
Quantum computation and information:

Notes for Fall 2018 TAMU class

J.M. Landsberg

Contents

Chapter 1. Classical and probabilistic computing 1

§1.1. 2025 1

§1.2. Surprising algorithms 2

§1.3. Notation, probability and linear algebra 6

§1.4. Classical Complexity 9

§1.5. Probabilistic computing 12

§1.6. Computation via linear algebra 13

Chapter 2. Quantum mechanics for quantum computing 17

§2.1. Quantum mechanics via probability 17

§2.2. Postulates of quantum mechanics and relevant linear algebra 21

§2.3. Super-dense coding 26

§2.4. Quantum teleportation 27

§2.5. Bell’s game 28

Chapter 3. Algorithms 31

§3.1. Primality testing 31

§3.2. Grover’s search algorithm 35

§3.3. Simons’ algorithm 36

§3.4. Quantum gate sets 38

§3.5. Shor’s algorithm 41

§3.6. A unified perspective on quantum algorithms: the hidden
subgroup problem 51

§3.7. What is a quantum computer? 51

v

vi Contents

§3.8. Appendix: review of basic information on groups and rings 52

Chapter 4. Classical information theory 55

§4.1. Data compression: noiseless channels 55

§4.2. Entropy, i.e., uncertainty 58

§4.3. Shannon’s noiseless channel theorem 60

§4.4. Transmission over noisy channels 61

Chapter 5. Quantum information 67

§5.1. Reformulation of quantum mechanics 67

§5.2. Distances between classical and quantum probability
distributions 74

§5.3. The quantum noiseless channel theorem 76

§5.4. Properties of von Neumann entropy 80

§5.5. Entanglement and LOCC 88

Chapter 6. Representation theory and Quantum information 97

§6.1. Representation theory 97

§6.2. Projections onto isotypic subspaces of H⊗d 102

Hints and Answers to Selected Exercises 111

Bibliography 113

Index 117

Chapter 1

Classical and
probabilistic
computing

1.1. 2025

In January 2016, and in more detail in October, the NSA released a docu-
ment warning the world that current encryption algorithms will be no longer
secure as early as 20251. At that point in time there may be operational
quantum computers. What is all the fuss about?

The main way banks, governments, etc. communicate securely now is
using the RSA cryptosystem. RSA relies on the assumption that it is difficult
to factor a large number N into its prime factors. In 1994 [Sho94] (also
see [Sho97]) P. Shor described an algorithm to factor numbers quickly on
a “quantum computer”.

Why can’t we factor numbers quickly already? What is a quantum
computer?

Before addressing these questions, we need to address more basic ones:

What computations can we do quickly on a computer? What is a clas-
sical computer and what can it do?

1See http://www.math.tamu.edu/∼jml/CNSA-Suite-and-Quantum-Computing-FAQ.pdf

1

2 1. Classical and probabilistic computing

1.2. Surprising algorithms

1.2.1. Logarithms: fast multiplication of numbers. Until the 1600’s,
when people had to do astronomical predictions (the king was very interested
in knowing his horoscope, see [Lyo09]), a difficult step was the multiplica-
tion of large numbers. In 1614 John Napier revolutionized computation by
writing a book of lists of numbers to implement a transform that swaps mul-
tiplication for addition: the logarithm. Kepler used Naiper’s book to make
astronomical tables on the order of 30 times more accurate of previous tables
[Gle11, p87].

Even in this example, there is something modern to learn: if the difficult
step of a calculation (in this case taking logs and exponentiation) can be
precomputed and stored in a database, it becomes essentially “free”.

1.2.2. The DFT: Fast multiplication of polynomials. Say a(x), b(x)
are polynomials of degree at most d with complex coefficients. Write a(x) =∑d

i=0 aix
i, b(x) =

∑d
j=0 bjx

j . Write a = (a0, . . . , ad) and similarly for other

coefficients. Writing a(x)b(x) =
∑2d

k=0 ckx
k, one has

(1.2.1) ck =
∑
i+j=k

aibj .

(One says c is the convolution of a and b.) To obtain the coefficient vector c
by this standard method, one needs to perform on the order of d2 arithmetic
operations (i.e., +’s and ∗’s). In this situation, we will writeO(d2) arithmetic
operations, see 1.3.1 for the precise definition of O(d2).

Quantum algorithms will be expressed as a sequence of matrix vector
multiplications, and we may do so here as well to facilitate comparisons.

To express this calculation in terms of matrix-vector multiplication, note
that the vector c is the product

a0 0 · · · 0
a1 a0 0 · · · 0

a2 a1 a0
. . .

...
...

ad ad−1 · · · a0

0 ad ad−1 · · · 0
...

. . .

0 · · · 0 ad

b0
b1
...
bd

 .

Here we have broken the symmetry between a(x) and b(x). The symmetry
will be restored momentarily.

1.2. Surprising algorithms 3

Now we explain a trick to reduce the amount of computation. Pay at-
tention as a variant of this trick will be critical to Shor’s quantum algorithm
for factoring. As with the multiplication of numbers, the key will be to do
a transformation that re-organizes the input data of the two polynomials.

Since deg(ab) ≤ 2d, instead of working in the space of all polynomials,
we can work in the ring C[x]/(xN − 1) of polynomials quotiented by the
ideal generated by the polynomial xN − 1 for any N > 2d. For the moment,
to fix ideas set N = 2d + 1, but later we will take N to be a power of two.
We can then write a (2d+ 1)× (2d+ 1) matrix for a(x) (allowing it now to
have larger degree) as

a0 a2d a2d−1 · · · a2 a1

a1 a0 a2d · · · a3 a2

a2 a1 a0
. . .

...
...

ad ad−1 · · · ad+2 ad+1

ad+1 ad ad−1 · · · ad+3 ad+2
...

. . .

a2d · · · a1 a0

and similarly for b(x) (although we only need the first column of the prod-
uct).

Note that the first d+ 1 columns of this matrix is our old matrix. This
looks like we are making our problem more complicated. However, now that
we have a square matrix we can diagonalize it. At first glance, this seems
like a very bad idea: the cost of a change of basis is worse than O(d2). How-
ever, one can use the same change of basis matrix for all polynomials. How
could you know this? Because a(x)b(x) = b(x)a(x), in both the usual mul-
tiplication and as elements of the C[x]/(xN −1), and if commuting matrices
are diagonalizable, they are simultaneously diagonalizable.

Exercise 1.2.1: Show that if two diagonalizable matrices commute, then
they are simultaneously diagonalizable.

Diagonalizing the matrix for b(x), we can then perform the matrix prod-
uct using 2d multiplications, instead of O(d2).

Here we can just construct a linear map that sends the coefficient vector
of a polynomial of degree at most N to the vector consisting of eigenvalues
of the corresponding N × N matrix as above. Let DFTN : CN → CN
denote this linear map. (DFT stands for discrete Fourier transform.)
Write â = DFTNa (where we have padded the coefficient vector of a(x)

with zeros to make it have length N), and similarly b̂ = DFTNb. Given

4 1. Classical and probabilistic computing

â and b̂, the vector ĉ can be computed using N scalar multiplications as
ĉk = âk b̂k. Finally c = DFTN

−1ĉ.

Although we viewed a as a matrix in our derivation of the algorithm,
when we implement the algorithm we will treat it as a column vector.

Exercise 1.2.2: Show that the matrix DFTN (independent of a(x)) is

given by (DFTN)jk = (e
2πi
N)jk and its inverse is given by (DFTN

−1)jk =
1
N (e

2πi
N)−jk. Here use index ranges 0 ≤ j, k ≤ N − 1. (Note that these are

the roots of the equation xN − 1 = 0.)

However, to multiply by DFTN and its inverse, we need to perform six
matrix multiplications of size N matrices, so the cost is still O(N2) ≥ O(d2),
so we have not improved anything yet.

Now we come to a great discovery of Gauss in 1810 [Gau], rediscov-
ered by several people, including Cooley-Tukey in 1965 [CT65], who are
responsible for its modern implementation the revolutionized signal pro-
cessing: the DFT matrix factors as a product of sparse matrices. Explicitly,
if N = 2k, DFTN may be written as a product of k matrices, each with only
2N nonzero entries. The cost of matrix-vector multiplication of a sparse
matrix with S nonzero entries is O(S), so the cost of performing our DFT
is O(log2(N)N) instead of O(N2). Performing three such, plus the diagonal
matrix multiplication does not change the order of this total cost.

Explicitly,

(1.2.2) DFT2M =

(
DFTM ∆MDFTM
DFTM −∆MDFTM

)
Π

where, setting ω = e
2πi
2M , ∆M = diag(1, ω, ω2, . . . , ωM−1) and Π is a per-

mutation matrix corresponding to the inverse of the shuffle permutation
(1, . . . , 2M) 7→ (1, 3, 5, . . . , 2M − 1, 2, 4, 6, . . . , 2M).

Exercise 1.2.3: Write DFT4 as a product of two matrices, each with eight
nonzero entries. Write DFT8 as a product of three matrices, each with 16
nonzero entries. })

Exercise 1.2.4: Show that DFT2k may be factored as a product S1 · · ·Sk
where each Sk has 2(2k) << (2k)2, for a total of 2k+1k nonzero entries, and
thus multiplication of two polynomials of degree at most d = 2k−1 may be
computed using O(k2k+1) = O(log(d)d) arithmetic operations. }

Exercise 1.2.5: Verify Equation (1.2.2).

Remark 1.2.6. For those familiar with representation theory, the DFT is
the change of basis matrix from the standard basis of the regular functions
on ZN , denoted C[ZN], to the character basis. For an abelian group, matrix
multiplication in the character basis becomes scalar multiplication because

1.2. Surprising algorithms 5

Figure 1.2.1. Graph representing product of three 8× 8 matrices
that gives DFT8. Vertices in each row represent indices from 1 to
8, and edge from i to j at level k ∈ {1, 2, 3} means the (i, j)-th
entry of the k-th matrix is nonzero.

all its irreducible representations are one-dimensional. We will see this point
is central to quantum algorithms.

Remark 1.2.7. You may have seen Fourier transforms of periodic functions,
where convolution in the original space corresponds to multiplication in the
transform space. This is the analogous transform when the group is the
circle, i.e., the space of functions C[S1].

More explicitly, write the unit circle in R2 as S1 = {(cos(θ), sin(θ)) |
θ ∈ [0, 2π)} ⊂ R2. Introduce complex notation C = R2, so S1 = {eiθ | θ ∈
[0, 2π)} ⊂ C. Then for (e.g., continuous) functions f(θ) on the unit circle,
we may write

f(θ) =

∞∑
n=−∞

cne
inθ
2 , where cn =

1

4π

∫ 2π

0
f(θ)e−

inθ
2 dθ.

Since nonzero complex numbers form a group under multiplication, and
the product of elements of length one is of length one, S1 is naturally a
group. In signal processing, we need to digitize (e.g. sound waves), so we
approximate a periodic function by sampling it at say N equally spaced

points on the circle, e.g., the points e
k2πi
N , 0 ≤ k ≤ N − 1. Note that these

points form a subgroup, in fact the cyclic group of order N , ZN , the same
group as C[x]/(xN − 1). Tracing through the calculation, the DFT really is
the discretization of the Fourier transform on the circle, exactly what one
needs in signal processing.

Aside 1.2.8. For those familiar with tensors and their ranks, the structure
tensor of A = C[x]/(xN − 1) has minimal tensor rank N , and the DFT is a
change of basis that rewrites the structure tensor TA ∈ A∗⊗A∗⊗A as a sum
of rank one tensors.

6 1. Classical and probabilistic computing

Aside 1.2.9. One might wonder if there is an even more efficient way of
computing the operation a 7→ DFTNa. This question, and a path to resolv-
ing it, were presented by L. Valiant in [Val77]. There is interesting algebraic
geometry related to the question, see [KLPSMN09, GHIL16].

