323 HONORS SPRING 2014, HOMEWORK DUE 3/4

These problems are in addition to the assigned problems from Leon.
Given a vector space V, let $V^{*}:=\{f: V \rightarrow \mathbb{R} \mid f$ is linear $\}$ denote the dual vector space to V.
(1) Let $v \in \mathbb{R}^{n}$ and $w \in \mathbb{R}^{m}$ be column vectors, so w^{T} (the transpose of w) is a row vector. Show that the matrix $v w^{T} \in M a t_{n \times m}$ has rank one.
(2) Show that a nonzero matrix $X \in M a t_{n \times m}$ has rank one if and only if the determinants of all 2×2 submatrices of X are zero.
(3) Show that the rank of a matrix $X \in M a t_{n \times m}$ is the smallest number r such that X is the sum of r rank one matrices.
(4) Show that a matrix $X \in M a t_{n \times m}$ has rank at most r if and only if the determinants of all $(r+1) \times(r+1)$ submatrices of X are zero.
(5) Given nonzero elements $\alpha \in V^{*}$ and $w \in W$, form a linear transformation $\alpha \otimes w: V \rightarrow W$ by $(\alpha \otimes w)(v):=\alpha(v) w$. What is the image of this linear transformation? What is its rank?
(6) Show that if V is finite dimensional, $\operatorname{dim} V=\operatorname{dim} V^{*}$.

E-mail address: jml@math.tamu.edu

