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1. Introduction

1. The present paper will be referred to as Part I. A subsequent paper
entitled, ‘‘Lie algebra cohomology and generalized Schubert cells,”” will
be referred to as Part II.

Let G be a complex semi-simple Lie group. Let B & G be a Borel sub-
group (a maximal connected solvable subgroup)and let Y be the generalized
“flag’’ manifold G/B.

Now let M be the commutator subgroup of B so that M is a maximal
unipotent subgroup of G. Let g, b, and m be, respectively, the Lie algebras
of G, Band M.

Now let v be an irreducible representation of g on a finite dimensional
vector space V and let # = v | m be the restriction of v to m.

In [2] (see 15.3) Bott discovered the ‘‘strange’’ equality

(1.1.1) dim H’(m, V) = dim H*(Y, C)

where the common dimension of these cohomology groups equals the
number of elements of the Weyl group of G which take exactly j positive
roots into negative roots. Papers, Parts I and II, had their origin in try-
ing to ‘‘explain’’ this equality.

1.2. Let a be an arbitrary complex Lie algebra and let = be a represen-

tation of a on a finite dimensional vector space V. In case ais semi-simple
329
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the nature of the cohomology groups H’(a, V) formed with respect to =
are of course well known. However, in the general case very little is
known about either the interpretation of H’(a, V) or how to compute it.
For us, attention was focused on just such questions by the identity (1.1.1).
In that case, of course, a is the Lie algebra m and « arises from a repre-
sentation of g. However, even here, Bott was able to obtain the left side
of (1.1.1) only as a consequence of his generalized Borel-Weil theorem.
This method (described by Bott as ‘‘obviously unsatisfactory’’) uses,
besides representation theory, a number of deep results in algebraic ge-
ometry.

In this paper we introduce a technique (employing only representation
theory) which not only yields H(a, V), for a number of cases including
the case above, but, (as it turns out) more significantly, how H(a, V) trans-
forms under the action of a certain group. Among other applications we
then find that the generalized Borel-Weil theorem itself follows easily
from these results. But more than this the methods serve purposes other
than the determination of cohomology groups. In fact, in Part II, they
(in particular Theorem 5.7) play an important role in our extension of the
Schubert calculus.

The main results of Part I are Theorems 4.4, 5.7, and 5.14. Applications
are given in §§ 6, 7 and 8.

1.3. The following is a brief description of what is done in Part I. First,
however, we wish to remark that the method of the laplacian to determine
cohomology is used in both Part I and Part II. In PartIit arisesin a con-
ventional manner (from a coboundary operator on a cochain complex on
which a positive definite hermitian inner product has been defined). In
Part II, however, there is no underlying hermitian structure. None is
actually required. The condition needed between a boundary operator
and a coboundary operator to define a laplacian, with the desired prop-
erties, we call disjointness. The details are stated in § 2.

In § 3, for one thing, we consider H(a, V') under certain assumptions.
First of all it is assumed that a is a subalgebra of a complex semi-simple
Lie algebra g. This, in itself, is no restriction since every Lie algebra can
be so regarded. However, secondly, it is assumed that the representation
w arises, as the restriction to a, from a representation v of g. Let a real
compact form f of g be fixed once and for all. We then observe, using
the condition above on 7, that the cochain complex C(a, V) possesses a
natural positive definite hermitian structure. A laplacian L, can then be
defined on C(a, V) so that the determination of H(a, V) becomes the prob-
lem of finding the kernel of L.
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In order to find this kernel we seek an expression for L, in terms of
such computable operators as 6(x) (4 is the adjoint representation) and v(x)
where x € g. Proposition 3.13 is the main tool needed to prove Theorem4.4,
which succeeds in doing this when it is assumed that a is a Lie summand
(see below).

In § 4 we introduce the notion of a Lie summand. Let a be a Lie sub-
algebra of g. Let a° be the set of all « € g such that (x, ¥) = 0forallyea
where the bilinear form is the Cartan-Killing form. Then a is called a Lie
summand if a’ is again a Lie subalgebra of g.

The maximum nilpotent Lie subalgebra m is a Lie summand. But more
than this, any Lie subalgebra u of g which contains m is a Lie summand.
Theorem 4.4 gives the desired expression for L, when a is a Lie summand.

In § 5, the main section, we are principally concerned with the case
where a is the nilpotent Lie summand 1t = 1° where u is an arbitrary Lie
subalgebra containing b. In such a case n is the maximal nilpotent ideal
of u. Furthermore u splits as an extension of 1 so that u can be written
as the Lie algebra semi-direct sum u = g, 4+ n where g, is reductive in g.

Theorem 5.7 gives the spectral resolution of L, on C(1t, V). The cochain
complex C(n, V) is a representation space for g, and we find that the
eigenspaces of L, correspond to the various irreducible representations
of g, and the eigenvalues are given in terms of the lengths of the corre-
sponding highest weights. In Part I we are concerned only with H(n, V)
so that the non-zero eigenvalues are ignored here. However, in Part II,
Theorem 5.7 is needed because of what it says about certain non-zero eigen-
values.

Theorem 5.14 yields the cohomology group H(1n, V) and how it decom-
poses under the action of g,. The left side of (1.1.1) is a special case of
this result. To go from 5.7 to Theorem 5.14, techniques in representation
theory are used. Animportant role here is played by ‘‘spin’’ of the adjoint
representation.

In § 6, as an application, the generalized Borel-Weil theorem is proved.
Needed for this is an auxiliary result of Bott [2, Theorem 1]. This result
is actually relatively easy to prove. A proof considerably simpler than the
one given in [2] is sketched here (see Remark 6.3).

Bott was the first to observe that a proof of Weyl’s character formula
followed from a knowledge of H(m, V). See [2, p. 248]. A proof is given
here in § 7. Our proof of Weyl’s character formula interprets the numer-
ator and denominator in the formula to be ‘‘Euler characteristics’’. In
fact, more generally, we obtain a formula which works for disconnected
groups.
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Since every algebraic Lie algebra 1t decomposes into a semi-direct sumu=
g, + n, where n is a nilpotent ideal and g, is reductive, the technique of
§ 7 seems particularly suited for generalizing Weyl’s formula to algebraic
groups.

In §8, Theorem 5.14 is applied to the case representing the opposite
extreme of the one involved on the left side of (1.1.1); namely, to the case
when 1 is commutative. Such a case arises in connection with complex
symmetric spaces. In such a case, Theorem 5.14 yields a generalization of
a result of Ehresmann on how the holomorphic p-vectors at a point of the
grassmannian decompose under the action of the isotropy group at that
point. We go into considerable details here since the results will be used
in Part II.

1.4. Let mbe as in § 1.1. But now let V = m and let = be the adjoint
representation of m on m. Consider H(m, m). Since m is not a g module
the results of § 5 do not apply here. Nevertheless we are able to modify
them slightly so that, at any rate, H'(m, m) may be determined. But
H'(m, m) is the Lie algebra of outer derivations of m modulo the inner
ones. We are thus able to compute the full automorphism group of m.
The result and applications of it will be considered elsewhere.

2. Some definitions and notation

1. Let C be a finite dimensional vector space over a field F. Let d and
8 be linear operators on C such that d* = 8> = 0. We will say that d and
d are disjoint if
ddx = 0 implies dx = 0
and
ddx = 0 impliesdx = 0
for all # € C. In such a case we define an operator L, referred to as a
laplacian, by putting
(2.1.1) L =dé + &d
and note, after the next definition, the following proposition.

In any operator A on C let Ker A and Im A be, respectively, the kernel
and range of A.

PROPOSITION 2.1. Let the notation be as above. Assume d and & are
disjoint and let L be defined by (2.1.1). Then

2.1.2) Ker L = Kerd N Keré .

Also one has a direct sum (a ‘‘Hodge decomposition’’),
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(2.1.3) C=Imd +Imé + Ker L

so that if the derived space Kerd/Imd of d is denoted by H(C) and
Q: Kerd — H(C)

18 the canonical mapping then

2.1.4) Q: Ker L — H(C)

18 a bijection.

PRrRoOF. Statement (2.1.4) is an immediate consequence of (2.1.2) and
(2.1.3) and the definition of disjointness for d and §. But statement (2.1.3)
is an immediate consequence of the observation that In L S Imd + Im3,
(2.1.2) which implies that Imd + Im8) N Ker L = 0 and the fact that
dimKer L + dim Im L = dim C. It suffices therefore to prove only (2.1.2)
or that Lz = 0 implies dx = 6z = 0. Assume Lx = 0. Put y = —&dx.
Then 8y = 0 and also ¥ = d8x. Thus 8d(8x) = 0. But by disjointness this
implies déx = 0 which, for the same reason, implies 62 = 0. Similarly
dx = 0. q.e.d.

REMARK 2.1. For later use we record the observation, made implicitly
in the proof above, that Im L N Ker L = 0 and in fact

(2.1.5) ImL=Imd + Im3é .

When C is a cochain complex and d is the coboundary operator, the ele-
ments of Ker L will often be called harmonic cocycles. In such a case
Proposition 2.1 asserts that every cocycle is cohomologous to one and only
one harmonic cocycle.

2.2. Throughout the paper the following conventions have been adopted.
We denote by End C the algebra of all linear operators on C and by C’ the
dual space to C. Also we denote with pointed brackets {zx, f> the value
which the function of bilinearity between C and C’ takes on x € C and
fecC.

If a symmetric bilinear form (resp. hermitian inner product, i.e., her-
mitian structure, assuming F = C, the field of complex numbers) is defined
on C we will denote with round brackets (z, y) (resp. with curly brackets
{x, y} the value which the form (resp. inner product) takes on xz, y € C.
When there is no danger of confusion, the form (resp. inner product) itself
will be denoted by (C) (resp. {C}). In case (C) (resp. {C}) is non-singular
(resp. positive definite) as will always be the case in this paper, and
A € End C, we denote by A’ (resp. A*, the adjoint of A) the operator on
C defined by

2.2.1) (Az, y) = (x, A'y)
(resp. {Az, y} = {x, A*y}).
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REMARK 2.2. If Cis a vector space over C, the words orthogonal, ortho-
normal and orthocomplement will always be understood to be with respect
to a positive definite hermitian structure {C} which has been defined on
C and not with respect to a bilinear form (C) which may also have been
defined on C.

2.3. It will be assumed from this point on that, unless statements are
made to the contrary, every vector space considered in this paper is over
Cand that every homomorphism of one vector space into another is C-linear.
More generally every homomorphism of one complex Lie group into another
will be assumed to be holomorphic so that, in particular, representations
of such groups are understood to be holomorphic.

REMARK 2.3. Assume {C} is a positive definite hermitian structure on
C. Let d be an operator on C such that d> = 0 and let d* be the adjoint
of d with respect to {C}. Obviously d** = 0. But we observe also that
since {C} is positive definite d and d* are disjoint. Furthermore the lapla-
cian L = dd* + d*d is self-adjoint and the decomposition (2.1.3) for 6 =d*
is an orthogonal direct sum decomposition.

3. Cochain complexes defined by Lie algebras and hermitian structures

1. Let a be a complex Lie algebra. Then the exterior algebra Aa over
a together with the boundary operator 8 on Aa given by
O, N+ A Ty)

=2 (DI, I ATy e ARy ANy e ATy,

where z; € a, is a chain complex which one denotes by C,(a). The derived
space of homology is denoted by H,(a). Covariantly the exterior algebra
Aa’ over the dual a’ to a is canonically identified with the dual to Aa and
Ad’ together with the coboundary operator d, defined as the negative
transpose of 8, is a cochain complex which one denotes by C(a). The derived
space of cohomology (for the present we ignore its ring structure) is de-
noted by H(a). (See [9]).

More generally let V be a vector space and let

T:a—End V

be a representation of a on V. Let d, be the operator on the tensor prod-
uct Aa’ ® V defined by putting d, = d ® 1, and also, regarding Aa’Q V
as the space of all linear maps p from Aa to V, let d, be the operator on
Ad ® V given by

(.1.2) dp@ A +o+ Am) =2 (=1 m@)pE, <o ABicer ARy).
Now define d, = d, + d,. Then d2 = 0 and the space Aa’ ® V, together

(3.1.1)
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with the coboundary operator d,, is a cochain complex which one designates
by C(a, V). The derived space of cohomology is denoted by H(a, V).

3.2. Now let g be a complex semi-simple Lie algebra and let (g) be the
Cartan-Killing form on g. The form (g) induces an isomorphism of g onto
g’ which extends to an algebra isomorphism of Agontoits dual Ag’. The
latter in turn induces a non-singular symmetric bilinear form (Ag) on Ag
which, explicitly, is given by
@A oo ATy h A oo AY) =0 if p+#gq

3.2.1) .
= det (x;, ) ifp=gq.

3.3. A real Lie subalgebra t of g is called a compact form of g if

(1) g =t + 4t is a real direct sum, and

(2) the bilinear form (g) is negative definite on .

A compact form of g denoted by f is henceforth assumed to be fixed
once and for all. Let q = ¢f. Then q is a real subspace of g on which (g)
is positive definite. Where R denotes the real field let Agrg be the sub-
algebra of Aggenerated over R by g and R. Clearly (Ag) is positive defi-
nite on Agrq and

Ag = Ara + 1Arq
is a real direct sum.
A x-operation is now introduced into Ag by defining

w4+ w=u—1v

for all u, v € Agrq. It follows easily that this operation is a conjugate
linear automorphism of Ag.
Since

(w*, v*) = (u, v)

for every u, v € Ag we can define a hermitian inner product {Ag} on Ag
by putting
3.3.1) {u, v} = (u, v*)
forall w, v € Ag. Since (Ag) is positive definite on A rq it follows immedi-
ately that { Ag} is positive definite on Ag.

Let A € End Ag and let A*, A* € End Ag be defined as in §2.2. It
follows immediately from (3.3.1) that A® and A* are related by
(3.3.2) A*u = (A'(u*))*
for every u € Ag. Substituting A’ for A in (3.3.2) and then A* for A and
w* for u it follows at once that
(3.3.3) At* = A%
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3.4. For any subspace b & Ag let
b* = {u* € Aglu € b}.

Obviously b* is again a (complex) subspace of g.

We now assume that the arbitrary Lie algebra a of § 2.3 is a Lie sub-
algebra of g. Since the *-operation is a conjugate linear automorphism
of Ag it is obvious that

(3.4.1) (AQ)* = Aa*.
We now define a degree preserving linear mapping
7. Aa*— Ad

by the relation

(3.4.2) lu, D)) = (u, v)

for uw € Aa, v € Aa*. It is obvious that 7 is a homomorphism.
LEMMA 3.4. The mapping 7) is an algebra isomorphism (onto).

PrOOF. By dimension it suffices only to show that 7 is an injection.
Let v € a*. Then by (3.4.1) v = u* for some w € Aa. But

{u, 7~7(7))> = (u, v)
= (u, u*)
= {u) ’L{,} .
Thus 7(v) = 0 implies » = 0 since { Ag} is positive definite. But this implies

v=0. q.e.d.
Now let

(3.4.3) n: Ad'— Ag
be the monomorphism defined so that %7 is the identity on Aa*. Itis
obvious that Aa* is the image of 7.

