on Cr , of the subspace of
polynomials vanishing on X .

For large d , this coincides with a polynomial, called the Hilbert
polynomial pX of X . For X a curve, the Hilbert polynomial is
linear:

pX (d) = cd + 1− g

where c is the degree of the curve (the number of points of
intersection of X with a general hyperplane), and g its genus.
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minimal degree r among all nondegenerate curves in Cr .

The Hilbert function of a rational normal curve C ⊂ Cr is rd + 1,
and this is minimal among all nondegenerate curves in Cr .

It’s from this that Castelnuovo’s theorem stems: basically, it’s
saying that configurations with minimal Hilbert function lie on
curves with minimal Hilbert function.
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This is our general philosophy: configurations Γ ⊂ Cr that
impose near-minimal conditions do so because they lie on
algebraic curves of small Hilbert function (and in particular low
degree).

We conjecture that this characterizes not just extremal
configurations, but more generally ones with relatively small hΓ.
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Precisely, we have the

Conjecture
For α = 1,2, . . . , r − 1, if Γ ⊂ Cr is a collection of
n ≥ 2r + 2α + 1 points in uniform position, and

hΓ(2) ≤ 2r + α,

then Γ is contained in a curve C ⊂ Cr of degree at most
r − 1 + α.

“Uniform position” is a stronger form of linear general position:
it means that if Γ′, Γ′′ ⊂ Γ are subsets of the same cardinality,
then hΓ′(d) = hΓ′′(d) ∀d (this condition for d = 1 is tantamount
to linear general position).
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There are a number of remarks to make about this conjecture.

First, it’s been around a while, at least in cases: Castelnuovo’s
theorem (the case α = 1 of the conjecture) is from the late 19th
century, and the next case α = 2 was first established by Fano
shortly after (though the conjecture wasn’t formulated until
around 30 years ago).

The next case, α = 3, was solved around 7 years ago by Ivan
Petrakiev, and that’s where things stand now.
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We know how to classify irreducible, nondegenerate
subvarieties X ⊂ Cr with hX (2) = 2r + α for α ≤ r − 1. They
are in fact curves of degree r + α− 1.

Moreover, if a configuration Γ of n ≥ 2r + 2α + 1 points does lie
on such a curve C, then C will be the zero locus of the
quadratic polynomials vanishing on Γ.

Thus the crux of proving the conjecture is showing that the
common zero locus of the quadratic polynomials vanishing on Γ
is positive-dimensional.
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How did Castelnuovo get involved in this?

Castelnuovo’s interest lay in solving a classical problem: for
which triples (r ,n,g) does there exist a nondegenerate curve
C ⊂ Cr of degree n and genus g?

His idea was, given a curve C in r -space, to look at the
intersection Γ of C with a general hyperplane: the genus of C
can be read off its Hilbert function, which is in turn related to
the Hilbert function of Γ. Explicitly, what we find is that

g(C) ≤
∞∑

d=1

(
n − hΓ(d)

)
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Thus a curve of high genus must have hyperplane sections of
small Hilbert function; and Castelnuovo used his Theorem to
give a (sharp) upper bound g ≤ π(n, r) on the genus of a curve
of degree n in r -space.

Castelnuovo then used his “converse” to characterize curves
C ⊂ Cr achieving his maximal genus: explicitly, he showed that,
just as the hyperplane sections of C had to lie on a rational
normal curve in Cr−1, so the curve C itself had to lie on a
surface S ⊂ Cr of minimal degree r − 1.

We know how to describe all such surfaces, and hence how to
describe curves of maximal genus.
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In principle, assuming the conjecture we can use the same
logic to describe all curves of relatively high genus: they
similarly should lie on surfaces of low degree, whose geometry
is well-understood.

Thus, a proof of the conjecture would potentially yield a
complete answer to the classical problem of finding the possible
genera of curves of degree n in r -space.
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The bottom line:

Configurations Γ ⊂ Pr of points having small Hilbert function do
so because they lie on small subvarieties X ⊂ Pr —meaning,
subvarieties with small Hilbert function. In this case, for small d
the hypersurfaces of degree d containing Γ will just be the
hypersurfaces containing X ; in particular, X will be the
intersection of the quadrics containing Γ.

Usually, to prove results along these lines it’s enough to show
the the common zero locus of the quadratic polynomials
vanishing on Γ is positive-dimensional.
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3. Fat points

Recall our question: we let Γ be a configuration of k points
z1, . . . , zk ∈ Cr with multiplicities m1, . . . ,mk ∈ N. We set

n =
∑
α

(
mα + r − 1

r

)
,

and let
ρΓ : Vd → Cn

be the map given by evaluating all derivatives up to order
mα − 1 at zα.