1.2.3. Matrix multiplication. Another surprising algorithm deals with
matrix multiplication. The usual algorithm for multiplying two n×n matri-
ces uses O(n3) arithmetic operations. Strassen [Str69] discovered an algo-
rithm that uses O(n2.81) arithmetic operations and it has been conjectured
that as n grows, it becomes nearly as easy to multiply matrices as it is to
add them, that is for any ε > 0, one can multiply matrices using O(n2+ε)
arithmetic operations.

1.3. Notation, probability and linear algebra

1.3.1. Big/Little O etc. notation. For functions f, g of a real variable
(or integer) x:

f(x) = O(g(x)) if there exists a constant C > 0 and x0 such that
|f(x)| ≤ C|g(x)| for all x ≥ x0,

f(x) = o(g(x)) if limx→∞
|f(x)|
|g(x)| = 0,

f(x) = Ω(g(x)) if there exists a constant C > 0 and x0 such that
C|f(x)| ≥ |g(x)| for all x ≥ x0,

f(x) = ω(g(x)) if if limx→∞
|g(x)|
|f(x)| = 0, and

f(x) = Θ(g(x)) if f(x) = O(g(x)) and f(x) = Ω(g(x)).

We write ln for the natural logarithm and log for log2.

1.3.2. Probability. Let X = {a1, a2, ...} be a countable set and let p :
X → [0, 1] be a function such that

∑
j p(aj) = 1. Such p is called a discrete

probability distribution on X . A function X : X → R is called a discrete
random variable and it defines a probability distribution with discrete sup-
port on R by pX(z) =

∑
j|X(aj)=z

p(aj) so pX(z) = 0 if z 6∈ X(X). Similarly,

random variables X,Y define a probability distribution pX,Y (x, y) with dis-
crete support on R×R, and similarly n random variables define a probability
distribution with discrete support on Rn. If f : R → R is a function, then
f ◦X is also a random variable.

The expectation (or average) of a random variable on a countable set X
equipped with a probability distribution p is

(1.3.1) E[X] =
∑
aj∈X

X(aj)p(aj).

1.3. Notation, probability and linear algebra 7

Random variablesX,Y are said to be independent if pX,Y (x, y) = pX(x)pY (y).
They are identically distributed if they define the same probability distribu-
tions. We write X1, . . . , Xn are iid if they are independent and identically
distributed.

For example, if X = {H,T} are the possible outcomes of flipping a biased
coin which lands heads (H) with probability p and tails with probability
1− p, and X(H) = 1, X(T) = −1, then E[X] = 2p− 1, which is zero if the
coin is fair. We will often be concerned with repeating an experiment many
times. A typical situation is to define random variables Xj where Xj is 1
if the outcome of the j-th toss is heads and Xj = −1 if the outcome of the
j-th toss is tails. Then the Xj are iid.

Note that E[X] ∈ [−∞,∞]. The law of large numbers implies that the
name “expectation” is reasonable, that is, if one makes repeated experiments
(e.g., as with the coin flips above) and averages the outcomes, the averages
limit towards the expectation.

More precisely, the weak law of large numbers states that forX,X1, X2, ...
independent identically distributed random variables, and for any ε > 0,

(1.3.2) lim
n→∞

Pr

(
| X1 + · · ·+Xn

n
− E[X] |≥ ε

)
= 0,

and the strong law of large numbers states moreover that

(1.3.3) Pr

(
lim
n→∞

X1 + · · ·+Xn

n
= E[X]

)
= 1.

Here and throughout Pr(Z) denotes the probability of the event Z oc-
curring with respect to some understood distribution.

However, individual outcomes can be far from the expectation. A first
measurement of how far one can expect to be from the expectation is the
variance: The variance of X is

var(X) = E[(X − E[X])2](1.3.4)

= E[X2]− E[X]2(1.3.5)

Exercise 1.3.1: Verify that (1.3.5)=(1.3.4).

Often one deals with the square-root of the variance, called the standard
deviation, σ(X) =

√
var(X).

If P is a probability distribution on X ×X ′, one defines the marginals by
PX (x) =

∑
y∈X ′ P (x, y) and PX ′(y) =

∑
x∈X P (x, y), which are probability

distributions on X , X ′ respectively.

Let xj be iid random variables. The string x1 · · ·xn =: xn is iid. Say X =
{1, . . . , d} with Pr(j) = pj . The probability of any given string occurring
depends only on the number of 1’s 2’s etc.. in the string and not on their

8 1. Classical and probabilistic computing

order. A string with cj j’s occurs with probability pc11 · · · p
cd
d . (Note that

c1 + · · ·+ cd = n.) The number of strings with this probability is(
n

c1, . . . , cd

)
:=

n!

c1! · · · cd!

and we will need to estimate this quantity.

1.3.3. Detour on estimating multinomial coefficients. Stirling’s for-
mula implies

ln(n!) = n ln(n)− n+O(ln(n)),(1.3.6)

log(n!) = n log(n)− log(e)n+O(log(n)).(1.3.7)

It is often proved using a contour integral of the Gamma function (see, e.g.,
[Ahl78, §5.2.5]). To see why it is plausible, write ln(n!) = ln(1)+· · ·+ln(n).
This quantity may be estimated by∫ n

1
ln(x)dx = [x ln(x)− x]n1 = n lnn− n+ 1,

giving intuition to (1.3.6).

In particular, for 0 < β < 1 such that βn ∈ Z,

log

(
n

βn

)
= log

n!

(βn)!((1− β)n)!
(1.3.8)

= n[−β log(β)− (1− β) log(1− β)] +O(log(n))

Let H(β) = −β log(β) − (1 − β) log(1 − β) and more generally, for p =

(p1, . . . , pd), let H(p) = −
∑d

i=1 pi log(pi), called the Shannon entropy of p.
It will play a central role in information theory.

Exercise 1.3.2: Show that similarly, for the multinomial coefficient(
n

p1n, . . . , pdn

)
=

n!

(p1n)! · · · (pdn)!
,

where p1 + · · · pn = 1, we have

(1.3.9) log

(
n

p1n, . . . , pdn

)
= nH(p) +O(log(n)).

1.3.4. Linear algebra. Terms such as vector space, linear map etc.. will
be assumed. For a vector space V , over a field F, recall the dual space
V ∗ := {f : V → F | f is linear}. If V = Fn is the space of column vectors,
then V ∗ may be identified with the space of row vectors. If V is finite
dimensional, there is a canonical isomorphism V → (V ∗)∗, so we may also
think of V as the space of linear maps V ∗ → F. Following physics convention,

1.4. Classical Complexity 9

we will usually denote elements of V by |v〉 and elements of V ∗ by 〈α|, and
their pairing by 〈α|v〉. In bases, if

|v〉 =

v1
...
vn

 ,

we may write 〈α| = (α1 · · ·αn), and 〈α|v〉 =
∑

j α
jvj is row-column matrix

multiplication. Let End(V) denote the space of linear maps V → V .

Define the tensor product V⊗W of vector spaces V andW to be the space
of bi-linear maps V ∗×W ∗ → F, and more generally for a collection of vector
spaces V1, . . . , Vm, V1⊗ · · ·⊗Vm is the space of m-linear maps V ∗1 ×· · ·×V ∗m →
F. If we work in bases, and dimVj = vj , then V1⊗V2 is the space of v1×v2-
matrices and V1⊗V2⊗V3 may be visualized as the space of v1×v2×v3 “three
dimensional matrices”.

Given a linear map f : V → W , we may define a second linear map
f t : W ∗ → V ∗, by, for β ∈ W ∗, f t(β)(v) = β(f(v)). This is the coordinate
free definition of the transpose of a matrix. One may also define a bilinear
map W ∗ × V → C, by (β, v) 7→ β(f(v)). And as indicated in the exercises,
this extends to a linear map W ∗⊗V → C. Thus we may also think of V⊗W
as the set of bilinear maps V ∗ ×W ∗ → C. Consider a 2× 3 matrix and its
roles respectively as a linear map C3 → C2, a linear map C2∗ → C3∗ and a
bilinear map C2∗ × C3 → C:(

a b c
d e f

)xy
z

 =

(
ax+ by + cz
dx+ ey + fz

)
,
(
s t

)(a b c
d e f

)
=

sa+ td
sb+ te
sc+ tf

 ,

(
s t

)(a b c
d e f

)xy
z

 = sax+ tdx+ sby + tey + scz + tfz.

1.4. Classical Complexity

Classical complexity works in binary: one deals with strings of 0’s and 1’s.
The set {0, 1} is called a bit: it can encode “one bit” of information.

1.4.1. Circuits. We will mostly deal with circuits: Boolean circuits for
classical computation, Boolean circuits with access to randomness for prob-
abilistic computation, and quantum circuits for quantum computation.

Let F2 denote the field with two elements {0, 1}. A Boolean function is
a map f : Fn2 → F2, or more generally Fn2 → Fm2 . We agree on some basic
Boolean functions, whose complexity is designated as having unit cost, e.g.,
addition ⊕ (also called XOR) where a ⊕ b is addition in F2 (i.e., 0 ⊕ 0 =

10 1. Classical and probabilistic computing

1⊕ 1 = 0 and 0⊕ 1 = 1⊕ 0 = 1), ¬ (NOT) negation, which swaps 0 and 1,
(OR) a ∨ b where 0 ∨ 0 = 0 and all other a ∨ b = 1, (AND= multiplication
in F2) a ∧ b = ab, where 1 ∧ 1 = 1 and all other a ∧ b = 0. I will call such a
collection a (logic) gate set.

A Boolean circuit is a representation of a Boolean function f : Fn2 → Fm2
as a directed graph with n input edges, vertices labeled by elements of some
fixed gate set, with edges going in and out, and m output edges. The size
of a circuit is the number of edges in it.

Call a gate set a universal gate set if any Boolean function can be com-
puted with a circuit whose vertices are labeled with gate set elements.2

Figure 1.4.1 depicts a Boolean circuit for the addition of two two digit
(in binary) numbers:

y y

z z

x x

z

+

+

+ +

3

2 1 2 1

2 1

*
*

*

We began by saying factorization is not known to have an efficient algo-
rithm. We can now make that precise: a classical algorithm for a task (such
as factoring) is efficient if there exists a polynomial p, such that if the input
(in the case of factoring, the number to be factored N expressed in binary)
is of size M = logN (in the case of factoring, the expression of N in binary
has at most M digits), then there exists a Boolean circuit of size p(M) that
accomplishes the task. We now rephrase this more formally:

1.4.2. P/poly, P and NP. Fix a universal gate setG, a natural complexity
measure for a Boolean function is then the minimal size of a Boolean circuit
that computes it. Let p(n) be a polynomial and let Fn : Fn2 → Fp(n)

2 be a
sequence of functions (Fn). We consider the the growth with n of the size of
a circuit needed to compute Fn. The critical issue, according to complexity
theorists, is whether or not this growth is bounded by a polynomial. If it
grows like a polynomial we say the sequence (Fn) is in the class P/poly with
respect to G.

Exercise 1.4.1: Show that membership in P/poly with respect to G is
independent of the choice of the finite universal gate set G.

2In some of the literature a gate set is sometimes called a “basis” (despite being unrelated
to bases of vector spaces) and a universal gate set is called a “complete basis”.

1.4. Classical Complexity 11

Thus we will just say that the sequence (Fn) is in the class P/poly.

The famous complexity class P is the standard model for feasible com-
putations, and it is unfortunate that P/poly, with a simple description, is
not P. It is strictly larger, but not too much larger, and it can be used as
a substitute for P, see [AB09, Chap. 6].