We now define a positive definite hermitian structure { Aa’} on Aa’ by
the relation

(3.4.4) {f, 9t = {(f), n(9)} .
for any f, g € Ad'.
3.5. Now let
vig—EndV

be a representation of g on a finite dimensional vector space V. Then one
knows that there exists a positive definite hermitian structure {V}on V
(which is unique up to positive multiple if v is irreducible) such that

8.5.1) (v@)* = v(z¥)
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for any z € g. (That is, a {V} exists such that all the operators in v(k) are
skew-hermitian.)

But now the hermitian structure { Aa’} and { V} induce a positive definite
hermitian structure {Aa’ @ V}on Ad’® V by the relation

(fQs, 9@t} ={f, glis, t}

where f,g € Ad’and s,t € V. Ina similar way a positive definite Hermi-
tian structure {Ag® V}on Ag® V is induced by {Ag} and {V}. It is
clear then of course that

(3.5.2) TRL ARV ARV

is an isometry onto the subspace Aa* ® Vof AgR V.
Let # = v|a be the restriction of v to a. Now form the cochain complex
C(a, V) with respect to  as in § 3.1 and let

Q: Kerd,— H(a, V)

be the canonical map of the space of cocycles onto the space of cohomology.
Let d;} be the adjoint of d, with respect to {Aa’® V}. Then as noted in
Remark 2.3, d, and d} are disjoint and if we let

(3.5.8) L.=dd; + dd,

be the corresponding laplacian, it is well known or by Proposition 2.1 it
follows, that Ker L, = Ker d, and

(38.5.4) Q:KerL,— H(a, V)

is a bijection. To determine H(a, V) it is enough therefore to determine
Ker L,.

3.6. An operator A € End Ag is said to be a derivation of degree j if

(1) A maps Aginto A*7g for all 4, and

@) Alu Av) = Au) A v+ (—=1)Yu A A(w) if uw € ANigand v € Ag.

Forany u € Aglete(u) e End Agbe the operator defined by e(w)v =u A v
for all v e Ag (left exterior multiplicat'on by ). If w e Ngand A is a
derivation of degree j then it is straightforward to verify that

(3.6.1) &(u)A is a derivation of degree © + 7 .

Now for any u € Ag the operator ¢(u) € End Ag of left interior multi-
plication by u is defined by putting

(3.6.2) t(w) = (s(u)).

(To avoid confusion it should be remarked that in the usual notation ¢(u)
operates on Ag’ and the operators of interior multiplication on Ag are of
the form ¢(f) where f € Ag’. However the bilinear form ( A g) permits us
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to regard ¢(u) as an operator on Ag and to ignore Ag’).
If z = N'g then one knows that ¢(2) is a derivation of degree —1 on Ag.
In fact by (3.2.1)

(.6.3) YA o AYe =20 (D)@ YN A e AT AYge
Now if A is a derivation of degree j it is obvious that A vanishes on A'g

and is uniquely determined by its restriction to A'g. Conversely given

any linear transformation A,: A'g — A'*'g there exists a derivation of

degree j (necessarily unique) which extends A4,. In fact if y, and 2, are dual
bases of g with respect to (g) then by (3.6.1),

A =37 e(Ay)(z)
is clearly such a derivation.
38.7. Let 1 be any subspace of g. Denote by t its orthocomplement in
gand by I'; € End A g.
T Ag— Ar
the orthogonal (hermitian) projection of Ag onto Ar. If p & g is any

subs ace, denote by I(p) the ideal in Ag generated by . We now observe
that since

Ag = Ar + I(xh)
is an orthogonal direct sum, it follows that I'; is a homomorphism. This is
clear since I'; is a homormorphism on At and its kernel, I(x'), is an ideal.
Next we observe that

3.7.1) 't =rno,..

Indeed since I'; is a hermitian projection, it follows from (3.3.3) that I't is
also a hermitian projection. On the other hand, it follows from (3.3.2)
that the range of I': is (A1)* = Ar*. This proves (3.7.1).

3.8. Now let v € End Ag be the boundary operator for the chain com-
plex C,(g). It is obvious that Aa is stable under v and that

(3.8.1) YIAa =28

where, as in §3.1, @ € End Aa is the boundary operator for the chain
combvlex C,(a).
Now define an operator ¢ € End Ag by setting

(3.8.2) c=—7.

An immediate consequence of (3.7.1) is the following lemma which asserts
that the coboundary operator d € End Aa’ for the chain complex C(a) cor-
responds under 7 to the operator I'q.c on Aa*.
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LEMMA 3.8. Let a be a Lie subalgebra of g. Let f € Aa'. Then

9(df) = Cac(nf) .
Proor. It clearly suffices, by Lemma 3.4, to show that

(w, 7(df)) = (u, Tac(nf)
forall u e Aa. But by definition of 7 one has (u, pdf) = u, df = —<{ou, >.
On the other hand (u, Ia.c(0f)) = (Tau, c(4f)) = (u, c(nf)) by (3.7.1). But

(u, c(f)) = —(vu, 7f) = —(0u, ) by (3.8.1) and —(Bu, f) = —<{ou, £>.
This proves the lemma. q.e.d.

REMARK 3.8. Recall that 7 is an algebra monomorphism. Since, as one
knows, d is a derivation of degree 1 on Aa’ it follows then from Lemma 3.8
that the restriction of I'e.c to Aa* is a derivation of degree 1 of Aa*. Sub-
stituting g for a it then follows that c is a derivation of degree 1 of Ag.
But this fact implies, more generally, that the restriction of Twe to Ar*,
for any subspace t S g is a derivation of At*. This is clear since, as has
been observed (see § 8.7), I'w. is a homomorphism of A g.

3.9. Now since f is a real Lie subalgebra of g, this implies (see § 3.3)
that [q, q] & 7q. But then recalling the definition of 7 it follows that

7: Ard— 1t Agrq .
This, however, implies, from the definition of the *-operation, that v anti-
commutes with the x-operation. That is, for any u € Ag
(3.9.1) yu = (—v(u)* .

REMARK 3.9. Note that (3.9.1) implies a* is a Lie subalgebra of gifand
only if a is a Lie subalgebra of g. In case a is a Lie subalgebra and a = a*
it follows that a is necessarily reductive in g since it clearly arises as the
complexification of a Lie subalgebra of f.

Now by definition —v = ¢’. Applying (8.8.2) to (3.9.1) it then follows
that

(3.9.2) c*r=9.

We recall that the *-operation is a conjugate linear automorphism of
Ag. It follows then that for any u, ve Ag

e(u*)v = (e(u)v*)* .
But &(u) = «(w)'. Applying (3.8.2) once more it follows that
3.9.3) du)* = e(u*) .
Now let
0: g — End Ag
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denote the adjoint representation of gon Ag. Thus 6(y), for every y €g,
is the unique derivation of degree 0 on Ag which on g satisfies 0(y)z =
[y, ].

Since (g) is invariant under 6 it is clear that for every ¥ € g

(3.9.4) (6@)) = —6(y) .
But now it is well known (when considered on Ag’) that
(3.9.5) t(y)e + cy) = 0(y) -

In fact since the left side of (3.9.5) is easily seen to be a derivation of
degree 0 on Ag, it suffices to verify (3.9.5) on A'g. But then (3.9.5) is an
immediate consequence of the definition of c.

Now applying the operation A — A’, A € End Ag, to (3.9.5) and taking
negatives, one also has by (3.6.2), (3.8.2) and (3.9.4) that
(3.9.6) ey)y + ve(y) = 0(y) -

On the other hand by taking the adjoint of (8.9.5) one gets, by (3.9.2) and
(8.9.3), the same expression as (3.9.6) on the left except that y* replaces
y. It follows then that

(8.9.7) wwr=wm>
for any ¥ € g.

3.10. Let p and t be two subspaces of g. We now observe that there
“exists a linear mapping

Ypr: Ng— ANg
such that for any y,z€ g
(3.10.1) Toxw A 2) = ${[Tyw, Tzl — [Tz, Twyl) -

This is clear since the right side of (3.10.1) is alternating in ¥ and z. But
now by § 3.6 there then exists a unique derivation ¢, ; of degree 1 on Ag
- such that for any u € Ngand ze Az

(3.10.2) (cp.2, u) = —(2, Vpsu) .

Although the right side of (3.10.1) is alternating in ¥ and 2, we now make
the observation that it is symmetric in p and xr. Consequently one has

(3.10.3) Cpr = Crp -
Obviously if 1, and 1, are orthogonal subspaces of g one has
(3.10.4) CP’rl + Cp.rz - Cp');ﬁ,rz .

Let r be a subspace of g. We now observe that



GENERALIZED BOREL-WEIL THEOREM 341

(3.10.5) C);‘);Z - Pt*cz y

for any z € g. Indeed since I'; is a homomorphism (see § 3.7) it follows
immediately that 7;» = ¥I'; on A’g. But then (3.10.5) follows at once from
the fact that —(YI;)’ = e (see (3.7.1)).

If t = a where a is a Lie subalgebra of g it is clear from Lemma 3.8
and (3.10.5) that ¢, , will be significant in computing H(a, V). It would
therefore be convenient if one could express c;,; in terms of such comput-
able operations as exterior multiplication and the adjoint representation.
This seems to be unlikely in the case of a general Lie subalgebra a. On
the other hand if t is any subspace of g, one can find, as will soon be shown,
just such an expression for the derivation d, of Ag defined by putting

(3.10.6) dr =Cp — CilyL -
But the point is that under certain assumptions (which are satisfied for

the cases which interest us) d, is a satisfactory replacement for ¢, ,. This
is seen in comparing (3.10.5) and

LEMMA 8.10. Let t be a subspace of g. Assume t* is a Lie subalgebra

of g. Then for any ue At*,
du = Tueu .

ProOOF. Letzet*. We first observe that c; 1,12 = 0. For this it suffices
to show that (v, ¢, ,.2) =0 for any v € A’g. But, since t* is a Lie subalge-
bra of g, it is obvious that v , ,, maps A'g into t*. Therefore since z* e,

(’U, C»[L'x_l.z) = —((ytJ_,tJ.vr z)
= _{{yrl,tlv’ Z*}
=0.
Thus for any z € t* one has d.z = ¢, ;2. But then by (3.10.5) d, and I',.c
agree on A't*. On the other hand since the restriction of I'nc to At* is

a derivation of At*. (See Remark 3.8; that is, because I'.. is a homomor-
phism of Ag) it follows that d, and I'.c agree on Atr*. q.e.d.

3.11. Let t be a subspace of g. Let z;,,1 <% < m, be an orthonormal
basis of . Let y e g. Writing (y, 2{) for {y, 2;} it is obvious then that

(3.11.1) Ty =270 (¥, 2z .

Now let ¢, = ¢;,g. To obtain the desired expression for d, we first observe
that ¢, may be given by the following simple expression.

LEMMA 3.11. Let t be any subspace of g. Then if z,,1 < ¢ < m, is an
orthonormal basis of t
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1 m
Cy = > i:IE(Z’i*)G(Z,) .

Proor. Since the right side of (8.11.2) is a derivation (see (3.6.1)) it
suffices to verify the equality for elements in Ag. Thus if z,y,z€ g, it
is enough to prove the equality

(Veg® A Y, 2) = —2(z Ay, L e(2)0(z)z2)
that is, to prove the equality (writing y A x = —x A ¥)
(8.11.2)  ([Iyw, 9], 2) — ([Tyy, ], 2) = 27 (¥ A @, 25 A [z, 2]) .
But by (3.2.1) where p = q¢ = 2

(¥ Az, 28 A [z, 2]) = (U, 25)(, (2, 2]) — (&, 25)(y, [2:, 2])
= (xr Z?)([Z,;, y]r Z) - (y9 z?)([zu x]! Z) ’
since 0(z;)' = —0(z;). Summing over 7 the equality in (8.11.2) follows im-
mediately from (3.11.1). q.e.d.
We now observe that

(3.11.3) Ct,r - Crl,rl- =€, —Cyy .

In fact by (3.10.4)c,=c, +c¢, . and ¢,y =¢, ;1 + ¢, ,. Butthen(3.11.3)
follows from (8.10.3) when p is replaced by rt. Now recalling the defini-
tion of d., (3.10.6), the proof of the following proposition follows from
Lemma 3.11 and (3.11.8).

PROPOSITION 3.11. Let t be any subspace of g. Let d. be the derivation
of degree 1 of A\g defined by (8.10.6). Let z;,, 1 <1 <mn, be an orthonormal
basis of g such that z; for i < m is a basts of t. Then

de = (0 e(zN0@) — T0,.,,6(:)0(z))) -

As an analogy with the definition d, in § 3.1, let d; , be the operator on
Ag @ V defined by putting
(3.11.4) din=d: Q1.

3.12. Let 1t be a subspace of g and let z;,,1 < ¢ < m, be an orthonormal
basis of t. We define an operator d,, on Ag&® V by putting
(3.12.1) deo = 2 &) Q@ v(z) .
It is straightforward to verify that the definition is independent of the
orthonormal basis chosen. Put
(3.12.2) ¢, =dg, .
Obviously ¢, = d,, + d,1,. Note then that we can write (and for ‘‘com-

patibility’’ with the expression for d, , given by Proposition3.11 and (3.11.4)
it is convenient to do so)
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(3.12.3) dr,: = ';—(Cz +dys — dtl.2) .

Now let rt = a be a Lie subalgebra of g. Let 2! € a’ be the basis of o
dual to the basis z; of a. It is then a simple matter to verify that the
operator d, on Aa’ ® V defined by (8.1.2) may be given by

dy =27 &) Q@ v(z:)
where ¢(z}) is left exterior multiplication on Aa’ by /. On the other hand
since

* J—
, =
(23, 27) = &4y,

and since zf € a*, it follows from the definition of 7 that »(z}) = 2. But
then for any pe Aa’ ® V one obtains the relation

(3.12.4) 7 @ 1(dsp) = das(n Q@ 1(D)) .
3.13. Now let
0,: g — End (Ag® V)

be the representation of g in Ag® V formed by taking the tensor product
of 6 and v. Thus for any z€ g

0,2) =0()RX1 + 1R v(z) .
Now let t = a be a Lie subalgebra of g. Define
(3.13.1) day = dg, + da,

where d;, and d,, are given by (3.11.4) and (3.12.1).
But then by Proposition 3.11, (3.12.1) and (3.12.3) we obtain, as a corol-
lary of Proposition 3.11, the following expression for d ..

PROPOSITION 3.13. Let a be a Lie subalgebra of g. Let 2,1 <1 < n, be
an orthonormal basis of g such that for i < n, 2; 1s a basis of a. Letd,
be the operator on AgQ V given by (3.13.1). Then

da,y = %(Cz + 200 () @ 1O(z:) — 307, (e(zF) @ 1),(2y)) ,
where ¢, 1s given by (3.12.2) and 0, is the tensor product of 0 and v.