Again we ask: when does ρ fail to have maximal rank, and by
how much?
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This may seem like a variant of the problem we’ve been
considering, but there’s one striking difference with the simple
point case: it’s not always the case that a general configuration
Γ imposes maximal conditions on hypersurfaces of degree d !



In the simplest example of this, we ask: does there exist a
quadratic polynomial in two variables with assigned values and
derivatives at two points p,q ∈ C2? In other words, is the map

ρ :V2 → C6

f (x , y) 7→
(

f (p),
∂f
∂x

(p),
∂f
∂y

(p), f (q),
∂f
∂x

(q),
∂f
∂y

(q)

)
surjective?

Since both spaces are 6-dimensional, we might expect so.
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But in fact ρ has a kernel: the square of the linear polynomial
vanishing at p and q!

So interpolation fails in this case.
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The first question is thus:

For what values of the integers r , k , m1, . . . ,mk and d does a
general configuration Γ impose maximal conditions?

This is unknown, even for polynomials in two variables!

We do have an answer, though, in case all multiplicities are 2:
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exactly four exceptions:
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2. r = 2, k = 5, d = 4

3. r = 3, k = 9, d = 4

4. r = 4, k = 7, d = 3
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For general multiplicities mα and general r , we don’t even have
a conjectured answer. For r = 2, though, we do.

Conjecture (Harbourne-Hirschowitz)
Let z1, . . . , zk ∈ C2 be general, and m1, . . . ,mk arbitrary
multiplicities. The corresponding configuration Γ will fail to
impose maximal conditions on polynomials of degree d iff there
is a curve C ⊂ C2 with∑

α

mα ·multzαC ≥ d · deg(C) + 2.
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Notes:

1. If true, it gives a complete answer to our question for r = 2:
while it may not be apparent, assuming the conjecture we
can recursively list all m1, . . . ,mk and d for which there
exists such a curve.

2. This is known for k ≤ 9 (S has an effective anticanonical
divisor).

3. This is known when max{mi} ≤ 7 (S. Yang)
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The bottom line:

There is one common thread running though our discussions of
Castelnuovo theory and the Harbourne-Hirschowitz conjecture.

The content of the HH conjectures may be thought of as this:
that if general multiple points in C2 fail to impose maximal
conditions, they do so because they lie on a “small” curve—in
particular, a curve C such that any polynomial of degree d
satisfying the conditions vanishes on C.
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4. Recasting the problem.

So let’s recast the problem: let’s drop all the conditions we’ve
put on Γ at various points above, and instead make just one
assumption: that the intersection of the hypersurfaces of degree
d containing Γ is zero-dimensional; in other words, Γ is a subset
of a complete intersection of r hypersurfaces of degree d .

We ask: what bounds can we give on hΓ(d) under this
hypothesis?
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One further wrinkle: instead of specifying the degree e of Γ and
asking for estimates on the size of hΓ(d), let’s turn it around:
let’s specify hΓ(d), and ask for a bound on the degree of Γ.

Thus, the question is:

Let V be an N-dimensional vector space of polynomials of
degree at most d in r variables, whose common zero locus Γ is
finite. How large can the degree of Γ be?
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As a first example, let’s try d = 2 and N = r + 1. The question
is, in effect:

How many common zeroes can r + 1 (linearly independent)
quadratic polynomials in Cr have, if they have only finitely many
common zeroes?
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Theorem (Lazarsfeld)
If Q1, . . . ,Qr+1 are linearly independent quadrics in Pr , with

Γ = Q1 ∩ · · · ∩Qr+1

finite and reduced, then

deg(Γ) ≤ 3 · 2r−2

(Lazarsfeld actually answers the general question in case
N = r + 1 under the hypothesis that Γ is reduced.)
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In other words,

If p1, . . . ,p8 ⊂ C3 comprise the zero locus of three quadrics
Q1,Q2,Q3, then any quadric Q vanishing at 7 of the pi vanishes
at them all. (This is Cayley-Bacharach.)

If p1, . . . ,p16 ⊂ C4 comprise the zero locus of four quadrics
Q1, . . . ,Q4, then any quadric Q vanishing at 13 of the pi
vanishes at them all. (This is Enriques-Babbage.)

If p1, . . . ,p32 ⊂ C5 comprise the zero locus of five quadrics
Q1, . . . ,Q5, then any quadric Q vanishing at 25 of the pi
vanishes at them all.

and so on.
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As for the general question

How many common zeroes can N (linearly independent)
polynomials of degree d in Cr have, if they have only finitely
many common zeroes?

for general N and d , we have a conjectured answer, but no
proof.



Interpolation, in all its forms can be a very frustrating problem:
it’s completely elementary to pose the question, and we think
we know what the answer should be, both philosophically and
explicitly, but it seems difficult to prove.

Still, I hope I’ve convinced you that it’s a problem worth thinking
about.
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Thank you for your time and attention.