The class P is usually defined in terms of a different model of computa-
tion, namely Turing machines. We will avoid defining them, and assume the
reader has at least a passing familiarity with them. A function F is in P if it
is in P/poly and there exists a Turing Machine TM such that the circuits Cn
computing Fn are constructed by TM in time poly(n), see [KSV02, Thm.
2.3].

The famous class NP essentially consists of problems whose proposed
solutions can be verified quickly, i.e., in polynomial time. For example the
traveling salesman problem, where if someone claims to find a route to visit
30 cities traveling less than 2000 miles, it is easy to verify the claim, but
the only known way of finding such a route is essentially by a brute force
search. Another problem in NP is “SAT”: one is handed a Boolean circuit
and wants to know if it ever outputs 1. (If it does, to convince you it does,
someone just needs to hand you an input that works, and you can quickly
check if it outputs 1.) SAT is NP-complete, which means one could define
NP to be the collection of problems that can be reduced (in polynomial time)
to SAT, see, e.g., [AB09, Chap. 2]. In other words, there is a polynomial
time algorithm for SAT if and only if P = NP.

1.4.3. How does a (classical) computer work? One can build mechan-
ical devices that implement the classical gates. In our computers, logic gates
are made out of electrical circuits. Input is either a 5 volt impulse for 1 and
no impulse for 0. For example, the NOT gate is realized by a the following
diagram **** from top to bottom, there is a voltage source, a connection to
an output wire the input source, and a ground

the NAND gate is realized by the following diagram (p15 Suil book) A
voltage source is connected

1.4.4. Reversible classical computation. We will see that the gates of
a quantum circuit (other than the measurements) must be reversible. Long
before quantum computing, researchers were concerned that the second law
of thermodynamics would have the consequence that as computers got more
powerful, they would generate too much heat (entropy) from erasing bits.
One way out of this would be to have reversible computation, see [Lan61],
so one could argue for it independent of quantum computation. Of the gates
we saw, NOT is clearly reversible as ¬¬x = x. At the cost of adding an
extra bit, one can make addition and multiplication reversible. Consider the

12 1. Classical and probabilistic computing

following gate, called to Toffoli gate Tof :

(1.4.1) |x, y, z〉 7→ |x, y, z ⊕ (x ∗ y)〉 = |x, y, z ⊕ (x ∧ y)〉

Note that if we send in |x, y, 0〉 we obtain x ∗ y in the third slot (register)
and if we send in |x, 1, y〉 we obtain x⊕ y.

Exercise 1.4.2: Show that Tof ◦ Tof = Id, so Tof is indeed reversible.

The gate set {Tof,¬}, is universal and reversible, so there is no loss in
computing power restricting to reversible classical computation.

1.5. Probabilistic computing

We will develop quantum mechanics as a generalization of probability, and
we will view quantum computing as a generalization of probabilistic com-
puting.

We will want to see the improvement of quantum computing to classical
computing, so we should understand the what can be computed efficiently
on a computer with access to randomness. Quantum computing itself is
probabilistic, so we will need to implement notions from probability. Rather
than introduce both the quantum-ness and the probabilistic nature at the
same time, it will be easier to digest them one at a time.

1.5.1. BPP. It might increase our computational power if we exploit ran-
domness. (Assuming we have a method to generate random numbers - more
on this later.) For example, if someone hands you a complicated expression
for a polynomial, e.g., in terms of an (algebraic) circuit, it can be very dif-
ficult to determine if the polynomial is just the zero polynomial in disguise.
If we test the polynomial at a point, and its evaluation is non-zero, then
we know it is not the zero polynomial. If if does evaluate to zero, then we
have no information. For a polynomial of degree d in one variable, it is
sufficient to test d+ 1 distinct points, but as the number of variables grows,
the number of points one needs to check grows exponentially. However, if
we are allowed to test at a random point and it evaluates to zero, then with
high probability over finite fields and probability one over Z, the polynomial
is the zero polynomial. Over finite fields, we can make this probability as
high as we want by testing on several random points.

These observations motivate the class BPP (short for “bounded-error
probabilistic polynomial time”), where one works with a Turing machine
with access to randomness, and instead of asking for a correct answer on
any input in polynomial time, one asks for a correct answer with probability
strictly greater than 1

2 on any input in polynomial time. (So that if one runs
the program enough times, one can get a correct answer on any input with
probability as high as one wants.)

1.6. Computation via linear algebra 13

Another motivation for probabilistic computation is that physical com-
puters sometimes make mistakes (e.g. short circuit, input misread), so in
the real world we are never completely sure of our answers.

Remark 1.5.1. It is actually subtle to know if one has a random sequence
of numbers (e.g., take the last digit of the temperature in binary or similar).
For example, the first digit of the number 2n is far from a random element
of {1, . . . , 9}, see [Ad89, §16, Ex. 4]. It is a subtle problem to make a ma-
chine to generate random numbers for us. Fortunately, for most situations,
pseudo-random numbers suffice, see [AB09, §9.2.3].

Aside 1.5.2. If we are given additional information about the polynomial,
then under certain circumstances one can test if the polynomial is zero
by testing a reasonable number of points. This subject PIT (polynomial
identity testing) is an active area of research, see [AB09, §7.2.3]. For a
geometric perspective see [Lan17, §7.7].

Probabilistic computation however cannot be made reversible on a clas-
sical computer, as we will see in §1.6.2.

1.6. Computation via linear algebra

(Following [AB09, Exercise 10.4])

1.6.1. Reversible classical computation. Say f : Fn2 → Fm2 can be
computed by a reversible Boolean circuit C. We describe how to rephrase the
computation as a sequence of restricted linear operations on a vector space
containing R2n in anticipation of what will come in quantum computation.
Give R2 basis |0〉, |1〉, which induces the basis |i〉⊗|j〉, i, j ∈ {0, 1} of (R2)⊗2

and |I〉 := |i1〉⊗ · · · ⊗|iN 〉 of (R2)⊗N , iα ∈ {0, 1}, 1 ≤ α ≤ N . E.g., if our

bit string is 00101100, we represent it by the vector |00101100〉 ∈ R28 . The
restrictions will be:

(1) Each linear map must be invertible and take a vector represent-
ing a sequence of bits to a sequence of bits. Such matrices are
permutation matrices.

(2) In order to deal with finite gate sets, we will require that each
linear map only alters a small number of entries. For simplicity we

assume it alters at most three entries, i.e., it acts on at most R23

and is the identity on all other factors in the tensor product.

Each map will imitate some Boolean gate. For example, say we want to
effect the Toffoli gate,

|x, y, z〉 7→ |x, y, z ⊕ (x ∗ y)〉 = |x, y, z ⊕ (x ∧ y)〉

14 1. Classical and probabilistic computing

and act as the identity on all other basis vectors (sometimes called registers).
Here, if the Toffoli gate is to compute x∗y z will represent “workspace bits”:
x, y will come from the input to the problem and z will be set to 0 in the
input. In the basis |000〉, |001〉, |010〉, |100〉, |011〉, |101〉, |110〉, |111〉, of R8,
the matrix is

(1.6.1)

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0

.

Call this matrix the Toffoli matrix.

The negation gate ¬ may be defined by the linear map C2 → C2 given
by the matrix

σx =

(
0 1
1 0

)
.

Exercise 1.6.1: Write matrices for (x, y, z) 7→ (x, y, z⊕(x⊕y)) and (x, y, z) 7→
(x, y, z ⊕ (x ∨ y)).

1.6.2. Probabilistic computation via linear algebra. If on given in-
put, a probabilistic computation outputs 0 with probability p and 1 with
probability 1 − p, we could encode this with the vector p|0〉 + (1 − p)|1〉,
and then obtain either 0 or 1 by flipping a biased coin that gives heads with
probability p.

Say f : Fn2 → F2 can be computed correctly with probability at least 1
2

by a Boolean circuit C that is allowed to access randomness. (In particular,
we can compute f correctly with probability as close as we want to one by
repeating the computation enough times.) If we want to represent this in
terms of linear algebra, we have to introduce a matrix for the coin flip:(

1
2

1
2

1
2

1
2

)
.

Here we see that probabilistic computation cannot be made reversible, as
this matrix is not invertible. So for probabilistic computation via linear
algebra we will require the following of our matrices:

(1) Each linear map must take probability distributions to probability
distributions. This implies the matrices are stochastic: the entries
are non-negative and each column sums to 1.

1.6. Computation via linear algebra 15

(2) In order to deal with finite gate sets, we will require that each
linear map only alters a small number of entries. For simplicity we

assume it alters at most three entries, i.e., it acts on at most R23

and is the identity on all other factors in the tensor product.

Consider {0, 1}m ⊂ R2m . A probability distribution on {0, 1}m may be
encoded as a vector in R2m : Give R2 basis |0〉, |1〉 and (R2)⊗m = R2m basis
|I〉 where I ∈ {0, 1}m. If the probability distribution assigns probability pI
to I ∈ {0, 1}m, assign to the distribution the vector v =

∑
I pI |I〉 ∈ R2m .

We will work with R2n+s+r where r is the number of times we want to
access a random choice and s is the number of gates a circuit computing f
would need.

Exercise 1.6.2: In probabilistic algorithms we will need to choose an ele-
ment uniformly at random from a a set of M elements. How can we realize
this choice with the above matrices?

A probabilistic computation, viewed this way, starts with |x0r+s〉, where
x ∈ Fn2 is the input. One then applies a sequence of admissible stochastic
linear maps to it, and ends with a vector that encodes a probability dis-
tribution on {0, 1}n+s+r. One then restricts this to {0, 1}p(n), that is, one
takes the vector and throws away all but the first p(n) entries. This vector
encodes a probability sub-distribution, i.e., all coefficients are non-negative
and they sum to a number between zero and one. One then renormalizes
(dividing each entry by the sum of the entries) to obtain a vector encoding

a probability distribution on {0, 1}p(n) and then outputs the answer accord-
ing to this distribution. Note that even if our calculation was “feasible”
(i.e., polynomial in n size circuit), to write out the original output vector
that we truncate would be exponential in cost. A stronger variant of this
phenomenon will occur with quantum computing, where the result will be
obtained with a polynomial size calculation, but one does not have access
to the vector created, even using an exponential amount of computation.

To further prepare for the analogy with quantum computation, define a
probabilistic bit (a pbit) to be the set

{p0|0〉+ p1|1〉 | pj ∈ [0, 1] and p0 + p1 = 1} ⊂ R2.

Note that the set of pbits is a convex set, and the basis vectors are the
extremal points of this convex set.

Exercise 1.6.3: Show that if we have two problems to solve, one in (R2)⊗m

and another in (R2)⊗n, and we want to solve them simultaneously via linear
algebra, then we should work in (R2)⊗m⊗(R2)⊗n = (R2)⊗n+m.

1.6.3. What is known. P ⊆ BPP ⊆ P/Poly = BPP/Poly.

16 1. Classical and probabilistic computing

The inclusion BPP ⊆ P/Poly is Adelman’s theorem [Adl78]. The key
observation is that “off-line” computations are not counted in the complexity
assessment. So one can create, for any given n, a library of “random” a’s to
test on. For example, to correctly determine the primality of 32-bit numbers,
it is enough to test a = 2, 7, and 61.

Does randomness really help? At the moment, we don’t know. See
[AB09, Chap. 20] for a discussion.

1.6.4. BQP. We are not yet in a position to define it, but the class BQP
will be the quantum analog of BPP, the problems that can be solved ef-
ficiently, with high probability, on a quantum computer. Pbits will be re-
placed by qubits, which are unit vectors in C2 subject to an equivalence
relation. The matrices will be allowed to have complex entries, they will
be required to be unitary instead of stochastic, and at the end of the com-
putation, one will not have the resulting vector in hand, but the result of
a projection operator applied to it. The probability of obtaining I0 from∑

I zI |I〉 will be |zI0 |2. There is no analog of P for a quantum computer as
answers will always have a probability of being incorrect.