The significance of the operator d, , for a family of Lie subalgebras a of
g which we call Lie summands (see § 4.1) is made clear by Lemma 4.1.

4. The laplacian in the case of a Lie summand
1. Let r & g be a subspace of g. Define
*'={zeg|(z,y)=0 forall yer1}.

Now let a be a Lie subalgebra of g. We will say that a is a Lie summand
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of g if a° is also a Lie subalgebra of g.
The name Lie summand is derived from the following immediate proposi-
tion.

PROPOSITION 4.1. Let a be a Lie subalgebra of g. Then ats a Lie sum-~
mand if and only i1f at is a Lie subalgebra of g.

ProOF. The proof is an immediate consequence of the obvious fact that
al = (a* and that by Remark 8.9, a’ is a Lie subalgebra if and only if
(a”)* is a Lie subalgebra. q.e.d.

We recall that the representation « of § 3.1 is here the restriction of v
toa. The following lemma states that in case a is a Lie summand the co-
boundary operator d, on Aa’ ® V corresponds to the restriction of d,,, to
Aa* @ V under the mapping 7 & 1.

LEMMA 4.1. Let a be a Lie summand of §. Then foranype Ad’'Q V,

7 Q@ 1(d.p) = do (7 R 1(p)) .
PROOF. By (8.12.4) and by the definition of d, , and d, it suffices only
to show that
7 Q@ Ud:p) = daa(n @ 1)) -

But this is an immediate consequence of Lemma 3.8, Lemma 3.10 with
1 replaced by a, and Proposition 4.1. q.e.d.

4.2. Now, as an operator on Ag® V, put ¢, = ¢ ® 1 and let
c,=¢ +¢,.
In the case of a Lie summand the problem of finding a suitable expression
for the operator on Aa* ® V which corresponds (under 7 ® 1) to d, is

settled by Proposition 3.13 and Lemma 4.1. The corresponding problem
for d* is much easier. It is settled for all Lie subalgebras a by

LEMMA 4.2. Let a be a Lie subalgebra of . Let pe Aa'Q V. Then
7 ® 1dip) = ci(n Q@ 1(»))

Proor. We first prove

(4.2.1) 7 Q Udsp) = ¢f(n R 1p)) .

To do this first observe that ¢ = di. + d, , (see (3.12.2)). Next we note
that Aa* ® V is stable under dg,and d;, ,. This is clear since both of
these operators, by (8.5.1) and (3.9.3), are a sum of operators of the form
((y) ® v(2) where y, z € g and by (3.6.3) Aa* ® V is stable under every
operator of this form. But now since Aa* @ V is stable under d,, and
its adjoint dF ., and since @1 is an isometry mapping Aa’® V onto
Aa* ® V it must follow from (3.12.4) that
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7 Q 1(dip) = dix(n @ 1(v)) -

To prove (4.2.1) therefore, it suffices only to show that d* i, vanishes on
Aa* @ V. But d}, ,is a sum of operators of the form z(y) ® m(2) where
y € at. Therefore for any « € a* one has (y, ) = {y, *} = 0. Consequently
by (3.6.3) «(y) vanishes on Aa* and hence d, , vanishes on Aa*® V. This
proves (4.2.1). To conclude the proof one need only show that 7® 1(d;p) =
¢ (n @ 1(p)) or more simply

(4.2.2) nd*g = c*ng

for any g € Ad’ since V is not involved. But now ¢* = v by (8.9.2) and

since a* is a Lie subalgebra of g (by Remark 3.9) it follows that Aa* is

stable under ¢*. Therefore one need only show that for any fe Aa’
{nd*g, nf} = {c*ng, nf} .

But {nd*g, nf} = {d*g, f} = {9, df} = {ng, ndf}. On the other hand
{c™ng, nf} = {ng, enf} = {ng, Tecnf}. But ndf = Te.on(f) by Lemma 3.8.
q.e.d.

4.3. It follows immediately from Lemma 3.10 that ¢, = dg,. Replacing
a by g (obviously g is a Lie summand) in Lemma 4.1, it then follows that
¢, is equivalent under a linear mapping to the coboundary operator of the
cochain complex C(g, V). Consequently ¢2 = 0. Moreover one also knows
that the relation (3.9.5) generalizes to

(4.3.1) (1) @1L)ey + c,(e(2) ® 1) = 6,(2) .

Indeed (4.3.1) is an easy consequence of (3.9.5) and the easily verified
relation

eW)(?) + «2)e(y) = (¥, 2)1

where y, z € g and 1 denotes the identity operator on Ag.
But now

4.3.2) (6,2))* = 6,(2*) .

This is an obvious consequence of (3.5.1) and (3.9.7).
Thus if we take the adjoint of (4.3.1) we obtain

(4.3.3) (") @ 1)ef + ex(e(z*) @ 1) = 0,(2*) .

Obviously ¢} = 0 implies (cy)* = 0. It follows then from (4.3.3) after
replacing z* by z that

(4.3.4) c;6,(2) = 0,(2)cy ,

for all z € g.
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4.4. Let B> € End V denote the Casimir operator corresponding to (g)
and the representation v of gon V. If 2, 1 < ¢ < n, is an orthogonal basis
of g we note that R* may be written
(4.4.1) R =37 v(@i)v(z,) .

This is clear since (z;, 2}) = §,;.

LEMMA 4.4. One has on Ag R V the following relation:

ey +cefe, =1 R>.

PROOF. Let z;,, 1 < 1 < n, be an orthogonal basis of g. Note that since
1® v(z;) commutes with c*

4.4.2) [1® v, ] = [1 ® (), ¢f]
= 22,42 Q@ v([2i, 25])
since
e = X,ue) ® v(z)
by (3.12.1) and (3.12.2), after substituting the orthonormal basis z} for
the basis z;. However since Y_,2; ® 2; € g @ g is invariant under the ad-
joint representation of g on g ® g it follows from (4.4.2) that
(4.4.3) 1 ® v(z)), c;] = 22, dl[2], 2.]) @ v(z;) -
But

el + efe, = 30, ((e2F) @ Vet + i (e(zi) @ V)L @ v(z,)

(4.4.4) + 22, (e(zF) @ 1)[1 ® v(zy), ¢¥]
= 2001 @ v(@)) + 10,(X, 827, ) @ vz))

by (4.3.3) and (4.4.3).

On the other hand
(4.4.5) 2o8@hdlzr, z]) = —0(z))
since both sides of (4.4.5) are derivations (see (§ 8.6)) of degree 0 of Ag
and both sides are easily seen to agree on Alg. Thus by (4.4.4)

0y + e, = 32, (0(zF) — 0(2F) ® 1) (1 ® v(z,))
=1x R*. q.e.d.

We can now give an expression for the operator on Aa* ® V which

corresponds under 7 @ 1 to the laplacian L, on Ad’ Q V.

THEOREM 4.4. Let a be a Lie summand of g (see § 4.1.). Let L. be the
laplacian on the cochain complex C(a, V) defined asin §3.5. Let 7 be the
mapping defined as in §3.4. Let z;,,1 < 1 < n, be an orthonormal basis
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of g such that z; for i < m 1s a basis of a. Then foranype Ad RV
TR ULD) = (1 B + X7 0.00z) — X5, 0:e10.(2))(7 ® D))
where 0, is the tensor product of the adjoint representation 6 and v and

R is the Casimir operator corresponding to v.
ProoF. By Lemmas 4.1 and 4.2,

7 Q UL.p) = (do.cF + cida)(n @ 1(p))

But now substituting the expression for d, , given by Proposition 3.13
in dq ,¢¥ + c¥d,,, and recalling that ¢} commutes with 6,(z;) (see (4.3.4))
the result follows from (4.3.3) and Lemma 4.4. q.e.d.

5. The spectral resolution of the laplacian and cohomology
for a family of nilpotent Lie summands

1. Let § be a Cartan subalgebra of g and let ! (the rank of g) be its
dimension. One knows that the restriction (9) of (g) to b is non-singular
and hence one can define a map ¢ — x, of §’ onto §) by the relation

(x» xl‘-) = <93, /,l>
for all z e §. On the other hand, the mapping defines a non-singular
bilinear form (§’) on §’ given by (¢, N) = {x., M.
Now let A € b’ be the set of roots associated with § and let e, @ € A,
be a corresponding set of root vectors so that for any pe A, xe }

(5.1.1) [z, e,] = <z, PYe,.
One knows that the e, can be chosen so that
(5.1.2) (pr €y) =0 ifp+ —@
=1 ifyr=—p.

In such a case it is immediate that
(5.1.3) le,, e-o] = @, .

If ¥ is the real subspace of )’ spanned over R, by A, we recall that (')
is positive definite on 9H*.

If x & gis a subspace which is stable under 0(x) for all x € ), we will
let A(x) & A be the subset defined so that

=10 b + E</26A(r) (efp) °

Thus if u E g is a Lie subalgebra then A(u) is defined if § lies in the nor-
malizer of u. In particular then A(u) is defined if §) & u.

Denote by -+ the operation of addition in A in case the sum again lies
in A. It is clear that A(u) is closed under + in case u € g is a Lie sub-
algebra.
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Now let G be a simply-connected group whose Lie algebra is g.

REMARK 5.1. If UZSG is the subgroup corresponding to a Lie subalgebra
u S gand u contains a Cartan subalgebra of g then U is necessarily closed.
To prove this it suffices to show that u equals its own normalizer in g.
But, using (5.1.1), this is immediate.

5.2. Let b S g be a maximal solvable Lie subalgebra which will be
regarded as fixed once and for all.

Let ‘U be the collection of all Lie subalgebras u such that b < u. If
U < G is the subgroup corresponding to u e U, then it is due to Wang
[10] that (see Remark 5.1) the space (left cosets, aU, a € G)

(5.2.1) X=G|U

is compact, has positive Euler characteristic and one obtains, up to a
biholomorphic map, all such complex homogeneous spaces of G this way.
Incidentally one knows also that X is algebraic (admits a holomorphic em-
bedding into complex projective space) and that (over all g) one obtains,
up to a biholomorphic map, all simply connected algebraic homogeneous
spaces this way.

Obviously b e U. Let Y denote the generalized flag manifold

(56.2.2) Y=G/B
where B = G is the subgroup corresponding to b.
5.3. Let ue U and put
(5.3.1) g =unu*,
It is clear that g, is a Lie subalgebra of g and that g, is closed under the
k-oneration so that (see Remark 3.9) g, is reductive in g.
Now put nt = b°. One knows that m is a maximal nilpotent Lie subalgbra

of g and that m is the set of all nilpotent elements in b. We note then
that b is a Lie summand. This, however, is a special case of

PROPOSITION 5.3. Let u € U. Then u is a Lie summand of g. In fact
if 1 = u’ then 1 1s both the maximal nilpotent ideal in u and the set of
all nilpotent elements in the radical of u. Furthermore if g, is defined
by (5.3.1) then

(5.3.2) g=n*4+g +n
18 an orthogonal direct sum and
(5.3.3) u=g, +n.

Moreover g, lies in the normalizer of both 1 and n*.
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ProOF. It is obvious from (8.9.4) that n is stable under 6(z) for all
z eu. But b £ u. Hence one must have

(56.3.4) nEmehcu.

Thus nis an ideal in u which proves, in particular, that uis a Lie summand.
Now since u* = (n°)* = nt it follows, by definition, that g, is the orthocom-
plement of 1 in u. This proves (5.3.8). Furthermore n* = (1°* = ut, and
this proves (5.3.2).

Now let ¢ be the center of g, so that 8 = ¢ + n is the radical of u. But
now the center of u is zero since u contains b. Thus [z, 1] = 0, for z € ¢,
implies z = 0. But since 6(z) is diagonalizable for any z € ¢ this implies
that n is the maximal nilpotent ideal of u. Furthermore since n S m it is
clear that the elements of n are nilpotent. On the other hand by simul-
taneously triangularizing 6(x) for all x € 8 = ¢ + 1 it becomes obvious that
n is the set of all nilpotent elements in 3.

Since 1 is an ideal of u it follows that g, lies in the normalizer of n.

Applying the *-operation it also lies in the normalizer of n*. q.e.d.
5.4. Now let I be the rank of g and let » = dim m so that _
(5.4.1) dimg =1+ 2r
and
dimb=1+1r.

It follows from (5.4.1) that dim b N b* > I. But since b N b* is a Lie
subalgebra which is both reductive in g and solvable, it follows that it is
commutative. Hence b N b* is a Cartan subalgebra of g. From this point
we fix the subalgebra § of § 5.1 so that

h=bnb*.
It follows then that e} is a root vector for —p. Hence by (5.1.2) we may
choose the root vectors e, so that in addition to (5.1.2) they form an
orthonormal basis of ht. It is immediate that this is equivalent to (5.1.2)
and the condition

(5.4.2) e, =e_,
for all p e A.
Now put A, = A(m) and A_ = —A(m). One knows then that

(a) A=A, UA_is a disjoint union and

(b) A, (and hence A_) is closed under .

Let TI = A, be the set of simple roots corresponding to A,. For any
@ € A one has

(5.4.3) P =2 enTa(P)a
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where the n,(®) are non-negative or non-positive integers according as
peA . orA_.

Now let 1 € U. Then since h S u one knows u as soon as one knows
A(u) or in fact A(u) N A_. The structure of these sets is well known (see
[10, 7.4]) and is given as follows: There are 2! elements in U. Furthermore
there is a one-one mapping, 1t — II(u), of U onto the set of all subsets of
IT such that

(5.4.4) AW NA_ ={pe A_|n,(p) =0 forall aec II(u)}.

Now let u € U and let g, and 1t be defined as in Proposition 5.3. Since
H S g,, obviously A(g,) and A(nt) are defined and then, since g, N h =1 and
n N b =0,it follows that g, and 1 are determined by A(g,) and A(n). Clearly
A1) = A(g,) U A(n) is a disjoint union. The following proposition is then
an immediate consequence of (5.1.2), (5.4.2) and (5.4.4).

PROPOSITION 5.4. Let ue U and let g, and 1t be defined as in Proposition
5.83. Then A(g), A() and A(t*) are defined and

A(g,) ={p e A|n, (p) =0 forall ae I(u)}
A(n)={pe A, |n,(p) >0 forall a e Il(n)}
Am*) = —A(m).

5.5. Let Z < H* — b’ be the set of all integral linear forms on ). We
recall that £ e Z if and only if 2(¢, )/(®, ®) is an integer for any ¢ € A.

Let 11 € U and let g, be defined by (5.3.1). Then 1) is a Cartan subalgebra
of g, as well as g. Let W, be the Weyl group of g, regarded as operating
in § and, contragrediently, also in %’ (so that ¢(x,) = z,, for any g e b').