A subtlety about quantum gate sets is that the notion of a “universal
quantum gate set” will have a different meaning, namely that one can ap-
proximate any unitary map arbitrarily closely by elements of the gate set,
not that one can perform the map exactly.

1.6.5. The Church-Turing theses. The Church-Turing thesis (made ex-
plicitly by Church in [Chu36]) is:

Any algorithm can be realized by a Turing machine.

So far there has been no challenge to this - any computation that can
be done on a quantum computer can in principle be done with a sufficiently
large Turing machine.

The quantitative (sometimes called strong) Church-Turing thesis [VSD86]
is:

Any algorithmic process can be simulated efficiently by a Turing machine

or

Any algorithmic process can be simulated efficiently by a probabilistic
Turing machine

Shor’s algorithm challenges this thesis. On the other hand, there are
experts who think that factoring could be in P, because unlike, say SAT or
the traveling salesman problem, the problem is highly structured.

Chapter 2

Quantum mechanics
for quantum computing

This chapter covers basic quantum mechanics needed for quantum comput-
ing. I present quantum mechanics as a generalization of probability and
quantum computing will be viewed as a generalization of probabilistic com-
puting.

put somewhere - stochastic matrices will be replaced by completely pos-
tive and trace preserving operators.

2.1. Quantum mechanics via probability

2.1.1. A wish list. In §1.6 we saw that any fn : {0, 1}n → {0, 1}p(n)

that could be computed correctly with probability say at least 2
3 on any

I ∈ {0, 1}n with a circuit of size s and r coin flips, could be computed
with the same probability via a sequence of linear operators on (R2)⊗n+r+s.
Each linear operator was stochastic, so it took probability distributions to
probability distributions, and acted on at most three registers via the action
of one of the gates from the gate set used to construct the circuit. To get the
output, after performing the linear operations, one throws away all but the
first p(n) entries of the output vector. The resulting vector encodes a non-
normalized probability distribution, i.e., is of the form |v〉 =

∑
|I|=p(n) qI |I〉

with qI ≥ 0 and
∑
qI ≤ 1. One then renormalizes, dividing each coefficient

by
∑
qI , to obtain a vector

∑
|I|=p(n) pI |I〉 with pI ≥ 0 and

∑
pI = 1. Then

the algorithm outputs I with probability pI .

Here is a wish list for how one might want to improve upon this set-up:

17

18 2. Quantum mechanics for quantum computing

(1) Allow more general kinds of linear maps to get more computing
power, while keeping the maps easy to compute.

(2) Have reversible computation: we saw that classical computatation
can be made reversible, but the coin flip was not. This property
is motivated by physics, where many physical theories require time
reversibility.

(3) Again motivated by physics, one would like to have a continous
evolution of the probability vector, more precisely, one would like
the probability vector to depend on a continuous parameter t such
that if |ψt1〉 = X|ψt0〉, then there exist admissible matrices Y,Z
such that |ψt0+ 1

2
t1
〉 = Y |ψt0〉 and |ψt1〉 = Z|ψt0+ 1

2
t1
〉 and X =

ZY . A physicist would say “time evolution is described by a semi-
group”.

Let’s start with wish (2). One way to make the coin flip reversible is,
instead of making the probability distribution be determined by the sum of
the coefficients, one could take the sum of the squares. If we do this, there
is no harm in allowing the entries of the output vectors to become negative,
and one could use

H :=
1√
2

(
1 1
1 −1

)
for the coin flip applied to |0〉. The matrix H is called the Hadamard matrix
or Hadamard gate in the quantum computing literature. It could just as well
be called the quantum coin flip. If we made this change, we would obtain our
second wish, and moreover have many operations be “continous”, because
the set of matrices preserving the L2-norm of a real-valued vector is the
orthogonal group O(n) = {A ∈ Matn×n | AAT = Id}. So for example, any
rotation has a square root.

As an indication that generalized probability may be related to quantum
mechanics, the interference patterns observed in the famous two slit exper-
iments is manifested in generalized probability: We obtain a “random bit”
by applying H to |0〉: H|0〉 = 1√

2
(|0〉+ |1〉). However, if we apply a second

quantum coin flip to the vector, we loose the randomness as H2|0〉 = |1〉,
which, as pointed out in [Aar13], could be interpreted as a manifestation
of interference.

However our third property will not be completely satisfied, as the ma-
trix (

1 0
0 −1

)
which represents a reflection, does not have a square root in O(2).

2.1. Quantum mechanics via probability 19

To have the third wish satisfied, we will allow ourselves vectors with
complex entries. From now on, set i =

√
−1. For a complex number z =

x+ iy, let z = x− iy denote its complex conjugate and |z|2 = zz the square
of its norm.

****picture of sphere here****

So we go from pbits, {p|0〉+ q|1〉 | p, q ≥ 0 and p+ q = 1} to qubits

{α|0〉+ β|1〉 | α, β ∈ C and |α|2 + |β|2 = 1}.

The set of pbits is given in Figure 2.1.2

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

Figure 2.1.1. set of bits are just two points

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

Figure 2.1.2. set of pbits is a face of the unit simplex in the `1-
norm, extremal points correspond to classical bits

The set of qubits, considered in terms of real parameters, looks at first
like the 3-sphere S3 in R4 ' C2. However, the probability distributions
induced by |ψ〉 and eiθ|ψ〉 are the same so it is really S3/S1 (the Hopf
fibration), i.e., the two-sphere S2. Physicists call this S2 the “Bloch sphere”.
Geometrically, it would be more natural (especially since we have already
seen the need to re-normalize in probalisitic computation) to work with
projective space CP1 ' S2 as our space of qubits, instead of a subset of C2.
For v = (v1, . . . , vn) ∈ Cn, write |v|2 = |v1|2 + · · ·+ |vn|2. The norm induces
a Hermitian inner product 〈v|w〉 := v1w1 + · · · + vnwn. Note the physicst
convention (which I use in this book) is the reverse of the mathematician

20 2. Quantum mechanics for quantum computing

one, where the product is conjugate linear in the first factor and linear in
the second.

The set of stochastic matrices is now replaced by the set of matrices

U(n) := {A ∈Matn×n(C) | |Av| = |v| ∀|v〉 ∈ Cn},

which is called the unitary group.

Exercise 2.1.1: Show that U(n) = {A ∈Matn×n(C) | ATA = Id}

Claim: U(n) satisfies the third wish on the list. More precisely:

Proposition 2.1.2. For all A ∈ U(n), there exists a matrix B ∈ U(n)
satisfying B2 = A.

The proof is given below. First let’s examine wish 1: it is an open
question! However we can at least see that our generalized probabilistic
computation includes our old probabilistic computation by the following
easy exercise:

Exercise 2.1.3: Show that quantum coin flip H, the not (¬) matrix and
the Toffoli matrix (1.6.1) are unitary.

Proof of Proposition 2.1.2. Let A be a unitary matrix and let |v〉 be
an eigenvector for A with eigenvalue λ. Since |v| = |Av| = |λv| = |λ||v|,
we see |λ| = 1, i.e., λ = eiθ for some θ ∈ R. Note that A must have
a basis of eigenvectors, |v1〉, . . . , |vn〉, as otherwise, let |w〉 be a putative
generalized eigenvector, i.e., A|w〉 = λ|w〉 + |u〉. Since |λ| = 1, |Aw| 6= |w|.

(Alternatively, just observe

(
eiθ 1
0 eiθ

)
6∈ U(2).)

So let |v1〉, . . . , |vn〉 be an eigen-basis of A where |vj〉 has eigenvalue eiθj .

Let B : Cn → Cn be the matrix with the property that B|vj〉 = ei
θj
2 |vj〉.

Then B preserves the lengths of the eigenvectors, and thus of all vectors
since the eigenvectors form an orthogonal basis by Exercise 2.1.5 below, and
is therefore unitary, and clearly satisfies B2 = A. �

Exercise 2.1.4: Show that if A ∈ U(n), then 〈v|w〉 = 〈Av|Aw〉 for all
v, w ∈ Cn.

Exercise 2.1.5: Show that if A is unitary, eigenvectors corresponding to
distinct eigenvalues are orthogonal. }

2.1.2. Quantum mechanics from probability via four properties.
Consider the following properties of classical probability:

(1) The law of large numbers is satisfied: that is relative frequencies of
outcomes of measurements tend to the same value (the probability)

2.2. Postulates of quantum mechanics and relevant linear algebra 21

when a measurement is performed on an ensemble of n systems
prepared in the same way, in the limit as n goes to infinity.

(2) Let d denote the number of real parameters required to specify a
state, and let N denote the maximum number of states that can be
reliably distinguished from one another in a single measurement.
Then d = N c for some natural number c which is chosen to be
minimal.

(3) A system whose state is constrained to belong to an M dimen-
sional subspace of an N dimensional space behaves like a system of
dimension M .

(4) A composite system consisting of subsystems A and B satisfies
N = NANB and d = dAdB.

(5) There exists a reversible transform on a system between any two
extremal points of the convex set of states (in our situation, the
coordinate vectors).

Hardy [Har01] proved that any theory satisfying the above properties
of probability must be classical probability expressed as stochastic matrices.
In condition 2, one obtains c = 1. He also showed that if one adds the re-
quirement in condition 5 that any transform can be written as a product of
transforms that are arbitrarily close to the identity transform, one obtains
d = N2 and the axioms of quantum mechanics. We will not go through
Hardy’s proof, but at least we will verify that the standard axioms of quan-
tum mechanics are compatible with Hardy’s generalized probability. Later
Shack [Sch03] showed that the first axiom was implied by the other four in
both cases.

2.2. Postulates of quantum mechanics and relevant linear
algebra

Here are the standard postulates of quantum mechanics and relevant defi-
nitions from linear algebra.

2.2.1. Postulate 1: State space. The first postulate describes the space
one works in:

P1. Associated to any isolated physical system is a Hilbert space H, called
the state space. The system is completely described at a given moment by
a unit vector |ψ〉 ∈ H, called its state vector, which is well defined up to a
phase eiθ with θ ∈ R. Alternatively one may work in projective space PH.

Definition 2.2.1. A Hilbert space H is a complex vector space endowed
with a non-degenerate Hermitian inner-product, h : H ×H → C, where by

22 2. Quantum mechanics for quantum computing

definition h is conjugate linear in the first factor and linear in the second,
h(|v〉, |w〉) = h(|w〉, |v〉), and h(|v〉, |v〉) > 0 for all |v〉 6= 0. (This is the
physicists’ convention, mathematicians generally require linearity in the first
factor and conjugate linearity in the second.)

The Hermitian inner-product h allows an identification of H with H∗ by
|w〉 7→ 〈w| := h(·, |w〉). This identification will be used repeatedly. We write

h(|v〉, |w〉) = 〈w|v〉 and |v| =
√
〈v|v〉 for the length of |v〉.

If H = Cn with its standard basis, where |v〉 = (v1, . . . , vn)T , the stan-
dard Hermitian innner-product on Cn is 〈w|v〉 =

∑n
j=1wjvj . We will always

assume Cn is equipped with its standard Hermitian inner-product.

Remark 2.2.2. In quantum mechanics in general one needs to deal with
infinite dimensional Hilbert spaces, but fortunately this is not necessary in
quantum computing and quantum information theory.

Remark 2.2.3. Note the first postulate is identical to what one gets with
generalized probability.

2.2.2. Postulate 2: Evolution. The second postulate describes how a
state vector evolves over time:

P2. The state of an isolated system evolves with time according to the
Schrödinger equation

i~
d|ψ〉
dt

= X|ψ〉

where ~ is a constant (Planck’s constant) and X is a fixed Hermitian oper-
ator, called the Hamiltonian of the system.