Let G, S G be the subgroup (closed, see Remark 5.1) corresponding to
g,. One knows that the elements of Z are the weights of all the finite
dimensional representations of G,. If v, is an irreducible representation
of G, an extremal weight of v, is by definition a weight that becomes
highest for some lexicographical ordering in b¥. If £ is such a weight one
knows that the collection {0&}, ¢ € W,, is the set of all extremal weights.
Now for any £ € Z let

vi:G— End Vi .
be the unique, up to equivalence, irreducible representation of G, having
£ as an extremal weight. Thus if £, & € Z then v# and »{* are equivalent

if and only if there exists ¢ € W, such that d&, = &,.
Now let

(56.5.1) m=mng
so that A(n,) is defined, and
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(5.5.2) A, =A(m) UA®m)
is a disjoint union where, as in § 5.3, n = u’. Define
(5.5.3) D ={peZ|(¢,p) =0 forall e A(m,)}.

The elements of D, will be called dominant (with respect to n1,). One knows
that D, is a fundamental domain for the action of W, on Z so that every
irreducible representation of G, is equivalent to v{ for one and only one
& e D,. If v, is an irreducible representation of G,, the unique weight that
is both dominant and extremal is called the highest weight of v,. Thus for
any & € D, £ is the highest weight of vi. Also if V, is a representation
space for G, we will call a weight vector in V| extremal (resp. highest) if
it lies in an irreducible component of V, and there corresponds to an ex-
tremal (resp. the highest) weight.
Now if

(5.5.4) B: G, — EndC

is a representation of G, define C¢ < C as the space of all vectors in C
which transform according to the irreducible representation v of G. Thus.
(5.5.5) C= EeeDle

is a direct sum.

A representation of a Lie group induces a representation of its Lie
algebra. We will, throughout, use the same letter, in this case 83, to
denote this corresponding representation of its Lie algebra. Now put

Cn, = {8€C|B(R)s=0forallzem},
and let Cj;, = C;,, N C*. Then one knows that
le = 26601 leh .
and that the set of non-zero elements in Cj; is the set of all highest weight

vectors in C¢. Thus Cj, is the weight space for the weight £ in the sub-
representation 8| C* and

(5.5.6) dim Cy, = multiplicity of v{in 8.

The above notation without the subseript 1 refers to the case when gis
substituted for g,. Note that D & D, and that W, is a subgroup of W.
Furthermore if we put

1
h=7 E¢emml) P
then
(5.5.7) 9 =0+9.
where

1
(5.5.8) 9. =5 EszA(n)(p :
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For each @ € A let 7, € W be the reflection corresponding to ¢ so that
for any z' e by’

(5.5.9) T = o — 20", P) o
(», P)

We now observe

LEMMA 5.5. Let g, € §)’ be defined by (5.5.8). Then (g,, ) = 0 for all
@ € A(g,) so that x,, € b lies in the center of g,.

ProoF. It follows immediately from Proposition 5.8 or Proposition 5.4
that

A(g) + A(m) S A() .

Thus if ¢ € A(g,) it follows from (5.5.9) that A(nt) is stable under z,. But
then obviously 7,(g,) = ¢g,. Hence, again by (5.5.9), (9., #) = 0. q.e.d.

REMARK 5.5. Since the elements 7, @ = A(3,), generate W, it follows
from the proof above that A(n) is stable under any 7 € W,.

5.6. Let B be given by (5.5.4). Let R? € End C be the Casimir operator
corresponding to the restriction of (g) to g,.

Let |z’ | denote the length of a vector ' € §)* with respect to the re-
striction of (f') to bH*.

We recall the following well known proposition.

PROPOSITION 5.6. Let 3 be given by (5.5.4). Then, for any £= D, R?
reduces to the scalar

lg, + &P — 9.

on the subspace C* of C.
Proor. Writing B(e,)B(e_,) = B(x,) + Ble-,)B(e,) it follows that

Rf =3, B@NB@) + 28(,) + 235 ., Ble-)Be,) ,

where 2,, 1 < ¢ < [, is an orthonormal basis of §. One knows that R? re-
duces to a scalar on C*¢ so that to find the scalar it is enough to restrict
R? to Cf,. But since B(e_,)B(e,) vanishes on Cy the proof follows im-
mediately. q.e.d.

5.7. We now return to the considerations of § 4. We now assume, how-
ever, that the representation v of g is the irreducible representation v*
where M e D, so that V = V* Letuz U and now let a = 1t where n is
the nilpotent Lie summand u’. Thus # = v*|n. We wish to determine
the spectral resolution of the laplacian L, on the cochain complex C(n, V*).

Now since g, lies in the normalizer of n it follows that Anis stable under
the representation 0 | g, of g;. Let
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(6.7.1) B: g, — End C(n, V*)

be the representation of g, on C(11, V*) formed by taking the tensor product
of v*|g, and the representation of g, on A1’ contragredient to the repre-
sentation of g, on An defined by restricting 6 |g, to An. For any z € g, it
is then obvious that, as mappings from C(n, V) into Ag R V,

(5.7.2) NQ1-8(z) = 0,) 7R 1.

Since B clearly arises from a representation of G, on C(n, V) we may,
as in § 5.5, form the decomposition (5.5.5).

The spectral resolution of the laplacian L, is given in

THEOREM 5.7. Let N € D and let v* be an irreducible representation of
g, with highest wetght \, on a vector space V*. Let u be any Lie sub-
algebra of g which contains the maximal solvable Lie subalgebra b of g.
Let n be the maximal nilpotent ideal of u (see Proposition 5.3). Let
=V |nand let L, be the laplazian on the cochain complex C(n, V*) de-
Jfined as in §38.5 witha=nand V=V

Let g, =unu* (see §5.3) and let 8 be the representation of g, on C(nt, V?*)
defined following (5.7.1). Write, as in § 5.5,

Cn, V) =3_ _ C(u, V)

¢€ED;
where C(n, V) isthe set of all vectorsin C(n, V) which transform under
B according to the irreducible represen‘ation v; of g,.
Then L, reduces to a scalar on C(t, V*)* and the scalar is

SUg+ NP —1g+ &P
where
1
g = 5_245634_@

and A, is defined as in § 5.4.

PRroOF. Since n is a Lie summand we can apply Theorem 4.4. But by
Prorosition 5.3, nt = n* + g,. Thus we can choose the z, of Theorem 4.4
so that for ¢« = m, z, = e, for some @ = A(n) and for j > m, 2, either lies
inn* org,. Furthermore if z, = n* then by Proposition 5.4 we may assume
z; = e_, for some @ = A(n).

Now apply Theorem 4.4. Then since e} = e_, it follows from (5.7.2),
and the definition of R? that for any p € C(n, V*)

W@DLp=51QR + T ., 6l )oe,)
= T s 04e)0(e_)) () @ 1(p)) — 7 @ 1'RPp)
= ;1@ R* — 20,(z,))n ® 1(p) — 27 ® UR®D) ,
where g, is given by (5.5.8).
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But 1 ® R, by Proposition 5.6, reduces to the scalar |g + M |* — | g
on Ag® V. Thus since z,, € g, we can apply (5.7.2) once more and obtain

(5.7.3) L.= (g + 2 — g )1 — (B(x,) + :R?)

where 1, here, denotes the identity operator on C(n, V*). But z,, lies in
the center of g, by Lemma 5.5. Hence L, reduces to a scalar on C(nr, V)¢,
To determine the scalar it suffices to compute L. on a highest weight vector
pe C(n, V). But then since p belongs to the weight £ it follows from
Proposition 5.6 that L, reduces, on C(11, V*), to the scalar

Llg+ NP —1gF) — (0 8) + (9,5 + 2 |EP),
=2(lg+ 1P~ g +EP),

since g = ¢, + g.. q.e.d.

Now, as one easily shows, 8(2) for any z € g,, commutes with both d,
and d¥. In fact since B(2)* = B(z*) (by 5.7.2) this is implied by Lemma
4.2, (4.8.4) and (5.7.2). Thus if we consider the orthogonal direct sum
decomrposition (see Remark 2.3)

(5.7.4) Cn, V) =Imd, + Imd} + Ker L, ,

it follows that each of the three subspaces of C(n, V*) appearing on the
right side of (5.7.4) is stable under 3(z) for all z € g, and hence induces
sub-representations of 8. Since d,. maps Im d}, bijectively, onto Imd, it
follows that the sub-representations of 8 defined by Imd, and Imd} are
equivalent.

Now since B(2) commutes with d, for all z € g, it follows that 8 induces
a representation

B: g, — End H(nt, V*)

of g, on the cohomology space H(it, V*). On the other hand it is obvious that
B is equivalent to the sub-representation of 3 defined by Ker L,. But then

since L, is positive semi-definite we obtain, immediately, the following
corollary of Theorem 5.7.

COROLLARY 5.7. Let E€ D,. Then if the multiplicity of viin 8 is posi-
tive one must have

lg + N =1g9+ &
Furthermore if |g + N| > |g + &| then the multiplicity of viin B = 0
and if |g + M| = | g + &| then the multiplicity of vi in B = multiplicity
of vin B.
REMARK 5.7.
(A) Another way of expressing the statement in Corollary 5.7 is as
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follows. If p € C(nt, V*)¢, p # 0, then p is a cocycle which is not cohomolo-
gous to zero if and only if |g + \| = |g + &|. If on the other hand p is
a cocycle, then p is a coboundary if and only if [g + M| > |g + &].

At a later point we will make important (for us) use of the following
fact (contained implicitly in Corollary 5.7).

(B) Every irreducible component of B is inequivalent to any irreducible
component of the sub-representation of B defined by Imd..

5.8. Let Z, & Z be the semi-group generated by A,. Writing an element
YJr € Z as a linear combination of simple roots it is clear that Z, can be
characterized by

(56.8.1) Z,={pe Z|(,y)=0 forall pe D}.

Now let v € D and let A* denote the set of weights of the irreducible
representation v* of g. One knows that if e Z then a necessary condition
for pte A* is that
(6.8.2) N—pe Z, .

The following lemma is a consequence of this fact.

LEMMA 5.8. Let M, \ye D. Let pt, e AM, p,€ A*. Then
{5.8.3) M AN =+ ],
and equality holds in (5.8.8) if and only if there exists ¢ € W such that

00"1 + >"2) =t + s .

Proor. Let v € W be such that (¢, + ) e D. Fort =1, 2, put, =
N; — T, Since Ty € AN it follows then from (5.8.2) that 4, € Z, and
hence yr € Z, where \r =, + v, Now put pt = 7y, + 7, so that pe= D.
But then ), + N, = ¢ 4+ 4. Consequently, since | ¢t| = | ¢, + 4|, one has

MNP = 1+ ]+ [P+ 201, ) .

But by (5.8.1) (¢, ¥») = 0. This proves the inequality (5.8.3). Further-
more if equality holds in (5.8.3) then obviously v»=0. But since yr=1r,+1J,
and yr,, Y, € Z,, it follows that », =+, = 0. Thatis, N, =74, © = 1, 2.
The lemma follows in one direction by putting ¢ = 7~'. The other direction
is obvious. q.e.d.

REMARK 5.8. Let the notation be as in Lemma 5.8. Let ¢ € W. Then
the proof of Lemma 5.8 also yields the statement (by putting 7 = ¢7?)
that o(\ + N\) = 4, + 4, implies o\, = g, and o\, = ..

5.9. We recall that an element zt € Z is called regular if (¢, ) # 0 for
all p e A. One knows that ¢ e Z is regular if and only if ot = ¢, s W,
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implies ¢ is the identity element of W.
We recall that g € D and that g is regular. In fact both of these state-
ments are consequences of the well known relation

(5.9.1) 0, @) = {29

for any a € II. One obtains (5.9.1) from the easily verified fact that ais
the only root in A, which ‘“‘changes sign’’ under 7,. That is,
T,LA_NA, = (a).
Consequently 7,9 = g — a. But by (5.5.9) this is equivalent to (5.9.1).
REMARK 5.9. Freudenthal has proved (see e.g., [6, 6.1])

(5.9.2) lg +XM > 19 + ¢

for any M e D and any pte A, ¢t + N. We observe that, since g is regular
and g € D, (5.9.2) follows from Lemma 5.8 by putting », = ¢4, = g.

We now wish to consider the irreducible representation v? of g whose
highest weight is g. Weyl has given a formula for the dimension of a
representation in terms of its highest weight. Weyl’s formula asserts
that for any x e D

ILes (@ + 2 9)
ILses, (9, P)

This formula generally proves to be quite awkward for computational pur-
roses. However in the special case when M = g we observe that (5.9.3)
immediately yields

(5.9.4) dim Ve = 2

(5.9.3) dim V* =

where r (= dim m) is the number of roots in A,.
We wish to determine the weights of v? and their multiplicities. For
any subset ® S A, let {®) € Z be defined by

<(D> - E94><-3<fl>>q) )
Let the elements of A, be ordered so that A, ={p;}, 1+ =1,2, -+, 7.
Now observe that if ® & A,
(5.9.5) 9 —<KP= %(i% TPt @)

for some choice of the signs; and that furthermore as ® runs through all
27 subsets of A,, then the right hand side of (5.9.5) runs through all 2"
choices of signs. It is suggested by (5.9.4) and definition of g that v? some-
how behaves like a spin representation. The analogy is further strength-
ened by ’
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LEMMA 5.9. Let fe Z. Then fe A? if and only if there exists ® S A,
such that

(5.9.6) f=g—(>.

Furthermore the multiplicity of f as a weight of v° is equal to the number
of subsets ® S A, satisfying (5.9.6).

PrOOF. Let 38 £ End g be the Lie algebra of all operators on g which
are skew-symmetric with respect to (g). Thus 8 is isomorphic to the Lie
algebra of SO(n, C). Since 0(z), for z € g, is determined by its restriction
to g, we may regard 6 as a monomorphism mapping g into 8. Furthermore
we may find a Cartan subalgebra d of 3 such that 6 maps 0 into d.

Now let

6" v -y

be the mapping whose transpose is the restriction of 8 to ). It is obvious
that if p is a representation of 8 then 6’ maps the weights of 0 into the
weights of po 6.

Now one knows that the non-zero weights of the given representation
of 8 on g are of the form =X\, 2 =1, 2, «--, [#/2], where \,, ++, Mg, are
linearly independent in d’. Furthermore it is clear that we can choose the
ordering and signs of the )\; so that

(5.9.7) 0’(>"i) — Py 1= 1, 2, cee, T
0, i=r+1,.--,[n2].
Now let
v: 38— End V"

be the spin representation of 8. One knows that dim V" = 2*/* and that
the weights of v are all elements in d’ of the form

1
?(ixl P R == >"[n/2]) ’

and that each weight occurs with multiplicity one. Writing n = [ + 2r,
it follows then from (5.9.5) and (5.9.7) that the weights of vof are all
elements fe Y’ of the form g—{&) where ® £ A, and that the multiplicity
of f is equal to 21¥* times the number of subsets ® & A, such that

f=9—<K®>.
In particular we note that g is a weight of v o6 and that its multiplicity is
at least 2%, On the other hand we now observe that every weight vector
corresponding to g is necessarily a highest weight vector. To prove this,

it suffices to note that if e A, then g + @ is not a weight of ved. Indeed
if it were we would have g + @ = g — {®) or @ + (P> = 0 for a subset
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® < A,. But this is impossible since Z, N —Z, = 0. This proves that
the multiplicity of v? in vo @ is at least 2[Y2, But from the identity

olni2l — 9Lu2gr

it follows from (5.9.4) that v? occurs exactly 21/* times in v o 6 and that no
other irreducible representation of g occurs in v o 8. The lemma then follows
from the statement above concerning the weights of vod. q.e.d.

5.10. Let 0 e W. Define the subset ®, S A, by putting
P, =0A_NA, .
It then follows at once that
(6.10.1) 09 =g — {D,y.

Since og € A’ and, being extremal, since it occurs with multiplicity one
as a weight of v?, it follows from (5.10.1) and Lemma 5.9 that for any
subset ® S A

(5.10.2) (DY = (@, implies ® = D, .

Now one knows (see e.g., [1, 4.9]) that the mapping ¢ — oA_is a bijec-
tion of W onto the family of all subsets A, of A satisfying the two condi-
tions

(1) A, is closed under +, and

2) A =A,U —A, is disjoint union.

It follows then that there exists a unique element £ € W such that

(5.10.3) o, = A, .
Furthermore one deduces

PROPOSITION 5.10. The mapping ¢ — @, of W is a bijection of W onto
the family of all subsets ® of A, which satisfy the condition that ® and
its complement ®° in A, are both closed under +.

PROOF. Since g is a regular element of §’ (see (5.9.1)) it follows immedi-
ately from (5.10.1) that the mapping ¢ — ®, is an injection.

Now by definition it is obvious that ®, is closed under 4. But since the
complement of ®, in A, is equal to A, N A, = (kA )N A, = D,,, it
follows that it, too, is closed under 4.

Conversely assume that ® S A, and its complement @° in A,. are both
closed under 4. Put

Ay =DPU —(D9).

Obviously A = A,U —A, is a disjoint union. On the other hand it is straight-
forward to verify that A, is closed under 4. Hence, as noted above,
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A, = oA_ for some unique ¢ € W. But then obviously ® = ®,. q.e.d.
For later use we record the fact, noted in the above proof, that, if ke W
is given by (5.10.3),

(5.10.4) A, =d, U D,
is a disjoint union for any ¢ € W.

5.11. For any subset ® & A, (= A(m)) denote by e,€ Am the element
given by

€o = €, /\ - /\eq,ik,

3%

where ® = {9, , ---, ®, }. Itis obvious that the elements e,, ® S A,, form
a basis of Am and if we put

(56.11.1) €_o = €g
then the elements e_,, ® & A, form a basis of Am*.
Now let

1) —End Am* Q V*

be the representation of ) on Am* ® V* obtained by restricting 6, |5 to
Am* ® VA Let A be the set of weights of &. It is obvious then that if
£e Z then £ e A¢if and only if £ can be witten as

(6.11.2) E— —(D> 4 p

where ® S A, and ¢ € A*. But then as an immediate corollary to Lemma
5.9 we obtain

LEMMA 5.11. Let £e€ Z. Then £ € ASif and only if g + & can be written
g+&=rf+p
where f e A’ and pte A,
5.12. For any 0 € W put
(5.12.1) E.=0(g+N)—9g.

Also let s,, € V* be the extremal weight vector (unique up to a scalar
multiple) corresponding to the weight o of v*.

The following lemma 1s the main lemma needed together with Theorem
5.7 to yield the cohomology group H(1n, V*).

LEMMA 5.12. For any £ € AS one has
lg+ M z=lg+E&l.

Let 0 € W and let &, be defined by (5.12.1). Then the mapping ¢ — &, 18
a bijection of W onto the set of all weights & of ¢ such that
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[g+N=|g+E&.

Furthermore, as a weight of &, &, occurs with multiplicity one and the
weight vector corresponding to &, is the element

€0, X 8o,
of Am* R V.

Proor. It follows immediately from Lemmas 5.8 and 5.11 (putting \, =g,
th=F M=\, M = p) that £, AS, that |g + \| = | g + &| for £€ Afand
that equality holds if and only if £ = &, for some 0 ¢ W. Also &, = &,
implies 0 = 7 since g + ) is obviously regular.

Since ¢ o, & 8., is obviously a weight vector for £,, to prove the lemma
it suffices only to show that the multiplicity of &, is one. But since we can
find a basis of Am* @ V* consisting of weight vectors of the form e_, ®s,
where pte A*, and s, € V*is a corresponding weight vector, it suffices
only to show that

(5.12.2) = —<KD>+ p

imples ® = ®, and ¢ = o). But now if (5.12.2) is satisfied, then adding g
one has

o@g+N)=f+p¢
where f = g — {®) so that f e A?. But then by Remark 5.8, f = g¢g and

¢ = ox. However f = gg implies (®) = {(®,>. But then ® = &, by (5.10.2).
q.e.d.

REMARK 5.12. A more direct proof of Lemma 5.12 which also does not
require the use of a particular case (5.9.4) of Weyl’s dimension formula
has been found by Cartier. See [4]. The usefulness of such a proof is that
it makes the proof of Weyl’s character formula and its generalization given
in §§ 7.4 and 7.5 independent of the particular case (5.9.4).

5.18. Let ue U and let g, and n be defined as in § 5.3. We isolate a
subset W' of W by setting

(5.13.1) W'={oe W|®, S AM)}.

Recalling (5.5.2) and (5.5.3) we observe that the elements of W* can be
characterized as follows:

REMARK 5.13. Let de W. Then the following three conditions are
equivalent,

1) o W,

(2) o7(A(m)) E A,, and

(3) o(D) & D..
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The following proposition states that W* defines a ‘‘cross-section’’ with
respect to the canonical mapping of W onto the right coset space W\ W.
PROPOSITION 5.13. Ewvery element © € W can be uniquely written

T =170
where 7, € W,and ae W'

Proor. Let 0,0, W' Let 7, = 0,0;' and assume 7, € W,. Then by
Remark 5.5, A(nn) is stable under 7,. But this clearly implies

(Da-gl g (I)Ufl .

On the other hand the inverse o,0;" also lies in W,. Thus ®,-1 = ¥,
which, by Proposition 5.10 implies ¢, = ¢,. Thus no two distinct elements
of W' lie in the same right coset of W,.

Now let 7 € W be arbitrary. Let ®, = 7(A_) N A(m,) and let ®, be the
complement of ®, in A(m,). Then &, = 7(A,) N A(my,) so that both ®, and
®, are closed under 4. Now apply Proposition 5.10 to the case where
[9:, 8], the maximal semi-simple ideal of g,, is substituted for g. It follows
then that there exists 7, € W, such that (since A(11*) is stable under 7,)

o, =], .

1
Now put ¢ = 7;'z. It is then straightforward to verify a(A_) N A(m,) is
empty so that ¢ € W, q.e.d.

It is implicit in the proof above that if ¢ = 7,0 is the decomposition
given by Proposition 5.13 then

(5.13.2) D, = . U 7y(D,)

is a disjoint union; the components on the right being also the respective
intersections of ®. with A(n,) and A(n).
Now for any ¢ € W put

(56.13.3) n(g) = number of roots in ®, .
Since, obviously,

(5.13.4) O,-1 = —07H(P,) ,

note that

(5.13.5) n(o) = n(a7) .

Furthermore if 7 € W and 7 = 7,0 is the decomposition given by Proposi-
tion 5.13, then it follows from (5.13.2) that

(5.13.6) n(7) = n(t) + n(o) .

REMARK 5.13. Let 7 € W. We note as a consequence of (5.13.6) that
the unique element ¢ € W' in the right coset W,z can be characterized by
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the statement that n(¢) < n(z’) for all ' € Wz and that equality holds if
and only if " = ¢. Using (5.13.5) it follows that a similar statement in-
volving the set {67}, 0 € W', can be made for the left cosets of W,.

5.14. Now for any non-negative integer j put
W(j) = {o € W|n(o) = 5}
and let
Wi(5) = W) n w.
Also let {e’ s}, ® = A(n), be the basis of An’ dual to the basis {es},
® S A(m), of Ant so that by (5.11.1) and (3.2.1)

(56.14.1) Nele) =e o .
We can now state

THEOREM 5.14. Let u be any Lie subalgebra of g which contains the
maximal solvable Lie subalgebra b of g. Let n be the maximal nilpotent
ideal of u (see Proposition 5.8) and let g, = unu* so that g, is a reductive
(in g) Lie subalgebra and u =g, + 1 is a semi-direct sum (as Lie algebras).

Let » € D and let v* be the irreducible representation of g on a vector
space V* whose highest weight is \.

Let H(n, V*) be the cohomology group formed with respect to the rep-
resentation T = v* |nof non V* and let B be the representation of g, on
H(m, V) defined as in § 5.7.

Now for any & € D, let H(t, V) be the space of all classes in H(n, V*)
which transform under i according to the irreducible representation vi
of a, whose highest weight is E.

Now for any g € W let &, be defined by

Eo’:g(g_i')")_g'

Then if 0 € W' one has &, € D, and for any £ € D, one has H(nt, V*)* £ 0
if and only if € = &, for some 0 € W'. Furthermore H(n, V*)fv s irre-
ducible for all ¢ € W' so that ¢ — H(nt, V*)'s is a bijection of W* onto
the set of all irreducible (under B) components of H(n, V). Moreover
degree-wise, for any non-negative integer j

H'(n, V*) = Eoewl(juH(n' Vi)ie

(direct sum) so that for any o € W?*, the elements of H(nt, V*)'e are homo-
geneous of degree n(c). Finally if s,, € V* is the weight vector for the
extremal weight o) of v* then the highest weight vector in H(n, V*)s 4s
the cohomology class having

el o, @ Soa

as a representative (harmonic) cocycle.
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Proor. Now by Corollary 5.7 H(it, V*)* + 0 if and only if £ is a highest
weight of an irreducible component of 3 and

(5.14.1) lg + N =19 +&|.

Moreover in such a case the multiplicity of v in 8 is the same as its
multiplicity in B. But now the representation 8| of ) is obviously equiv-
alent to the sub-representation of ¢ (see §5.11) of §) defined by the subspace
A* Q@ Vof Am*® V. But then by Lemma 5.12 the only weights of 8
which satisfy (5.14.1) are the weights &, for ¢ € W' and they occur with
multiplicity one. Therefore to prove the theorem up to the statement
“‘Moreover ---”’, it suffices only to show that the &, occur as highest
weights in the decomposition of 3. But to prove this it is enough to show,
for any @ € A(m,), 0 € W, that &, + @ is not a weight of 8.

Put £ = &, + @. Then

lg +EP=1]olg + M+ P =19 + M +2(0(g +N),P) + |P].

But now by Remark 5.13 (3), a(¢g + \) € D, so that (a(9 + ), ) = 0. But
then |g + €| > |g + »|. By Lemma 5.12 this implies £ is not a weight of
¢ and a fortior: & is not a weight of 8.

Now by Lemma 5.12, e’ & s, is the unique (up to scalar multiple)
weight vector for the weight &, of 8. But from above it must be the
highest weight vector of an irreducible component of 3. Hence by Theorem
5.7, €. o, X 8, is a harmonic cocycle (element of Ker L.). But then, clearly,
its cohomology class is the highest weight vector in H(1it, V)*». Now this
class is obviously homogeneous of degree n(g). Since H(1t, V*)s is generated
by its highest weight vector under the action of g, it follows therefore
that H(n, V)i« < H"*(n, V*). This completes the proof. q.e.d.

In our applications we are interested in the action of g, on H(n, V%), as
given by Theorem 5.14, rather than in H(nt, V*) itself. Nevertheless as a
corollary to Theorem 5.14 one obtains

COROLLARY 5.14. Let n, V* and the representation @ of n on V* be as
in Theorem 5.14. Then

E cewl(y) H(peA(m,) (O'(g + >")v gD)
ILecimy (9 #)

Proor. Let (g), be any non-singular, invariant bilinear form on g and
let (Y'), be the bilinear form on %’ induced by (g),. Now observe that in
Weyl’s formula (5.9.8) one obtains the same result using (§)’), instead of
(H'). (This is clear since any root corresponds to a simple component of g).

Furthermore one need only assume that g is reductive instead of semi-
simple. But then to determine dim H(11, V*)°> one may apply Weyl’s formula

dim H’(n, V*) =
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to the representation vic of g, using the restriction (g,) of (g) to g,. But
for any @ € A(m,),

(6lg + M) — g + 91, ?) = (0(g + N), )
and

(9, 9) =(9,9),

since by Lemma 5.5 (9 — g,, #) = (9,, #) = 0. The corollary then follows
from Theorem 5.14. q.e.d.

5.15. Let w(j) (resp. w'(7)) be the number of elements ¢ in W(3) (resp.
W'(35)).

In general the dimension of H'(n, V*) varies with . In fact by Corol-
lary 5.14, if m, # 0, by choosing )\ properly, it can be made to be arbitrarily
large. However if m;, = 0, that is, if m is substituted for n it was first
proved by Bott [2] that dim H’(m, V*) is constant over all » € D. In fact
he observed that

(5.15.1) dim H'(m, V) = w(j) .
This result of Bott is an immediate consequence of

COROLLARY 5.15. Let the notation be as in Theorem 5.14 except that m
18 substituted for nso that W is substituted for W'. Then, foranyoce W,
H(n, V*)te is one dimensional and in fact

Hn, Vo = ((e-0, @ s51))

where (e'o, & 1) 18 the cohomology class defined by the cocycle e, & s,.
Proor. In the special case of Theorem 5.14 considered here ) plays the

role of g,. But since H(n, V*)*v is irreducible under ) and since } is com-

mutative, it follows that dim H(it, V*)°s is one dimensional. q.e.d.

REMARK 5.15. Observe that a statement generalizing the result (5.15.1)
to the case of nninvolves multiplicity of representations rather than dimen-
sion. Such a statement is the following: The number of irreducible
comyponents in H’(n, V'*) under the action of g, is equal to w'(5) (and con-
sequently is independent of \).

6. Application I. The generalized Borel-Weil theorem

1. Let u € U (see §5.2) and let n (= u°) be the maximal nilpotent ideal
inu. Also, asin §5.3let g, = unu*. Now let U, N and G, be the sub-
groups of G corresponding, respectively to u, n and g,. The subgrours U
and G, we recall, are closed by Remark 5.1. But N is closed also since
6(N)is unipotent (see Proposition 5.8). Thus since the center of G, operates
reductively on g it is clear that G; N N reduces to the identity and hence
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(6.1.1) U=GN

is a semi-direct product.

Since 1 lies in the commutator of u (because ) C u) it is clear that N
maps onto a unipotent linear group under any representation of U. But
since N is normal in U it is obvious then that any irreducible representa-
tion of U is trivial on N and hence is equivalent to v%, for some £ € D, on
G,. Conversely given £ € D, or, more generally, given £ € Z (see §5.5) the
representation v{ of G, on V extends to an irreducible representation

vi: U— End V¢

of Uon Vi by making it trivial on N. Hereafter we will regard v¢ as so
extended. Thus, up to equivalence, allirreducible representations of Uare
of the form v for & ¢ D,.