Explanations. To define Hermitian operators, first define the adjoint of
an operator X ∈ End(H), to be the operator X† ∈ End(H) such that
h(|X†v〉, |w〉) = h(|v〉, |Xw〉), i.e., 〈X†v|w〉 = 〈v|Xw〉. Call X Hermitian if
X = X†. When H = Cn, so End(H) is the space of n × n matrices, then

X† = X
t
, where t denotes transpose.

Exercise 2.2.4: Show that the eigenvalues of a Hermitian matrix are real.

Remark 2.2.5. Physicists tend to use the letter H for the Hamiltonian,
but since we already use H for the Hadamard matrix, I do not adopt this
convention.

Relation to generalized probability Recall that in generalized probabil-
ity theory, transformations are unitary. For a general Hilbert space, define
the Unitary group

U(H) := {U ∈ End(H) | |Uv| = |v| ∀|v〉 ∈ H}.

2.2. Postulates of quantum mechanics and relevant linear algebra 23

When H = Cn we have U(Cn) = U(n).

How do unitary operators from generalized probability lead to Schrödinger’s
equation? Recall that in generalized probability we are allowed to break
up our action of an element U ∈ U(H) into a product of elements of
U(H). More precisely, for each ε > 0, there exists k = k(ε, U), such that
U = U1 · · ·Uk with each Uj a distance at most ε from the identity. Similarly,
we may find a curve from the identity to U in U(H).

Now say we have a smooth curve U(t) ⊂ U(H) with U(0) = Id. Write
U ′(0) = d

dt |t=0U(t). Consider

0 =
d

dt
|t=0〈v|w〉

=
d

dt
|t=0〈U(t)v|U(t)w〉

= 〈U ′(0)v|w〉+ 〈v|U ′(0)w〉.

Remark 2.2.6. The trick of writing 0 as the derivative of a constant func-
tion is ubiquitous in differential geometry.

Thus U ′(0) behaves almost like a Hermitian operator, which instead
satisfies 0 = 〈Xv|w〉 − 〈v|Xw〉.
Exercise 2.2.7: Show that iU ′(0) is Hermitian.

We are almost at Schrödinger’s equation.

Let u(H) ⊂ End(H) be the set of endomorphisms of the form U ′(0) for
some curve as above, in other words u(H) = TIdU(H), the tangent space to
the unitary group at the identity. The vector space u(H) is called the Lie
algebra of U(H). Note that u(H) is a real vector space, not a complex one,
because complex conjugation is not a complex liner map.

Then iu(H) ⊂ End(H) is a subspace of Hermitian endomorphisms and
since both spaces have (real) dimension n2, it equals the space of Hermitian
endomorphisms.

Exercise 2.2.8: Write u(n) = u(Cn). Verify that both u(n) and the space
of Hermitian matrices have (real) dimension n2.

For X ∈ End(H), write Xk ∈ End(H) for X · · ·X applied k times. Write
eX :=

∑∞
k=0

1
k!X

k. This sum converges to a fixed matrix, essentially for the
same reason it does in the dimH = 1 case.

Exercise 2.2.9: Show that the sum indeed converges, assuming the scalar
case. }

Proposition 2.2.10. If X is Hermitian, then eiX ∈ U(H).

Exercise 2.2.11: Prove Proposition 2.2.10. }

24 2. Quantum mechanics for quantum computing

Postulate 2 implies the system will evolve unitarily, by (assuming we
start at t = 0), |ψt〉 = U(t)|ψ0〉, where

U(t) = e
−itX

~ .

We conclude Postulate 2 is indeed predicted by generalized probability.

2.2.3. Postulate 3: measurements. In our first two postulates we dealt
with isolated systems. In reality, no system is isolated and the whole uni-
verse is modeled by one enormous Hilbert space. In practice, parts of the
system are sufficiently isolated that they can be treated as isolated systems.
However, they are occasionally acted upon by the outside world, and we need
a way to describe this outside interference. For our purposes, the isolated
systems will be the Hilbert space attached to the input in a quantum algo-
rithm and the outside interference will be the measurement at the end. That
is, after a sequence of unitary operations one obtains a vector |ψ〉 =

∑
zj |j〉

and as in generalized probability:

P3. If |ψ〉 =
∑

j zj |j〉, and a measurement is taken, the output is j with

probability |zj |2.

2.2.4. Postulate 4: composite systems. A typical situation in quantum
mechanics and quantum computing is that there are two or more isolated
systems, say HA,HB that are brought together (i.e., allowed to interact
with each other) to form a larger isolated system HAB. The larger system
is called the composite system. In classical probability, the composite space
is {0, 1}NA ×{0, 1}NB . We have already seen in our generalized probability,
the correct composite space is (C2)⊗NA⊗(C2)⊗NB = (C2)⊗NA+NB (Exercise
1.6.3).

P4. The state of a composite system HAB is the tensor product of the
state spaces of the component physical systems HA,HB: HAB = HA⊗HB.

When dealing with composite systems, we will allow partial measure-
ments whose outcomes are of the form |I〉⊗φ.

This tensor product structure gives rise to the notion of entanglement,
which, in the next few sections, we will see accounts for phenomenon outside
of our classical intuition.

Definition 2.2.12. A state |ψ〉 ∈ H1⊗ · · ·⊗Hn is called separable if it
corresponds to a rank one tensor, i.e., |ψ〉 = |v1〉⊗ · · · ⊗|vn〉 with each |vj〉 ∈
Hj . Otherwise it is entangled.

2.2.5. Generalized probability compared to the postulates. So far,
Hardy’s generalized probability has been shown to be completely compatible
with the postulates of quantum mechanics. What we have not yet seen,

2.2. Postulates of quantum mechanics and relevant linear algebra 25

is why d = N2 in the Hardy set-up. We could do this now, but it will
be much easier after we reformulate quantum mechanics in §5.1, so I wait
until then to explain it. The reformulation will be a logically equivalent
theory, but will be easier to work with, especially regarding information
theoretic questions. At that time the relation between measurements and
other admissible operations will become clearer as well. In particular, the
different gates allowed in computation is hard to extract from the above
postulates.

2.2.6. Further Exercises. For X,Y ∈ End(H), let [X,Y] := XY −Y X ∈
End(H) denote their commutator.

Exercise 2.2.13: For X,Y ∈ u(H) show that [X,Y] ∈ u(H), showing that
u(H) is indeed an algebra with the multiplication given by the commutator.

Exercise 2.2.14: Show that ifH = Cn, thenX† = X
T

, where the T denotes
transpose.

Exercise 2.2.15: Show that if Y ∈ End(H) is arbitrary, then Y Y † and Y †Y
are Hermitian.

Exercise 2.2.16: Show that the eigenvalues of a Hermitian operator are
real.

Exercise 2.2.17: Prove the spectral decomposition theorem for Hermitian
operators: Hermitain operators are diagonalizable and the eigenspaces of a
Hermitian operator M are orthogonal. In particular we may write M =∑

λ λPλ where λ are the eigenvalues of M and the Pλ are commuting pro-
jection operators: PλPµ = PµPλ and P 2

λ = Pλ. Hint: differentiate U(t)v(t)
where v(t) is an eigenvalue of U(t), and U(0) = Id.

Exercise 2.2.18: Show that

U(H) = {U ∈ End(H) | 〈Uv|Uw〉 = 〈v|w〉 ∀|v〉, |w〉 ∈ H},

and that if U ∈ U(H), then U−1 = U †.

Exercise 2.2.19: Show that U(2) acts transitively on lines in C2, i.e, given
any nonzero v, w ∈ C2 there exists U ∈ U(2) such that U |v〉 = λ|w〉 for

some λ ∈ C∗. Hint: it suffices to do the case w =

(
1
0

)
.

A reflection in a hyperplane Cn−1 ⊂ Cn is the linear map that, writing
|v〉 ∈ Cn as |v〉 = |v1〉 + |v2〉 with |v1〉 ∈ Cn−1 and |v2〉 ⊥ Cn−1, sends
|v〉 7→ |v1〉 − |v2〉.
Exercise 2.2.20: Show that U(n) contains the reflections.

26 2. Quantum mechanics for quantum computing

Exercise 2.2.21: Show that the product of two reflections is a rotation.
More precisely, show that if |v〉, |w〉 are vectors in Cn, the composition of
a reflection in the hyperplane perpendicular to |v〉, followed by a reflection
in the hyperplane perpendicular to |w〉, is a rotation in the |v〉, |w〉 plane
by an angle equal to twice the angle between |v〉 and |w〉 (and the identity
elsewhere).

2.3. Super-dense coding

In this section, we show that with a shared entangled state one can transmit
two bits of classical information by transmitting a vector in just one qubit,
which has led to the term “super1-dense coding”. Super-dense coding was
introduced in [BW92].

Physcists describe their experiments in terms of two characters, Alice
and Bob. We generally follow this convention.

Let H = C2⊗C2 = HA⊗HB, and let |epr〉 = |00〉+|11〉√
2

(called the EPR

state in the physics literature, named after Einstein-Podosky-Rosen) Assume
this state has been created, both Alice and Bob are aware of it, Alice is in
possesion of (i.e., can manipulate) the first qubit, and Bob the second. This
all happens before the experiment begins. They are allowed to agree on
a protocol in advance. Then they are separated, but have a “quantum
channel” along which they can transmit qubits. (Such will be explained in
***.)

Now say Alice wants to transmit a two classical bit message to Bob, i.e.,
one of 00, 01, 10, 11. She is allowed to act on her half of |epr〉 by unitary
transformations and then send it to Bob. (Later we will establish a gate set
she must choose from, but it will include the gates we need below.) They
agree in advance that once Bob is in possesion of it, he will act on the
four-dimensional space HA⊗HB by the unitary operator that performs the
following change of basis:

|epr〉 =
1√
2

(|00〉+ |11〉) 7→ |00〉

1√
2

(|00〉 − |11〉) 7→ |01〉

1√
2

(|10〉+ |01〉) 7→ |10〉

1√
2

(|10〉 − |01〉) 7→ |11〉

and then will measure.

1Physicists use the word “super” in the same way American teenagers use the word “like”.

2.4. Quantum teleportation 27

If Alice wants to send 00, she just does nothing as then when Bob mea-
sures he will get |00〉 with probability one. Similarly, if she wants to send
01, she acts by

σx :=

(
1 0
0 1

)
so Bob will be in possesion of the state 1√

2
|00〉 − |11〉, so when he performs

the change of basis and measures, he will get |01〉 with probability one.

Exercise 2.3.1: What are the other two matrices Alice should act by to
transmit the other two-bit messages?

In summary, with preparation of an EPR state in advance, plus trans-
mission of a single qubit, one can transmit two classical bits of information.

2.4. Quantum teleportation

A similar phenomenon is quantum teleportation, where again Alice and Bob
share half of an EPR state. This time Alice is in possesion of a qubit
|ψ〉 = α|0〉+ β|1〉, and wants to “send” |ψ〉 to Bob. However Alice only has
access to a classical channel that sends bits to Bob. Can she transmit |ψ〉
to Bob, and if so, how many classical bits does she need to transmit to do
so? Write the state of the system as

1√
2

[α|0〉⊗(|00〉+ |11〉) + β|1〉⊗(|00〉+ |11〉)]

where Alice can operate on the first two qubits.

Exercise 2.4.1: Show that if Alice acts on the first two qubits by Id1⊗σx =

Id1⊗
(

0 1
1 0

)
then H⊗ Id2 = 1√

2

(
1 1
1 −1

)
⊗ Id2 (where the subscripts on

Id indicate which factor the identity acts). She obtains

1

2
[|00〉⊗(α|0〉+ β|1〉) + |01〉⊗(α|1〉+ β|0〉) + |10〉⊗(α|0〉 − β|1〉) + |11〉⊗(α|1〉 − β|0〉)] .