Now, as in § 5.2, let X = G/U. Then X may be regarded as the base
space of a holomorphic fiber bundle with G as total space and U as fiber.
Given £ € Z one obtains an associated holomorphic vector bundle E¢ with
fiber V{ as the set of equivalence classes in G x Vi with respect to the
equivalence relation

(au, s) = (a, vi(u)s)

foranya e G,u € Uand s € V.

Leta,beG. If t =bU e X, let a-x ¢ X denote the coset ablU. Simi-
larly if v € E* is the equivalence class containing (b, s) where s € V}, let
a-v € E* denote the equivalence class containing (ab, s). It is clear then
that if X, & X is an open set in X and v is a local holomorphic section of
E* defined on a'+ X, then a(y), given by

a(y)(x) = a-(a-x),
where x € X, is a local holomorphic section of E¢ defined on X,. But now
the mapping Y» — a(yr) defines an operator p‘(a) on H(X, SE¢) where SE*¢
is the sheaf of local holomorphic sections of E¢ and H(X, SE?) is the co-

homology group over X with coefficients in SE*.
Now from general considerations concerning such cohomology groups
one knows that H(X, SE*) is finite dimensional. But forany j =0,1, .-,
and a € G, it is obvious that H’(X, SE*) is stable under p‘(a). We will let

0% G — End H/(X, SE*)
be the representation of G (and also g) defined by restricting pf(a) to
H/(X, SE*) for alla € G.

It is clear, using Weyl’s dimension formula, that a knowledge as to how
©0’¢ decomposes into irreducible representations yields in particular the
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dimension of H’(X, SE*). We concern ourselves then with the question
of decomposing 0.

6.2. Let &, \ € Z. Let o, be the representation of u on Hom (V?*, V),
the space of linear mappings from V?* into V¥, defined by putting

(6.2.1) o:(y)(4) = vi(y)A — Av(y)

for all y eu and all A € Hom (V*, V). Then with respect to this represen-
tation one can form the relative cohomology group H(u, g,, Hom (V*, V})).
Concerning this cohomology group and the decomposition of p’¢, Bott (see
[2, 1.6]) has proved

PROPOSITION 6.2. Let £e€Z. Forj =0,1, .- let p’* be the representa-
tion of G on H'(X, SE*) defined in §6.1. Then for any \ € Z one has
mult. of v* in /¢ = dim H'(u, g,, Hom (V*, VY)).

In the next section we will put Proposition 6.2 in a somewhat sim-
pler form (Proposition 6.3) expressing it as a reciprocity law.

6.3. Now one knows that for any & € Z the representation v;¢ is equiv-
alent to the representation contragredient tovi. Without loss of generality
therefore we will, from now on, assume that, for any £ € Z, V¢ is in fact
the dual space of V{ and v is the representation contragredient to vi.

For any £ € Z the unique extremal weight of v lying in — D, will be
called the lowest weight of v (corresponding weight vectors are called
lowest weight vectors). Thus for any & € D, one has that —£ is the lowest
weight of v ¢. (In this section it will be convenient to use — D, (as we may)
instead of D, to index the irreducible representations of G,).

Substituting G for G, the conventions made above will hold also when
v* is substituted for vi.

Let e D and £ € D,., Now in the usual manner we may identify
Hom (V—4, V%) with V*Q V¢ It is clear then that p,, for the values
—\, —&, is equal to the tensor product of v* |u and v;¢. On the other hand
let

v,: u— End V,

be any representation such that v, | g,is completely reducible and let H(n1, V)
be defined with respect to v, |n. Then where the representation

A.: g, — End H(n, V)

is defined in a manner similar to the definition of 3 in §5.7 and H’(n1, V,)°
is the set of all elements in H'(nt, V) transforming under B, according to
the zero representation of g, it is a simple and well kown fact (see e.g.,
[2, Corollary 2, p. 223] or [7, p. 603]) that
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(6.3.1) dim H'(n, V))°* = dim H'(u, g, V})
forj=0,1, ---,.

Now putting V, = Hom (V-*, V) and v, equal to the tensor product
of v* |1t and v¢ and recalling that v7* | n is trivial, it follows that
(6.3.2) H'(n, V) = (Hin, V) Q V¢,

Now let ,

B4 g, — End H'(n, V%)

be the representation of g, on H'(n, V%) deﬁnedvby restricting A (see §5.7)
to H'(n, V*). It then follows from (6.3.1) and (6.3.2) that
(6.3.3) dim H'(u, g,, V) = mult. of v{ in 5’* .
Substituting —\ for » and —§& for £, Proposition 6.2 becomes the following
reciprocity law.

PROPOSITION 6.3. Let j be a mon-negative integer. Let & € D, and let
0"~ be the representation of g on H¥(X, SE~*) defined as in §6.1. Let
X\ € D and let 37 be the representation of g, on H’(n, V*) defined above.
Then

mult. of v=* in 0*~¢ = mult. of V% in B .

REMARK 6.3. The proof of Proposition (Bott) 6.2 may be simplified con-
siderably. In fact after making a few simple observations the proof of
Proposition 6.2 or rather more directly Proposition 6.3, follows almost im-
mediately from a theorem of Dolbeault. We will sketch the arguments.

Let K £ G be the subgroup of G corresponding to f. Let C~(K) be the
space of all infinitely differentiable complex valued functions on K. Now
let v, and v be the representations of K on C~(K) defined by

(vi(a)£)(d) = fa™"d)
and
(va(@)f) ) = f(ba) ,

where f e C~(K) and a, G € K.
Now the representation v, induces (by differentiation) a representation
of f on C~(K) and by complexification a representation

(6.3.4) vi: ¢ — End C=(K)

of g on C~(K).
Now let

p.G— X
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be the canonical mapping. One knows (since g = t + 1) that p maps K onto
X so that p induces a diffeomorphism of K/K, on X where K, = UN K.
Note that by definition of g, (see § 5.3) one has that g, is the complexifica-
tion of ¥, where f, is the Lie algebra of K,. It follows therefore that if
& e D, and

v,: ¢ — End (C~(K) Q Vi)

is the representation defined by.taking the tensor productof v, |g,and v; ¢,
and (C=(K) ® V%) is the set of all elements in C~(K) ® V,* transform-
ing under v, according to the zero representation of g, then (C~(K)Q V)’
is canonically isomorphic to the space of all C* cross sections of £ . This
fact leads immediately to the Frobenius reciprocity law.

But now one has the following. Let @ € K and let ¢, be the mapping of
g onto the complex tangent space to K at a induced by v, (6.3.4) and let
P, be the mapping, induced by p, of the complex tangent space to K ata
onto the complex tangent space to X at p(a). One then observes that the
composition p,oq, maps n bijectively onto the set of all anti-holomorphic
tangent vectors at p(a); that is, onto the space of all complex tangent
vectors at p(a) which are orthogonal to the space of all holomorphic 1-co-
vectors at p(a). It follows then that if

7ie: 1— End (C=(K) ® V,*)

is the representation defined by taking the tensor product of v, | n and the
trivial representation, and if

Br: 8, — End C(n, C=(K) ® V%)

is the representation of g, on the cochain complex C ¢ = C(,C*(K)Q V%)
(formed with respect to 7;) defined in the same way as B of § 5.7 (except
that v, replaces v* | g,) then, more generally for any j, (C’-~¢)° is canonically
isomorphic to the space C*/(X, E—¢) of allC ~differential forms of type (0, 5)
on X with values in E—¢. Here (C’'—¢)’ is the space of all homogeneous
elements of degree j in C~¢ which transform under 8, according to the
zero representation of g,. (We say more generally since if j = 0, this state-
ment is identical with the one made above concerning (C(K) Q V,%)°).
Moreover if

dR: (C.L—E)O — (CJ | 1,—6)0

is the mapping induced by the coboundary operator on C ¢, then under
the isomorphism (C¢—¢)° — C*¥ X, E~%),1 = J,j + 1, one also observes (and
this is the key observation) that d, corresponds to the usual coboundary
operator d” on C*(X, E~*). It follows then from the reductive properties
of the action of g, that one obtains an isomorphism
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(6.3.5) (H'(n, C*(K) @ V%)) = H"(X, E~)

where the superscript 0 is defined with respect to /§R, and ,@R is defined
in a manner similar to 5 of § 5.7.
On the other hand by Dolbeault’s theorem one has the isomorphism

(6.3.6) H*Y(X, E~*)— H/(X,SE~)
so that (6.3.5) and (6.3.6) yield the isomorphism
(6.3.7) (H'(, C=(K)® V%)) — H(X, SE~¥) .

But now the representation v, of K on C*(K) extends to a representation
v, ®1of Kon C*(K)® V¥ Since vy, ® 1 obviously commutes with v,
and 7., it induces a representation

pi % K— End (H’(t, C=(K) ® fo))0 .
One then observes that under the isomorphism (6.3.6) 0 ¢ corresponds to
the representation p?~*| K of K on H’(X, SE~*) (see § 6.1).

Now one proceeds in a manner similar to that used in the proof of the
Frobenius reciprocity law. Using the Peter-Weyl decomposition of C=(K)
one easily establishes an isomorphism

(6.3.8) (H,C(K)Q V) =X,,V *QH @, VHQ V)
where if p~* is the representation of K on the summand
VAQHm, VHQ Vi)

formed by taking the tensor product of v~*| K on V-* and the trivial rep-
resentation of K on (H'(nt, V*) ® V), and p is the representation of K
on the right hand member of (6.3.8) formed by taking the direct sum
of the p~*, then p corresponds to o} *.

But then Proposition 6.3 follows from the obvious fact, observed before,
that

dim (H’(n, V") ® V%)’ = mult. of »§ in BN,
6.4. Let £ € D,. One knows that H(X, SE~*) is just the space of all
holomorphic cross-sections of E—¢.
Now assume that 1t = b, so that X = Y and D, = Z. In this case £
is a line bundle over X. It follows from a well known theorem of Kodaira
on positive line bundles that if £ € D then

H(Y,SE*%) =0 forallj > 0.

But then applying Hirzebruch’s formulation of the Riemann-Roch theo-
rem to the case at hand one obtains that

(6.4.1) dim HY(Y, SE~%) = dim V¢
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(note that on the right hand side the subscript 1is absent). If 0"~ is the
representation of G on H(Y, SE~*) defined as in §6.1, it is then sugges-
tive from (6.4.1) that 0"~ is equivalent to v=*. It is the assertion of the
theorem of Borel-Weil that this is in fact the case.

Now return to the case where u € U is arbitrary. (Here again one can
still show, without the use of cohomology or sheaf theory, that if £ € D
then the representation p*~¢ of G on the space H°(X, SE~¢) of holomorphic
sections of £ ¢ is equivalent to v~°).

We now consider the general situation where £ € D, is arbitrary (so that
the Kodaira theory is not applicable) and the nature of o’ ¢ is sought for
arbitrary j.

For any M € D and 0 € W let &\, 0) € Z be defined by putting

En,0)=0(g +N) —9g.
In §5.12, since )\ was regarded as fixed, we denoted this element, more
simply, by &,.
We now isolate a special subset D! of D, (and thereby, by our indexing,

isolate a special family of representations of g,). Let D/ be defined by
putting D! = {£ € D|g + £ is regular (see § 5.9)}. We first observe

LEMMA 6.4. Let W' be defined by (5.13.1). Then the mapping
Dx W'— Z
given by
(N, 0) = E(N, 9)

where x € D and 0 € W*, maps D x W' bijectively onto D).

PROOF. Let £e D,. Since ge D < D, it is obvious thatg + &€ D,. But
now if & € D then there exists a unique ¢ € W such that ¢ (g + &) € D.
Furthermore by Remark 5.13 (3) it is clear that ¢ € W'. Moreover since

o9 + &) € D is regular, it follows from (5.9.1) that ) also lies in D where
X\ is defined by

r=0'g+E&—g.
But then obviously £\, ) = £. Moreover the uniqueness of ¢ obviously
shows that £(\/, ¢’) = £ implies A = N and ¢ = ¢’ if M € D.
It suffices only to prove £(\, 6) € D? for all x € D and ¢ € W'. But by
Theorem 5.14, £(\, 6) € D, (one can easily give a simpler and more direct
proof of this fact). On the other hand if £ = £(\, ) theng + & = a(g + \)

and since g + ) is obviously regular, it follows also that g + £ is regular
so that &€ € D/. q.e.d.

REMARK 6.4. Lemma 6.4 should perhaps be viewed in the following
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light. If £ € D then writing £ = £(\, ) we observe that £, and hence also
the representation v{ of g,, picks out in this way a unique ) € D and hence
a special representation v* of g and also a unique ¢ € W* and hence, in
particular, a special integer n(o).

Notealso that DS D/ € D, and thatif £ € D then upon writing & = £(\, 9)
one has A = £ and o is the identity element of W.

After applying the Riemann-Roch theorem in the general case considered
above, the following generalization of the Borel-Weil theorem was con-
Jectured by Borel and Hirzebruch. It was then later proved by Bott
[2, Theorem IV’].

THEOREM 6.4. Let £ € D,. Then if € ¢ D? one has
HY{(X,SE-*%) =0 Jorallj =0,1, ..,

If & € D!, them upon writing (uniquely, see Lemma 6.4) & = £(\, 0) where
M€ Dand o € W* one has

H/(X,SE-*) =0 Sfor all 7 =+ n(o)
and for j = m(ag) one has
dim H"(X, SE~*) = dim V—*

where in fact if "¢ is defined as in § 6.1, then 0" ¢ is equivalent
to the irreducible representation v=* of G.

Proor. We have only to apply Proposition 6.8, Theorem 5.14 and Lemma
6.4. That is, if £¢ D? then by Lemma 6.4 and Theorem 5.14 the mult. of v{
in 57* equals zero for all M € D and all J. It follows then from Proposi-
tion 6.3 that v=*" has zero multiplicity in p?~¢ for all j and M’ € D. Hence
©0’7* is the zero representation for all . This proves the first statement.

Similarly if & = &(\, ¢) € D? then Lemma 6.4 and Theorem 5.14 assert
that the multiplicity of v{ in 57 is zero for all M € D and all J unless
both ¢ = n(¢) and M = X\ in which case the multiplicity is one. The theo-
rem then follows from Proposition 6.3. q.e.d.

7. Application II. Weyl’s character formula and its
extension to non-connected groups

1. In this section let U be any (not necessarily connected) complex Lie
group.

Let n be the Lie algebra of a normal connected Lie subgroup of U. Let,
for any a € U,

(7.1.1) %(a) € End A'n’

be the inverse transpose to the automorphism of n induced from conjuga-
tion by a. Furthermore for 7 =0, 1, --., dim n let
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Bi: U— End N1’

be the representation of Uon A/’ formed by taking the j*" exterior product
of the representation defined by (7.1.1).
Now for any a € U put

1 (@) = trace Bi(a) ,
and let
x(@) =227 (—=1)x(a) .
One, of course, knows that
(7.1.2) Xo(a) = det (1 — Bi(a)) .
Now for any subset U’ < U, let R(U’) & U’ be defined by
R(U') ={a e U'|ya) + 0} .

Note that, by (7.1.2), R(U) is the set of all @ € U such that 8}(a) has no
non-zero fixed vectors.

REMARK 7.1. Although we make no use of the fact, itcan be easily shown
that if R(U) is not empty then n is necessarily a nilpotent Lie algebra.

7.2. Now let
v: U—-End V
be a representation of U on V and, for any a € U, let
x*(a) = tracev(a) .

Our intention now is to give a formula for the character y"’ involving co-
homology groups defined by n.
Let

BLU—-End N RV

be the tensor product of the representations 8] and v. Thus if " is the
character of &’ one obviously has

(7.2.1) s = x? .

Let # = v|n. Then we recall that An’ ® V is the underlying space of
the cochain complex C(n, V) defined by #. Furthermore if d, is the cor-
responding coboundary operator, then it follows easily that foranya e U
(7.2.2) d.B'(a) = B (a)d.

on C'(n, V).
Since (7.2.2) holds also for j — 1, 8’ induces a representation
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B’: U— End H¥(n, V)

of U on the cohomology group H'(n, V).
Now let %' be the character of 3’ and put

7= (-1
Similarly put
X= (=1
It is then a simple and well known fact (the Euler-Poincaré principle)
using (7.2.2) that for any a € U

(7.2.3) 2a) = y(a) .

Let 7,equal ¥ for the case when the identity representation issubstituted
for v. It follows then from (7.2.8) that also

(7.2.4) L(@) = %) .

But now taking the alternating sum with the expressions in (7.2.1) as
summands one obtains

(7.2.5) o=
We have proved, using (7.2.8), (7.2.4) and (7.2.5).

PROPOSITION 7.2. Let v be a representation of U on a vector space V
and y* be its character.

Let n be the Lie algebra of a normal Lie subgroup of U and let ¥ (resp.
%) be the alternating sum of the characters of the representations L
(vesp. Bi) of Uon H'(n, V) (resp. H'(n)).

Let R(U) be the set of all a € U which, (see Remark 7.1) under the
representation of U on n induced by conjugacy, correspond to operators
on n without non-zero fixed vectors.

Then if a € R(U) one has j,(a) #+ 0 and

va) — 2@
70
If a ¢ R(U) one has ¥(a) = y(a) = 0.

7.3. Let u e U (see §5.2). We apply Proposition 7.2 to the case whetre
U is the subgroup of G corresponding to u and n (= u’) is the maximal
nilpotent ideal of u. Also let v = v*| U where A € D so that V = V2,

Now if £ € D, let x; be the character of the representation v{ of G,. Then
if, as in §7.2, ¥ is the character of the representation B?of Uon H(n, V*)
it follows from Theorem 5.14 that for any a € G, & U,

(7.3.1) 2"'(“) = Eaewlu) va(a)
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where, we recall, &, = a(g + \) — g and W'(j) is given by (§ 5.14).
For any o € W let sgo, as usual denote the determinant of . If n(o)is
defined by (5.13.8) it is then well known that

(7.3.2) sgo = (—1)* .

(In fact since there are obviously n(o) root ‘‘walls’’ separating, for example,
g and ayg, (7.3.2) follows from the fact that sgz, = —1 for any @ € A).
But now Proposition 7.2, (7.8.1) and (7.8.2) yield

PROPOSITION 7.3. Let A € D and let x* be the character of the irreducible
representation v* of G. Let G, and 1 be defined as in § 5.3 and let R(G,)
be the set of all a € G, such that 8(a)z =z, for z € n implies z=0. Here
¢ denotes the adjoint representation of G on g. Then for any a € R(G,)

Eaewlsg o-xir(0+>\)——0(a)
Eaewlsggx{w)ﬂz(a)

where for any & € D,, x} is the character of the irreducible representation
vi of G, and W* is given by (5.13.1).

7.4. Now consider the special case of Proposition 7.3 where u = b so
that n = mand G, = H where H S G is the (Cartan) subgroup correspond-
ing to . In this case D, = Zand W' = W. Furthermore if « € H then
writing @ = exp« for z € §) one has, for any & € Z

(7.3.3) Ma) =

xila) = €.
Moreover R(H) is the set of all elements in H that are regular in G.

Multiplying numerator and denominator of (7.8.3) by e * one obtains,
as an immediate corollary to the proposition above,

PROPOSITION 7.4. (Weyl’s character formula). Let x* be the character
of the representation v*. Let a € H be regular in G. Then writing
a = exp x one has

(o (g+A),z)
EGGWSg ge

(og,z)
2. cwSgOe

REMARK 7.4. Let « € hand put a = exp 2. Note then that the identity
1(@) = %), (see (7.2.4)), is just the familiar relation

H¢€A+ (1 — 6—<¢.z>) — e—<o.x>,Evewng-e<cro.r> .

7.5. Let g* be any reductive complex Lie algebra. Without loss of
generality, however, we may assume that g is the maximal semi-simple
ideal in g*. Now let G* be any complex Lie group (not necessarily
connected) whose Lie algebra, is g*.

@) =
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Here we will let ¢ denote the adjoint representation of G+ on g*. If
a € G*, it is clear of course that ¢, the center of g*, and g are both stable
under 6(a). However, we note that both 8(a)|c and 6(a) | g may be, re-
spectively, outer automorphisms of ¢ and g.

Now let

(7.5.1) H* = {a € G"|m and Y are both stable under 6(a)} .

In case G is connected it is clear that H* is a Cartan subgroup of G*.
However, if G* is not connected then, for one thing, the group H+ may
not be commutative (and in fact H* may be quite complicated, especially
if the identity component G} of G* has a non-trivial center and g* has a
large number of isomorphic simple components.). Nevertheless as far as
conjugacy and representation theory are concerned, as we now observe,
H™ appears to be the natural substitute for H.

Now let C denote the Cartan group of g operating, like W, in § and
contragrediently in §’. One knows then (since W is transitive on the Weyl
chambers) that

C=CWw
is a semi-direct product where W, the Weyl group, is a normal subgroup
of C and
Co={reClr:lI—-1I}.
Now let @ — 7(a) be the homomorphism of H* into C, defined by the
condition that for any ¢ € H*, « € I1

(7-5'2) (g(a)ew) = (er(u)w) .
We then denote by C," < C, the image of H* under this homomorphism.
Now let
vi: Ht - End V,

be an irreducible representation of H+ on V,. Since v, induces a represen-
tation of b (which clearly also arises from a representation of H) we may
consider the set A" of weights of v, (we ignore the center ¢ of g) and note
that A" & Z. It is then immediate from (7.5.1) that if A € A then A" is
given by

(7.5.3) A = {tn|7 e Cf}.
We will now say that v, is a dominant representation of H* if
amc D,

Since D is stable under C,, observe that by (7.5.3) v, is dominant if € D
for at least one \ € A",
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Now let A be an index set for the equivalence classes of all dominant
irreducible representations of H*.

Now just as the elements of D index both the classes of dominant rep-
resentations of H and all representations of G we now observe that A is
an index set for the classes of all irreducible representations of G*. That
is, to each & € A there exists a unique (up to equivalence) irreducible rep-
resentation

V3. G* — End V?
such that if
Vi={se V| vie,)s =0 forall ¢ ¢ A},
and
vi: H* — End V?

is the representation defined by restricting v° | H* to V? (obviously a stable
subspace), theny? is a dominant irreducible representation of H* belonging
to the equivalence class corresponding to 8. Furthermore every irreducible
representation v of G* is equivalent to v® for some, necessarily unique,
8 € A. The proof of the statements above proceeds in the same way as in
the classical situation as soon as one observes that G* = H'G, where G,
is the subgroup of G, corresponding to g.

Now let ae H* and let e W. Since Wis normalin Cwecanlets'e W
defined by the relation

T(a)o = d't(a) .

Recalling that by definition ®, = g(A.) N A,, we then observe that for
some scalar y7(a),

(7.5.4) O(a)e_o, = Y7(a)e_o,, -

Similarly if V2 & V? is defined in the same way as V! except that oA,
replaces A, we observe that

(7.5.5) Vi(a): Vi— V& .
It follows therefore that if H. is the subgroup of H* defined by
H; = {a € H'|7(a) commutes with ¢},

then V¢ is stable under v®| H," and hence defines a representation v} of
H;. Let x3 be the character of vj.

REMARK 7.5. If y? is the character of v{ note that y{ determines x5 for
any ¢ € W. In fact if b(o) € G, is any element which induces, by conju-
gation, the transformation ¢ on ) observe that
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2:(@) = 13(b(0)ab(o) ™)

for any @ € H;/. The element b(o) is needed since o itself does not in
general operate on H, .
Finally put

(7.5.6) x7a) = xi(a)xa(a)

for any a € H,".

An element a € G is called regular if the rank of 6(a) — 1 is minimum
in the connected component of G containing a. In case g" = g this defini-
tion is the same as that given by Gantmacher, [8, pp. 112, 119]. Since
O(a)|c = 6(b)|c for a, b € G* lying in the same connected component we
may apply the results of [8] to the case at hand. In particular, it follows
then from Theorems 12, 23 and 29 in [8] that every regular element is
conjugate to an element in H+ and that @ € H* is regular if and only if
the kernel of 6(a) — 1 lies in h*, the Lie algebra of H*. But the latter
clearly implies that @ € H* is regular if and only if #(a) has no fixed vectors
in m. Thus if we apply the considerations of §7.2 to the case where Ulis the
normalizer in G of the subgroup of G, corresponding to nt and n = m, it
follows that R(H ") is the set of all elements in H* that are regular in G'.

Applying Proposition 7.2 where v=1?| U, we obtain the following gener-
alization of Weyl’s character formula.

THEOREM 7.5. Let g* be any reductive Lie algebra and let G* be any Lie
group (not necessarily connected) whose Lie algebra is g*. We may assume
that g ts the maximal semi-simple ideal in g*.

Now let H* be defined by (7.5.1) so that there is a one-one relation
between all dominant irreducible representations of H* (indexed by A)
and all irreducible representations of G*. Let & € A and let ¥ be the
character of the irreducible representation v® defined above. Let a € H*
be regular in G+ (every regular element of G* is conjugate to an element
wn H*) and let W, be the subgroup of W consisting of all ¢ € W which
commute with v(a) (see (7.5.2)). Then where x7(a) and x7*(a) are given
respectively by (7.5.4) and (7.5.6) one has

2 eew,SEOXT (@)
2 oew, 580X (@)

ProoF. Define H(m, V?) with respect to the representation 7 = v |n.
By decomposing V* into irreducible components under the action of 1% | g,
it follows from Corollary 5.15, that the space of cochains (¢’ )& VZ consists
(except for zero) of non-cobounding cocycles and if ((¢’s,) ® V?) denotes
the corresponding space of cohomology classes, one has the direct sum

x(a) =
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Hm, V) =37 (o) V).
We have now only to apply Proposition 7.2, (7.5.4) and (7.5.5). q.e.d.

8. Application III. Symmetric complex spaces X and
a generalization of a theorem of Ehresmann

1. Letue U and let g, and n be defined as in § 5.83. We continue with
the notation of § 56 except that now it is assumed that A = 0. Thus 8 is
a representation of g, on An’ and 7 is the induced representation of g, on
H(n).

Now let 3, be the representation of g, on An defined by restricting @ | g,
to An. Thus 8, is the representation contragredient to 8. Since S,
obviously commutes with the boundary operator don Anit defines a repre-
sentation

By: ¢ — End H,(n)

on @, on the homology group H,(1n). It is of course clear that, with respect
to the canonical duality between H, (1) and H(n), 5, is just the represen-
tation contragredient to 5. Applying Theorem 5.14, one then immediately
obtains

COROLLARY 8.1. Let u € U and let 5, be the representation of g, on the
homology group H,(n) defined above. For any £ € — D, let H,(n)* be the
set of all elements in H,(n) which transform under B, according to the
irreducible representation (with lowest weight &) vi of g,.

Then for any o € W' one has g — 09 € — D, and for any & € —D, one
has H,(n)* # 01f and only if € = g — og for some o € W'. Furthermore
H, (n)*="? is trreducible for all 0 € W' so that ¢ — H,(11)*~°? is a bijection .
of W* onto the set of all irreducible (under B,) components of H,(n).
Moreover, degree-wise, for any non-negative integer j,

Hj(n) = Euewl(j) H*(n)g—ag y

so that the elements of H,(n)*~° are homogeneous of degree n(a). Finally
the lowest weight vector of H,(n)*~7¢ is the homology class having es, as
a representative cycle.

8.2. We consider the cases (u € U) when 1 is commutative. Let IT(u) S 11
be defined as in § 5.4 and for any @ € A let the integer n,(®), a € 11, be
defined also in § 5.4. It is then asserted that nt is commutative if and only
if for every @ € A(n)

(8.2.1) 2 wenan Mal(®P) = 1.
Indeed since A(n) is precisely the set of all @ € A such that the left hand
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sum of (8.2.1) is =1, it follows that the condition (8.2.1) implies that n is
commutative. On the other hand if there exists a root such that the left
hand sum of (8.2.1) is = 2 then since m is generated by the e,, « € I, it
follows that there exists ® € A() and a € II(ut) such that ¢ + a e A. But
since @, &, ® + a € A(n), this implies that n is not commutative. This
proves the assertion. An immediate consequence of this and symmetric
space theory is

PROPOSITION 8.2. Let u € U and, as in §5.2, let X = G/ U so that X is
a complex compact homogeneous space. Then X is also a symmetric space
in the sense of E. Cartan if and only if n, the maximal nilpotent ideal of
u, 18 commutative. ,

Proor. It is immediate that the condition (8.2.1) is satisfied if and only
if no two elements of I1(u) lie in the same connected component (in the
sense of Dynkin) of 1I; and for any « € I1(11), one has n,(®) <1 forall® € A.
But then the result follows from the structure theory of complex, compact,
symmetric spaces (see e.g. [3, 40, p. 260]). q.e.d.

But now if n is commutative, the boundary operator on Amiszero. Thus
H(n) = An. Hence in the symmetric case Corollary 8.1 yields Corollary
8.2 below describing how A n decomposes under the action of g,. Corollary
8.2 contains, as a special case, results of Ehresmann asserting how An
decomposes when X is symmetric and G is a classical group. We will work
out the case when X is the grassmannian in § 8.6.

COROLLARY 8.2. Let ue U. Assume that X = G/U is a symmetric
space. Let 1t be the maximal nilpotent ideal of 1 and let B, be the repre-
sentation of g, on An obtained by restricting 6 |g, to An. (Recall that 6
18 the adjoint representation of g on Ag).