Notice that Bob’s coefficient of Alice’s |00〉 is the state ψ that is to
be transmitted. Alice performs a measurement. If she has the good luck to
obtain |00〉, then she knows Bob has |ψ〉 and she can tell him classically that
he is in possesion of |ψ〉. But say she obtains the state |01〉: the situation is
still good, she knows Bob is in possession of a state such that, if he acts on

it with σx =

(
0 1
1 0

)
, he will obtain the state |ψ〉, so she just needs to tell

him classically to apply σx. Since they had communicated the algorithm in
the past, all Alice really needs to tell Bob in the first case is the classical
message 00 and in the second case the message 01.

28 2. Quantum mechanics for quantum computing

Exercise 2.4.2: Write out the other two different actions Bob should take
depending on the possible bit pairs Alice could send him.

In summary, a shared EPR pair plus sending two classical bits of infor-
mation allows one to transmit one qubit.

Remark 2.4.3. The name “teleportation” is misleading because informa-
tion is transmitted at a speed slower than the speed of light.

2.5. Bell’s game

The 1934 Einstein-Podosky-Rosen paper [EPR35] challenged quantum me-
chanics with the following thought experiment that they believed implied
instaneous communication across distances, in violation of principles of rel-
ativity: Alice and Bob prepare |epr〉 = 1√

2
(|00〉+ |11〉), then travel far apart.

Alice measures her bit. If she gets 0, then she can predict with certainty
that Bob will get 0 in his measurement, even if his measurement is taken a
second later and they are a light year apart. (The essential property of the
state is that Alice’s measurement makes Bob’s state classical as well.)

Ironically, this thought experiment has been made into an actual exper-
iment designed by Bell [Bel64] and realized. The modern interpretation is
that there is no paradox because the system does not transmit information
faster than the speed of light, but rather they are acting on information
that has already been shared. What follows is a version from [CHSH69],
adapted from the presentation in [AB09].

The experiment can be described in a game, where Alice and Bob are
on the same team and Charlie is a referee. Charlie chooses x, y ∈ {0, 1} at
random and sends x to Alice and y to Bob. Based on this information, Alice
and Bob, without communicating with each other, get to choose bits a, b and
send them to Charlie. They win if a ⊕ b = x ∧ y, i.e., either (x, y) 6= (1, 1)
and a = b or (x, y) = (1, 1) and a 6= b.

2.5.1. Classical version. Note that if Alice and Bob both always choose
0, they win with probability 3

4 .

Theorem 2.5.1. [Bel64] Regardless of the classical or probabilistic strategy
Alice and Bob use, they never win with probability greater than 3

4 .

The idea of the proof is that one first reduces a probabilisitic strategy
to a classical one, because after repeated rounds of the game, one can just
adopt the most frequent choice. Then there are only 24 possible strategies
and each can be analyzed. See, e.g., [AB09, Thm 20.2] for more detail.

2.5.2. Quantum version. Alice and Bob prepare |epr〉 = |00〉+|11〉√
2

in ad-

vace, and Alice takes the first qubit and Bob the second. When Alice gets

2.5. Bell’s game 29

x from Charlie, if x = 1, she applies a rotation by π
8 to her quibit, and

if x = 0 she does nothing. When Bob gets y from Charlie, he applies a
rotation by −π

8 to his qubit if y = 1 and if y = 0 he does nothing. (The
order these rotations are applied does not matter because the operators on
(C2)⊗2 commute.) Both of them measure their respective qubits (again, the
order will not matter) and send the values obtained to Charlie.

Theorem 2.5.2. With this strategy, Alice and Bob win with probability at
least 4

5 .

The idea behind the strategy is that when (x, y) 6= (1, 1), the states
of the two qubits will have an angle at most π

8 between them, but when
(x, y) = (1, 1), the angle will be π

4 .

Proof. If (x, y) = (0, 0), then they are measuring |epr〉, so the measurement
either yields 0 for both or 1 for both and 0⊕ 0 = 1⊕ 1 = 0 = 0 ∧ 0, so they
always win in this case.

If (x, y) = (1, 0), then they are measuring

1√
2

(
cos(

π

8
)|00〉+ sin(

π

8
)|10〉 − sin(

π

8
)|01〉+ cos(

π

8
)|11〉

)
,

and the outputs are equal with probability (1
2 + 1

2) cos2(π8) ≥ 17
20 , and simi-

larly if (x, y) = (0, 1).

If (x, y) = (1, 1), then they are measuring

1√
2

[cos(
π

8
)(cos(−π

8
)|00〉+ sin(−π

8
)|01〉) + cos(

π

8
)(− sin(−π

8
)|00〉+ cos(−π

8
)|01〉)

+ sin(
π

8
)(cos(−π

8
)|10〉+ sin(−π

8
)|11〉) + sin(

π

8
)(− sin(−π

8
)|10〉+ cos(−π

8
)|11〉)

− sin(
π

8
)(cos(−π

8
)|00〉+ sin(−π

8
)|01〉)− sin(

π

8
)(− sin(−π

8
)|00〉+ cos(−π

8
)|01〉)

+ cos(
π

8
)(cos(−π

8
)|10〉+ sin(−π

8
)|11〉) + cos(

π

8
)(− sin(−π

8
)|10〉+ cos(−π

8
)|11〉)]

=
1

2
[|00〉+ |01〉+ |10〉+ |11〉],

so they win with probability 1
2 , as all coefficients have the same norm.

In sum, the overall chance of winning is at least 1
4(1) + 1

4(17
20) + 1

4(17
20) +

1
4(1

2) = 4
5 . �

Exercise 2.5.3: Show that this strategy can be improved. What is its limit?
}

Chapter 3

Algorithms

This chapter covers the basics of quantum computing, and the standard
quantum algorithms. We begin with a probabilistic algorithm, the Miller-
Rabin primality test, as ideas from its proof appear in Shor’s algorithm.
We next present the algorithms of Grover and Simons. We then discuss ad-
missible quantum gates, and then, after considerable preliminaries, present
Shor’s algorithm. For those not familiar with basic facts regarding groups
and rings, I suggest starting with the Appendix §3.8.

3.1. Primality testing

Although the complexity of factoring a number is not known, testing if it is
prime has been known to belong to BPP since 1980 thanks to the Miller-
Rabin test [Rab80]. I present the proof because parts of the proof will be
used for Shor’s algorithm.

Let Z/NZ denote the ring of integers mod N , write mmodN for the
equivalence class of m.

The Chinese remainder theorem asserts that, for primes p, q, there is a
ring isomorphism Z/pqZ ' Z/pZ× Z/qZ.

Exercise 3.1.1: Verify the map mmod pq 7→ (mmod p,mmod q) defines a
ring isomorphism.

More generally if N = pa11 · · · p
ak
k with pj distinct primes, there is a ring

isomorphism (Z/NZ) = (Z/pa11 Z) × · · · × (Z/pakk Z). For a ring R, let R∗

denote its invertible elements under multiplication, which form a group. We
also have (Z/NZ)∗ = (Z/pa11 Z)∗ × · · · × (Z/pakk Z)∗.

31

32 3. Algorithms

Here is a warm-up: an inconclusive test to see if N is prime. Recall that
if p is prime, then the multiplicative group (Z/pZ)∗ is a cyclic group of order
p− 1. As a consequence, if x 6≡ 0 mod p then xp−1 ≡ 1 = x0 mod p (the little
Fermat theorem). In other words, if we find x such that xN−1 6≡ 1 modN ,
then we know N is composite.

Call the following probabilistic algorithm the Fermat test: Choose a
uniformly at random from {2, . . . , N − 1} and compute aN−1 modN . It will
be clear that for this and the algorithm that follows, the tests will always
report that N is prime when it is prime, so say N is composite. Under what
circumstances do we correctly determine compositeness with probability at
least 1

2? Consider the following two cases:

(1) gcd(a,N) = d 6= 1. (This occurs with low probability.) Then the
test detects that N is composite as in this situation a ≡ 0 mod d,
and hence aN−1 6≡ 1 modN .

(2) gcd(a,N) = 1, so a ∈ (Z/NZ)∗.

Since we must account for the worst case scenario, assume we are in the
second case:

Lemma 3.1.2. If there exists a ∈ (Z/NZ)∗, such that aN−1 6≡ 1 modN ,
then the Fermat test detects the compositeness of N with probability ≥ 1

2 .

Before giving the proof, introduce the following groups associated to an
abelian group G: For any natural number m, consider the group homomor-
phism φm : G→ G, φm(x) = xm, and let

(3.1.1) G(m) = Imageφm and G(m) = kerφm,

both of which are abelian groups. In this language, the a’s for which the
Fermat test fails are those in (Z/NZ)∗(N−1).

Proof. The hypothesis is that (Z/NZ)∗(N−1) 6= (Z/NZ)∗. Since N > 3, the

quotient (Z/NZ)∗/(Z/NZ)∗(N−1) has cardinality at least 2. Thus aN−1 6≡
1 modN for at least half of the elements of (Z/NZ)∗ and we conclude. �

It is possible that aN−1 ≡ 1 modN for all a ∈ (Z/NZ)∗. So we will need
an additional test to apply when the Fermat test fails to get our desired
algorithm.

Exercise 3.1.3: Show that N = 561 = 3 ∗ 11 ∗ 17 is such that aN−1 ≡
1 modN for all a ∈ (Z/NZ)∗.

The second test uses the following proposition:

3.1. Primality testing 33

Proposition 3.1.4. If there exists a natural number b such that b2 ≡
1 modN and b 6≡ ±1 modN , then N is composite with nontrivial factors
in common with both b+ 1 and b− 1.

Proof. In this case b2− 1 = (b− 1)(b+ 1) is a multiple of N but b− 1, b+ 1
are not, so N must have nontrivial factors in common with both b+ 1 and
b− 1. �

Here is the Miller-Rabin algorithm: to avoid trivialities, assume N is
odd.

Choose a ∈ {2, . . . , N − 2} uniformly at random.

Step 1: Test if aN−1 6≡ 1 modN . If so, then N is composite by the Little
Fermat theorem and one concludes. Otherwise go to step 2:

Step 2: Let 2k be the largest power of 2 that divides N − 1 and write

N − 1 = 2kl. Compute the sequence al, a2l, a4l, . . . , a2kl, all modN . If this
sequence contains a 1 preceded by anything except ±1, i.e., if there exists j

such that a2j l 6≡ ±1 modN and (a2j l)2 ≡ 1 modN , then N is composite by
Proposition 3.1.4. Otherwise the algorithm replies “N is prime”.

One can check that the total circuit size of this algorithm is O(log(N)3).
The only subtlety is that taking exponentially many powers of a would
violate this size, but we are only taking powers modN .

Exercise 3.1.5: Prove that for k ∈ {0, . . . , N − 1}, ak modN can be com-
puted by a reversible classical circuit of size poly(log(N)). }

Proposition 3.1.6. The Miller-Rabin algorithm succeeds on any input with
probability at least 1

2 .

Proof. It is clear that if N is prime, the algorithm always indicates that it
is prime, so assume N is composite and odd. Start the algorithm, get some
a ∈ {2, . . . , N − 2} chosen uniformly at random. If gcd(a,N) > 1, then step
1 shows that N is composite, so assume this does not happen, which implies
a is uniformly distributed over (Z/NZ)∗. (This last assertion holds because
for any group homomorphism of finite groups f : G→ H, all fibers have the
same cardinality. We will use this repeatedly in what follows.)

In order for step 1 to work with probability at least 1
2 , it is enough that

there is one x ∈ {2, . . . , N − 1} such that xN−1 6≡ 1 modN .

Exercise 3.1.7: Show that if N = pc for some prime p, then taking a =
pc + 1 − pc−1, then aN−1 6≡ 1 modN because aN−1 ≡ pc−1 + 1 modN and
pc−1 + 1 6≡ 1 modN .

34 3. Algorithms

By Exercise 3.1.7, we may assume N = uv, where u, v are odd, u, v >
1, and gcd(u, v) = 1. By the Chinese remainder theorem (Z/NZ)∗ '
(Z/uZ)∗ × (Z/vZ)∗.

If a is uniformly distributed over an abelian groupG then am is uniformly
distributed over G(m) defined in (3.1.1).

Now (Z/NZ)∗(m) ' (Z/uZ)∗(m)× (Z/vZ)∗(m). If either (Z/uZ)∗(N−1) or

(Z/vZ)∗(N−1) is non-trivial, step 1 will detect compositeness with probability
at least 1

2 , so assume both are trivial. To apply step 2, we need to consider

the powers a2j l modN and show there exists j such that a2j l 6≡ ±1 modN

but (a2j l)2 = a2j+1l ≡ 1 modN with probability at least 1
2 .

Let j0 be the largest value such that (Z/NZ)∗(2
j0 l) 6= {1} but (Z/NZ)∗(2

j0+1l) =

{1}. Use the isomorphism (Z/NZ)∗(2
j0 l) ' (Z/uZ)∗(2

j0 l) × (Z/vZ)∗(2
j0 l):

both the factors cannot be trivial by assumption. If one of the two factors is
trivial, since −1 7→ (−1,−1) under the Chinese remainder theorem map, we

could only fail if a2j0 l maps to (1, 1), but this will happen for the nontrivial
factor with probability at most 1

2 . Now assume both factors are nontrivial,

say of cardinalities cu, cv. In this case, the image of a2j0 l in the first factor is
1 with probability 1

cu
, and is 1 in the second factor with probability 1

cv
, and

these events are independent (again by the Chinese remainder theorem).

Thus the probability a2j0 l ≡ 1 modN is 1
cucv

. For similar reasons the the

probability a2j0 l ≡ −1 modN is either 1
cucv

or zero. Thus the probability of

failure is at most 2
cucv
≤ 1

2 . �

To get an algorithm that works with probability greater than 1
2 , apply

the test twice.

But this is not the end of the story:

Theorem 3.1.8. [AKS04] Primality testing is in P.

The core of the proof is a variant of the little Fermat theorem: Let a,N
be relatively prime integers with N > 2, Then N is prime if and only if
(x+ a)N ≡ xN + amodN .

Exercise 3.1.9: Prove the assertion. }

The bulk of the work is reducing the number of coefficients one needs to
check in the expansion of the left hand side.

The lesson to be drawn here is that we should not make any assumptions
regarding the difficulty of a problem until we have a proof.

3.2. Grover’s search algorithm 35

3.2. Grover’s search algorithm

The problem: given Fn : Fn2 → F2, computable by a poly(n)-size classical
circuit, find a such that Fn(a) = 1 if such a exists.

Grover found a quantum circuit of size poly(n)2
n
2 that solves this prob-

lem (with high probability). Compare this with a brute force search, which
requires a circuit of size poly(n)2n. No classical or probabilistic algorithm
is known that does better than poly(n)2n. Note that it also gives a size

poly(n)2
n
2 probabilistic solution to the NP-complete problem SAT (it is

stronger, as it not only determines existence of a solution, but finds it).

We will present the algorithm for the following simplified version where
one is promised there exists exactly one solution. All essential ideas of the
general case are here.

Problem: given Fn : Fn2 → F2, computable by a poly(n)-size classical
circuit, and the information that F has exactly one solution a, find a.

The idea of the algorithm is to start with a vector equidistant from all
possible solutions, and then to incrementally rotate it towards a. What is
strange for our classical intuition is that we will be able to rotate towards
the solution without knowing what it is, and similarly, we won’t “see” the
rotation matrix either.

We work in (C2)⊗n+1+s where s = s(n) is the size of the classical circuit
needed to compute Fn. We suppress reference to the s “workspace bits” in
what follows.

The first step is to construct such a starting vector:

The following vector is the average of all the classical (observable) states:

(3.2.1) |av〉 :=
1

2
n
2

∑
x∈{0,1}n

|x〉.

To prepare |av〉, note that H|0〉 = 1√
2
(|0〉 + |1〉), so applying H⊗n to

|0 · · · 0〉 transforms it to |av〉.
The cost of this is n gates, as H⊗n is the composition of H⊗ Id2,...,n,

Id1⊗H⊗ Id3,...,n, ... , Id1,...,n−1⊗H.

Since |av〉 is equidistant from all possible solution vectors, we have
〈av|a〉 = 1

2
n
2

. We want to rotate |av〉 towards the unknown a. Recall

that cos(∠(|v〉, |w〉)) = 〈v|w〉
|v||w| . Write the angle between av and a as π

2 − θ, so

sin(θ) = 1

2
n
2

.

Recall from Exercise 2.2.21, that a rotation is a product of two reflec-
tions. In order to perform the rotation R that moves |av〉 towards |a〉, we

36 3. Algorithms

first reflect in the hyperplane orthogonal to |a〉, and then in the hyperplane
orthogonal to |av〉.

Consider the map

(3.2.2) |xy〉 7→ |x(y ⊕ F (x))〉

defined on basis vectors and extended linearly. To execute this, we use the
s workspace bits corresponding to y to effect s reversible classical gates. We
initially set y = 0 so that the image is |x0〉 for x 6= a, and |x1〉 when x = a.

Next apply the quantum gate Id⊗
(

1 0
0 −1

)
which sends |x0〉 7→ |x0〉, and

|x1〉 7→ −|x1〉. Finally apply the map |xy〉 7→ |x(y ⊕ F (x))〉 again.

Thus |a0〉 7→ −|a0〉 and all other basis vectors |b0〉 are mapped to them-
selves, which is what we desired.

Next we need to reflect around |av〉. It is easy to reflect around a classical
state, so first perform the map H⊗n that sends |av〉 to |0 · · · 0〉 (recall that
H = H−1), then reflect in the hyperplane perpendicular to |0 · · · 0〉 using
the Boolean function g : Fn2 → F2 that outputs 1 if and only if its input is
(0, . . . , 0), in the role of F for our previous reflection, then apply Hadamard
again so the resulting reflection is about |av〉.

The composition of these two reflections is the desired R.

Exercise 3.2.1: What is the probability that a measurement of R|av〉 will
produce |a〉?

As mentioned above, the vector R|av〉 is not useful, but if we instead
compose this map with itself O(1

θ) times, we obtain a vector much closer to
|a〉.
Exercise 3.2.2: Show that applying the procedure 2

n
2 times, one obtains a

vector such that the probability of it being in state |a〉 after a measurement
is greater than 1

2 .

3.3. Simons’ algorithm

The problem: given F : Fn2 → Fn2 , computable by a Boolean circuit of size
polynomial in n, such that there exists a ∈ Fn2 satisfying for all x, y ∈ Fn2 ,
F (x) = F (y) if and only if x = y ⊕ a, find a. For simplicity of exposition,
assume we know a 6= (0, . . . , 0) as well.

Simons gives a poly(n) size quantum circuit that obtains the solution.

Remark 3.3.1. Although this problem may look unnatural, the resulting
algorithm inspired Shor’s algorithm and its generalizations, and it fits into a
larger framework of problems that allow for an exponential quantum speedup
over known probabilistic algorithms.

3.3. Simons’ algorithm 37

Remark 3.3.2. This problem is expected to be hard on a classical com-
puter. Consider the following variant where F is allowed to be difficult to
compute, but we are handed a black box that will compute it for us at
unit cost. If a and F are chosen at random subject to the condition that
F (x) = F (y) if and only if x = y⊕ a, then classically one would need to use

the black box 2
n
2 times before having any information at all, as with fewer

calls, it is likely that one never gets the same answer twice. On the other
hand, Simons’ algorithm still gives a poly(n)-size solution in this setting.

Work in (C2)⊗2n+s, where s is the size of a reversible Boolean circuit
needed to compute F . We suppress reference to the s workspace qubits
in what follows. As with Grover’s algorithm, we will construct a vector
that “sees” the answer a, but we will not be able to see the vector, so
instead we manipulate it to get information about the solution. Also as
before, first prepare |av〉 = 1

2
n
2

∑
x∈{0,1}n |x〉. Then apply the operation

|xz〉 7→ |x(z ⊕ F (x))〉 to |av, 0n〉, to obtain

1

2
n
2

∑
x∈{0,1}n

|x〉⊗|F (x)〉

Now measure the second n bits of the register to put the second n qubits
into some classical state z0:

1

2
n
2

∑
{x|F (x)=z0}

|x〉⊗|z0〉.

Say F (x0) = z0, then (assuming a 6= 0n) our sum collapses to

1

2
n
2

(|x0〉+ |x0 ⊕ a〉)⊗|z0〉.

We want to manipulate this vector to gain information about a.

For x, y ∈ Fn2 , let x · y :=
⊕n

j=1 xjyj ∈ F2 denote their inner product.
Now perform the Hadamard operation on the first n bits again.

Exercise 3.3.3: Show that H⊗n|x〉 = 1

2
n
2

∑
y(−1)x·y|y〉.

We obtain

(3.3.1)
∑
y∈Fn2

(
(−1)x0·y + (−1)(x0⊕a)·y

)
|yf(x0)〉

Since (x⊕ a) · y = x · y ⊕ a · y, the term in the summand for any given y is
non-zero if and only if a · y = 0.

Thus when we measure the vector, we obtain a y ∈ Fn2 that is orthogonal
to a with respect to the inner-product on Fn2 (and is chosen uniformly at
random among such). So we may restrict our search for a to the hyperplane
in Fn2 perpendicular to y. If we continue, with good luck, we could find

38 3. Algorithms

a after n − 1 runs of the algorithm. However, we have no guarantee we
do not end up with linearly dependent y’s. If we run the algorithm more
than 2n times, then there will be n− 1 independent hyperplanes with high
probability.

Exercise 3.3.4: Prove that for any a ∈ Fn2 , if vectors y1, . . . , y2n are chosen
uniformly at random subject to a · yj = 0 for every j ∈ [n − 1], then with
probability at least 9

10 a subset of n− 1 of them are linearly independent.

3.4. Quantum gate sets

Previously we only need the quantum gates corresponding to the Toffoli
gate, the swap, and H. For general computation one needs more general
gates In this section we discuss admissible quantum gate sets. There are
two issues we need to deal with: locality and approximation. We will first
see, in §3.4.1 that locality is not a problem. Approximation is more subtle.
We will first need to a way to measure how close an approximation is to
the desired gate set. This will be done via the operator norm defined in
§3.4.2. I introduce the “standard quantum gate set” in §3.4.4. Before that,
in §3.4.3, I briefly discuss “controlled gates” which encode classical quantum
interaction.

3.4.1. Locality. We would like to execute arbitrary unitary operations
but we expect to only be able implement local quantum gates, as it is likely
that one can only create entanglement in a laboratory on qubits that are
physically close to one another. Thanks to the following unitary version of
the classical Cartan-Dieudonné theorem, this issue is not a problem:

Lemma 3.4.1. Any U ∈ U(n) may be written as a product of at most
(
n
2

)
elements, each of which acts on some C{ei, ei+1} as an element of U(2) and
is the identity on the span of e1, . . . , ei−1, ei+2, . . . , en, where e1, . . . , en is
the standard basis of Cn.