Now let W* be the subset of the Weyl group defined asin §5.13. Then
for any o e W', one has g—aog € — D, and for any & € — D,, the irreducible
representation Vi of g, occurs in B, if and only if € = g — g for some
g€ W'. Furthermore if a € W', then vI=°9 occurs in B, with multiplicity

- one and if (A 1)°~°7 is the subspace on which it occurs (so that ¢ — (A n)?=7

18 @ bijection of W' onto the set of all irreducible (under B,) components
of An)then the elements of (An)'~°? are all homogeneous n(o)-vectors, so
that for any non-negative integer j, one has the direct sum

Ajn = Evewlu)(An)”—” *

Finally the lowest weight vector in (An)?~° is the decomposable n(o)-
vector eq, (see § 5.11).

REMARK 8.2. For use in § 8.6, it will be convenient to express Corollary
8.2 in terms of highest weights instead of lowest weights. In order to do
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this let £ € W be defined as in § 5.10. Write (uniquely according to Propo-
sition 5.13)

K = KK
where £, € W, and ' € W'. By (5.13.2) it follows that &, = A(m,) (see
§ 5.5). Thus for any £ € — D,, one has that £,(£) € D, and k,(§) is the highest
weight of vi. It follows therefore that in the notation of § 5.5

(An)a—ca — (An)xlw—«rq) ,
and the highest weight vector in An?—°? is the decomposable n(c)-vector
€., Where £,(®,) is the set of all roots (necessarily in A(w)) of the form
£k, where @ € ®,_.

8.3. Let m be a positive integer and let g™ be the Lie algebra of all
complex m x m matrices regarded as operating on C™ = V in the usual
way. Foranyy € g™, let y,;, t,7 = 1,2, - -+, m be the matrix coefficients
of y.

Now let a™ = g™ be the set of m x m complex matrices of zero trace.
We apply the considerations of § 8.2 to the case where g = a™. We choose
the maximal solvable Lie subalgebra b of g so that

b={yegly; =0, v >3}

(super-triangular matrices) and the Cartan subalgebra b of g so that b is
the set of all diagonal matrices in g. The corresponding roots are then
canonically indexed by all pairs¢,7=1,2, -+, m, © + J, where @,; € A
is given by

(8.3.1) {Pisy XD = Ty — 45,

for any « € h and the corresponding root vectors may be chosen so that

1
e, = ——8;,
Wy om !

where ¢,; is the usual matrix unit.

REMARK 8.3. The coefficient (1/1/2m) is necessary to insure the relation
(5.1.2). It alsoinsures (5.4.2) where t is chosen to be the set of all skew-
hermitian matrices in g. Since (@, ®) = 1/m for all @ € A, note also that
we can write
Ve,
[ Py
But using (5.1.3) this implies that

(8.3.2)

(Z%] = €5 .

2

8.3.3 e —
( ) (Pisr Piy) v

@5 = €;; —e“ .
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Now it is clear from the choise of b that A, = A(b) = {®;,}, © < j. Hence
the simple positive roots may be indexed so that I1={«;}, 1=1,2,---, m—1,
where

Ay = Py«
Now let Z™ be the set of all m-tuples 7,
r=(r, "y "y T,
where the r; are integers. It is clear from § 5.5 and (8.3.3) that we can
define a mapping
Zm™—Z, r— ((r),
by letting /¢(r) be defined by

(y(r), CU> =1&, + %y + o0 + T nLmm
for any x € b.

The Weyl group W may be identified with the permutation group on
the numbers 1, 2, -+ -, m. If we let W operate on Z™ by putting

or = {7',—1(1), T "%y ’raﬂwm} ’

then this identification may be made so that (4(or) = oy(r) for any r e Z™.
Note then from (8.3.1) that for any root @,

(8.3.4) 0(Pis) = Potiyois) »
Now let
Dr={reZ™|rizr,= s Z1,}.

It is obvious that D™ is a fundamental domain for the action of Won Z™
and by (8.3.3) the mapping r — p(r) carries D™ onto D.

Now for any r € Z™ let n(r) = 3" ..

We recall some facts in the representation theory of g™. Let G™ be the
group of all m x m complex non-singular matrices. For each » ¢ Z™ let

V'i-g™ — End V+®

be the irreducible representation of g™ on V*™ defined so that v"| g = v*™
and, if 1™ is the m x m identity matrix, v"(1™) is the scalar n(r) on V*™,

REMARK 8.3. Note that v~ is the contragredient representation to v”
for any r € Z™.

It is clear that v" is equivalent to v* for any ¢ € W. Also one knows
that every irreducible representation of g™ which arises from an irreducible
representation of G™is equivalent to v” for one and onlyone elementr € D™,

8.4. Now let P be the set of all partitions of all non-negative integers.
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Thus if p € P then p is given by a finite sequence

D= {01, s+, D}
where p, = p, = .-+ = p, are positive integers. To each p € P one associ-
ates two integers, n(p), where
n(p) = Efﬂpi

is the number being partitioned and m(p) (= k), the number of parts.
Also one associates to p a Young diagram Y(p) which may be regarded as
the set of all pairs (%, j) of positive integers where 1 < ¢ < m(p) and j < p;.
Schematically the pairs of Y(p) are represented by the boxes in the figure

L1|L2| - - - « - |1,p
2, 1 . . . . 2’ ¥

(8.4.1) P
k, 1 ¢ ¢ k’ D

Let p € P. Then one associates with p another partition 7 (called its
conjugate) where m(p) = p, and p,, for 1 < j < p,, is given by

P; = maxg; snerm? -

One has that n(p) = n(p), m(p) = p,, m(p) = P, and schematically the box
representation for Y(p) is obtained by transposing (8.4.1) as one would a
matrix.

Now let

P" = {p € P|m(p) = m},
and let
rm; P™— Z™

be the mapping given by the relation (r™(p)); = p; for 1 < ¢ < m(p) and
(r™(p)); = 0 for m(p) < 1 < m. It is clear that ™ is a bijection of P™ onto
the subset D™ of D™ consisting of all » € D™ such that r, is non-negative
for all 4.

Let p € P™. We recall (Young theory) how one obtains the representa-
tion y™™® of g™. Lete;, 1 =1,2, .-, m, be a basis of Vsuch that e;(e;) =e¢;
for all ©. For any non-negative integer j let @’V be the tensor product
of V with itself j times and let v’ be the representation of g™ on @’V
formed by tensor product of the canonical representation of g™ on V with
itself 7 times.
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Now if 1 <7 < m, let ¢.;, € @’V be alternating tensor defined by
ey = 0,580, Q)+ R e,y

where the sum is over all permutations on the numbers 1, 2, ---, J.
Now let e, € @™ V be defined by

€ = €5 ® €3y R Q& €3 0
where k = m(p) = p,. Also let V2 £ @™ V be the subspace generated
by e, under the representation v™*’. Then the sub-representation of v**
defined by V7 is irreducible and is equivalent to v""». Moreover ¢, is a
highest weight vector of v*? | g.

REMARK 8.4. One knows that for any integer 5 all the irreducible sub-
representations of v’ are of the form v” where » € DT, that is, of the form
v @ where p € P™. It follows therefore that, since this is true for all 7,
any irreducible sub-representation of the tensor product v R v’ where
r', r"” € DI is again of the form v” where » € DT.

8.5. Let U be as in §5.2. Let s be an integer where 1 <s < m. We
apply the considerations of § 8.2 to the case where X is the grassmannian
of all s complex planes in V. That is, to the case where u € U is the set
of all matrices ¥ € g of the form

B (Au(y), Au(y))
0 Axy)
where, if t = m — s, A,(y) is an s x s matrix, A,,(y¥) is an s x t matrix
and A, (y) is at x t matrix.

It is clear that n is the set of all ¥ € u such that A, (y) = A,(y) = 0.
Furthermore if f is chosen to be the set of all skew-hermitian matrices in
g, then g, is the set of all ¥ € u such that A,,(y) = 0. Also note that if
xeg,yenandz =[x, y] = B.(r)y € n then

(851) Alz(z) = All(x)AIZ(y) - Alz(y)Azz(x) .

Now by definition (see (5.13.1)) W* is the set of all 6 € W such that
@ e A, and 67(®) € A_implies ¢ € A(1rt). But now since A(n) is the set of
all ;. € Asuch that 1 £ ¢ < sand s < k < m, it is clear from (8.3.4) that
o ¢ W'if and only if
(8.5.2) o) < o2 < - < 07Hs)
and

s+ 1)< o(s+2)< 0 < 0(m) .
REMARK 8.5. It follows immediately from (8.5.2) that an element o € W*
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is characterized by the values 67'(1), © = 1, 2, - -+, s. Thus there are (7:)
elements in W?, the elements being in a canonical one-one correspondence
with the set of all subsets of s integers between 1 and m.

Write t = m — s. Now let ¢ € W*. It is obvious from (8.5.2) that for
anyl<i<sand1l <5 <t one has
(8.5.3) 1<0'(t) and <o (s+ 7).
On the other hand we now observe that one or the other (but obviously
not both) of the following inequalities must hold
(8.5.4) o) <t +J=07(s+ )
or

o (s+H<t+7=07(1).

That is, in any event 7 + 7 lies between () and 6~'(s 4 j) and is greater
than the minimum of the two. This is an immediate consequence of (8.5.2)
and the fact that o' is a permutation.

We can now easily compute ®,. By letting 5 vary from 1 to 7'(7) — ¢,
it follows from (8.5.4) that
(8.5.5) P, ={p, ;€A1 <s,1<0'(t) and 1 <j5 = 07'(7) —1}.

Now given g € W', it follows immediately from (8.5.3) that we can define
a partition p° € P° by the relation

(8.5.6) r(p7) = (67(s) — s, +++,07'(1) — 1). ’
But it is then an easy consequence of (8.5.4) that the conjugate partition
p° lies in P* and that
(8.5.7) r@)=(s+1—0s+1),--+,m—0c7'(m),
since the j** entree in 7*(p°) is by definition the number of entrees in 7°(p°)
which = j.

Now let ¢ € D™ be defined by

q:(m9m— 1; "'vl)'

It is then clear from (5.9.1) and (8.8.8) that #(g) = g. On the other hand
note that if ¢ € W, then

q—og=(07(1)—1, -+, 07(m) —m).

Now recall that the element &, € W, is characterized by the fact that
@, = A(m,) (see Remark 8.2).
It follows easily then that

(8.5.8) Kk, = k'k"”
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where ¥ = (1,8)2,s — 1), +--, and £"' = (s +1,m)(s +2,m — 1), ---.
But then adjoining a t-tuple to an s-tuple to make an m-tuple, it follows
from (8.5.6) and (8.5.7) that for any 0 € W*

(8.5.9) k(g — 0q) = (r*(p°), —K"7T(p7)) .
On the other hand we clearly have that
(8.5.10) k(g — 09)) = k(g — 09) .

Also in terms of the Young diagram for p°, note that we can write
D, = {5 € A (£(3), 5) € Y(p°)}
so that by (8.5.8)
(8.5.11) £(Pg) = {Pim 15 € AL(4,5) € Y(p)}.
8.6. Now identify

g =9"Dy¢
with the set of all m x m matrices of the form y given in § 8.5 where
A(y) = 0and A, (y) € ¢°, A.(y) € ¢ are arbitrary.
Let r € Z™. We may write, uniquely, r = (7!, ) where r' € Z* and
r? e Z*. We will let v! be the irreducible representation of G** = G* x G*
on V™ Q V) given by

prtTt =y x|

It is clear then that every irreducible representation of G** is equivalent
to v} for some r € Z™ and in fact » is uniquely chosen if one insists that
r* € D*and r* € D,

Now the adjoint representation of g°* on 1t (see 8.5.1) extends in the
usual way to a representation

Bse: g% — End An

of g** on An. We observe that the representation 3, , is obtained as an
extension of the representation 8, of g, on An by defining 83, ,(1™) = 0.

We wish to decompose the representation 3, , into irreducible compo-
nents. We first observe, however, that if » € D® then—«"r € D’ and y=~''"
is equivalent to the representation contragredient to the representation
v” of gt. This is clear from the definition of £”. It follows easily therefore
from (8.5.1) and Remark 8.4 that any irreducible component of S, is
of the form v~ where r' € D} and r* € D:.

Now let @ be the set of all pairs (p', p*) where p' € P* and p* € P’ is
such that v~ occurs in the complete decomposition of B, , if ' =7*(p")
and r* = rY(p?). From the remark above we see that every irreducible
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component of B, , is of this form so that 3, , is determined as soon as the
elements of @°* are known together with the corresponding multiplici-
ties. The following theorem is due to Ehresmann. See [5, § 5].

THEOREM 8.6. Let Q' be the set of pairs of partitions defined above
describing the decomposition of the representation B, of §° D g (a* is the
Lie algebra of all k x k complex matrices) on An where n is isomorphic
to the space of all s x t complex matrices.

Let W* be defined as in §5.183 so that here W' is the set of permutations
o e W satisfying (8.5.2). If a0 € W, let p° € P* be the partition defined
by

ri(p°) = (67%(s) — 8, +++,07(1) — 1) .
Then
(8.6.1) n(p°) = n(0)

where the left and right sides of (8.6.1) are defined respectively as in
§ 8.4 and by (5.18.8). Furthermore ¢ — p° is a bijection of W' onto the
set of all partitions p such that

mp) <s and m(P) =t

where p is the conjugate partition (that is, the set of all partitions whose
Young diagram (block representation) *‘fits”’ into an s x t rectangle of
blocks).

Finally Q' is the set of all pairs (p°, p°) where o runs through W'
Moreover the irreducible representation of g°t corresponding to any pair
(p°, ]-o_‘;) occurs with multiplicity one and the representation induced on
a, 18 vao=o9 - Moreover the space of the representation consists of homo-
geneous n(p°) vectors and a highest weight vector of v'?=7? is (in any
order)

H(i,j)emp") Crm+1—5

where 11 denotes exterior multiplication.

PRrOOF. The equality n(p°) = n(o) follows from (8.5.11) and the other
statements about p” follow from Remark 8.5. To prove the theorem there-
fore we have only to apply Corollary 8.2 and Remark 8.2, and to determine
the element of Q** corresponding to representation vf1?=? of g, on the
subspace (An)—? of A*@n. Thatis we must find the pair (p', p*) € @**
such that

1) p(r(pY), —£"r(p")) = £(9 — 0g) and

2) n(p") = n(o) (since B, ,(y) must reduce to the scalar n(g) on A*'n
if y € g** is the element such that A,,(y) = 0 and A,(y) = 1°).
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It is easy to see that (1) and (2) define (p', p’) uniquely. But by | (8.5.9),
(8.9.10), and the equality (8.6.1), it follows that (»', *) = (»°, p°). The
final statement follows from (8.5.11) and Remark 8.2. q.e.d.

REMARK 8.6. Theorem 8.6 lends some insight into the nature of the

weight g — og, at least for the case at hand. The striking thing is that
the partitions p* and p* of the pair (p', »*) corresponding to the weight
g — og not only determine each other but are related to the extent that
one is the conjugate of the other. Furthermore except for a limitation on
size, the choice of p' can be made arbitrary by choosing ¢ properly.
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