Proof. Let U(2)i ⊂ U(n) be the copy of U(2) acting only on C{ei, ei+1}.
By Exercise 2.2.19, U(2) acts transitively on lines in C2. Moreover, it can

send any |v〉 ∈ C2 to

(
|v|
0

)
. Thus for any unit vector |ψ〉 ∈ Cn, there

exist Uj ∈ U(2)j such that U1 · · ·Un|ψ〉 = e1. Write the columns of U−1

as |ψ1〉, . . . , |ψn〉 where |ψj | = 1. We may find U1,1, . . . , U1,n−1 such that
U1,1 · · ·U1,n−1|ψ1〉 = e1. Note that their effect on the remaining columns will
make them orthogonal to e1. Next we may find U2,2, . . . , U2,n−1 with U2,j ∈
U(2)j such that their product applied to U1,1 · · ·U1,n−1|ψ2〉 is e2. Continu-
ing, we obtain U = Un−1,n−1Un−2,n−2Un−3,n−2 · · ·U2,2 · · ·U2,n−1U1,1 · · ·U1,n−1.

�

3.4. Quantum gate sets 39

3.4.2. Approximation. Ideally one would like to work with a universal
gate set as in the classical case, but that will not be possible with a finite
(or even countable) set of gates. If we start with a finite gate set, we cannot
generate the entire unitary group. This results in quantum computation in
general being not only probabilistic, as we have already discussed, but also
approximate. This has not been an issue so far, but will be when we do
Shor’s algorithm.

We would like some assurance that we can get arbitrarily “close” to any
U ∈ U(H) with polynomially many elements from our finite gate set.

First we need to make the meaning of “close” precise, i.e., we need to
choose a norm on End(H). We work with a norm on End(H) rather than
a distance function on U(H) because we will need to measure the norm
of the difference of two unitary operators, which in general is not unitary.
Moreover, End(H) has the advantage of being a linear space where distances
are easier to work with.

Let V be a vector space. A norm on V is a function || · || : V → R≥0

satisfying, for all v, w ∈ V and all c ∈ C:

||v|| ≥ 0 with equality iff v = 0,

||v + w|| ≤ ||v||+ ||w||,
||cv|| = |c| ||v||.

In our case, we have V = End(H), and we take a norm that reflects this
additional structure of our vector space as a space of operators, called the
operator norm. It is particularly convenient for unitary operators.

Definition 3.4.2. For X ∈ End(H), define the operator norm of X,

||X|| := sup|ξ〉6=0

|X|ξ〉|
|ξ|

where |X|ψ〉| is the usual Hermitian norm of the vector X|ψ〉.

Exercise 3.4.3: Verify that the operator norm is indeed a norm.

Exercise 3.4.4: Prove that when H is finite dimensional, that ||X||2 is the
largest eigenvalue of X†X.

ForX ∈ End(HA), Z ∈ End(HB), we may considerX⊗Z ∈ End(HA⊗HB).
The operator norm has the following additional properties:

||XY || ≤ ||X|| ||Y ||,

||X†|| = ||X||,
||X⊗Z|| = ||X|| ||Z||,
||U || = 1 ∀U ∈ U(H).

40 3. Algorithms

Exercise 3.4.5: Verify these additional properties.

Definition 3.4.6. An operator Ũ ∈ U(H) approximates U ∈ U(H) with

precision δ if ||Ũ − U || ≤ δ.

Exercise 3.4.7: Show that Ũ ∈ U(H) approximates U ∈ U(H) with preci-

sion δ if and only if Ũ−1 approximates U−1 with precision δ.

We will not be concerned with a single unitary transformation, but the
product of many such, so we need to examine how errors grow under com-
position of maps. The key property of the operator norm is that for unitary
transformations, errors accumulate linearly:

Proposition 3.4.8. Say U = UL · · ·U2U1 with U,Uj ∈ U(H), and that Uj
is approximated by Ũj ∈ U(H) with precision δj . Then Ũ := ŨL · · · Ũ2Ũ1

approximates U with precision
∑L

j=1 δj .

Proof. By induction, it will be sufficient to prove the case L = 2. We have

||Ũ2Ũ1 − U2U1|| = ||Ũ2(Ũ1 − U1) + (Ũ2 − U2)U1||

≤ ||Ũ2(Ũ1 − U1)||+ ||(Ũ2 − U2)U1||

≤ ||Ũ2|| ||Ũ1 − U1||+ ||Ũ2 − U2|| ||U1||

≤ ||Ũ1 − U1||+ ||Ũ2 − U2||.

�

This linear accumulation of errors allows for good approximation as we
will see in Theorem 3.4.12 below.

3.4.3. Classical-quantum gates. Recall that in Grover’s and Simons’
algorithms, we used the notation (3.2.2) as an abbreviation for a reversible
classical computation embedded into a quantum circuit. We now introduce
notation for these classical “controls” in a quantum circuit.

For U ∈ U(n), introduce k-controlled U , Λk(U) : Ck⊗Cn → Ck⊗Cn by

Λk(U)(|x1, . . . , xk〉⊗|ξ〉) =

{
|x1, . . . , xk〉⊗|ξ〉 if x1 · · ·xk = 0
|x1, . . . , xk〉⊗U |ξ〉 if x1 · · ·xk = 1.

When acting by these controlling bits, we will allow violation of strict lo-
cality for the controlling bits (they will be the “last” s bits, as was the
situation with Grover’s and Simons’ algorithms). This is physically accept-
able, because it will correspond to interfering with the quantum system from
“outside”.

Introduce the notation (taken from physics) σx :=

(
0 1
1 0

)
.

Exercise 3.4.9: Show that Λ1(σx)|ab〉 = |a, a⊕ b〉.

3.5. Shor’s algorithm 41

Exercise 3.4.10: Show the Toffoli gate is Λ2(σx).

It is exactly in implementing these classical-quantum gates that we will
allow violation of strict locality- the Hilbert spaces corresponding to the
classical bits need not be adjacent to the Hilbert spaces corresponding to
the quantum bits in these gates.

3.4.4. The standard quantum gate set.

Definition 3.4.11. The quantum gate set

H :=
1√
2

(
1 1
1 −1

)
(the Hadamard gate),(3.4.1)

K :=

(
1 0
0 i

)
,(3.4.2)

K
−1
,(3.4.3)

Λ1(σx) where σx =

(
0 1
1 0

)
,(3.4.4)

Λ2(σx) the Toffoli gate(3.4.5)

is called standard.

Theorem 3.4.12. Any U ∈ U(n) can be realized with precision δ by a
poly(log(1

δ))-size circuit over the standard basis, using workspace bits (i.e.,
working with elements of U(n + s)). Moreover, there exists a polynomial
size algorithm constructing the circuit.

Theorem 3.4.12 justifies the assertion that one can achieve good approxi-
mate quantum algorithms from a fixed gate set. For the proof, see [KSV02,
Thm. 13.5].

add exercise how to approximate elements of U(2)

3.5. Shor’s algorithm

Shor’s algorithm involves a classical part and a quantum part. The quantum
part is: given a randomly chosen a ∈ (Z/NZ)∗, find the order of a in
(Z/NZ)∗. The classical part uses the quantum algorithm as a black box and
finds a factor of N . The size of the quantum circuit will be poly(log(N)).
Since there are at most log(N) factors of N , it will still be poly(log(N))-
operations to factor N completely.

The quantum part will hinge on i) there being “enough” prime numbers
less than N , and ii) the ability to “closely” approximate a rational number
by other rational numbers. After explaining the classical part, I address
these two issues.

42 3. Algorithms

3.5.1. The classical part. Here is the algorithm that, given N , finds a
nontrivial divisor with probability at least 1

2 .

If N is even, we are done. Otherwise, choose a uniformly at random
from {2, . . . , N − 1}. If gcd(a,N) > 1 then we are done. Otherwise, we may
consider a as an element of (Z/NZ)∗, and we call the quantum algorithm to
compute the order of a in (Z/NZ)∗. Say this order is r.

If r is odd, the algorithm fails.

If r is even, compute gcd(a
r
2 − 1, N). If it is greater than one, we are

done, otherwise, the algorithm fails.

There are two bad cases to analyze: i) when r is odd and ii) when r is

even and gcd(a
r
2 − 1, N) = 1.

Proposition 3.5.1. The above algorithm succeeds with probability at least
1− 1

2k−1 where k is the number of distinct prime divisors of N .

Proof. Introduce the following notation for the proof:

N = pα1
1 · · · p

αk
k with pj prime

aj is a reduced mod p
αj
j

rj = order of aj in (Z/pαjj Z)∗.

Recall the Chinese remainder theorem (CRT) implies that (Z/NZ)∗ =
(Z/pα1

1 Z)∗ × · · · × (Z/pαkk Z)∗, so in particular r = lcm(r1, . . . , rk).

The first chance of failure happens when all rj are odd. When will the
second failure occur?

Write rj = 2sjr′j with r′j odd and r = 2sr′ where s = max{s1, . . . , sk}
and r′ is odd. To succeed, we just need one j such that a

r
2
j ≡ 1 mod p

αj
j (as

then a
r
2 − 1|N).

Claim: the algorithm fails if and only if s1 = s2 = · · · = sk.

If there exists some sj < s and a
r
2
j ≡ 1 mod p

αj
j , since −1 7→ (−1, . . . ,−1)

under the CRT isomorphism, we see a
r
2 6≡ −1 modN and we obtain a non-

trivial divisor, showing if the si are not all equal, the algorithm succeeds.

If s1 = · · · = sk = 0, then r is odd and the algorithm fails at the first
chance.

So assume s1 = · · · = sk ≥ 1. By the CRT a
rj
j ≡ 1 mod p

αj
j , i.e.,

a
rj
j − 1 = (a

rj/2
j − 1)(a

rj/2
j + 1) ≡ 0 mod p

αj
j .

Now recall Proposition 3.1.4 which asserts that if b2 ≡ 1 modM and b 6≡
±1 modM , then b+1, b−1 have nontrivial factors in common with M . Since

3.5. Shor’s algorithm 43

each rj is minimal, we cannot have (a
rj/2
j − 1) ≡ 0 mod p

αj
j . Thus, since pj

is a prime greater than 2, gcd(a
rj
2
j − 1, p

αj
j) = 1, so a

rj
2
j + 1 ≡ 0 mod p

αj
j for

all j, i.e.,

a
rj/2
j ≡ −1 mod p

αj
j ∀j.

Again by the CRT

a
r
2 ≡ −1 modN

and the algorithm fails.

It remains to show that the probability of failure is small, i.e., that the
probability that s1 = · · · = sk is at most 1

2k−1 .

Since a has been chosen uniformly at random in (Z/NZ)∗, the CRT
implies the aj are chosen uniformly at random as elements of (Z/pαjj Z)∗.

Fix j and any s ≥ 0. We claim that the probability that sj = s is at
most 1

2 . Once we have proven the claim, the theorem will follow.

Exercise 3.5.2: Show that for p prime, |(Z/pαZ)∗| = pα − pα−1.

Write pα − pα−1 = 2tq where q is odd and note that t > 0. Let g be a
generator of (Z/pαZ)∗. Write the order of a as 2sar′a where r′a is odd.

#{a ∈ (Z/pαZ)∗ | sa = s} = #{powers g2t−sm with m odd}

=

q s = 0

(2s − 2s−1)q s = 1, . . . , t
0 s > t

 .

All these numbers are at most 1
2(pα − pα−1) because t > 0, so they have

probability at most 1
2 of being selected, so we conclude the probability of

failure is at most 1
2k−1 . �

3.5.2. Preliminaries I: the number of primes. Let π(x) denote the
number of prime numbers that are less than or equal to x. The prime
number theorem states π(x) ∼ x

ln(x) , more precisely,

lim
x→∞

π(x)

x/ ln(x)
= 1.

The proof is not so simple, but for our purposes, the following result will
suffice:

Theorem 3.5.3. For all x ≥ 2,

π(x) ≥ x

2 log(x)
.

44 3. Algorithms

We give the proof after several preliminary lemmas. Let vp(m) denote
the largest power of p that divides m.

Lemma 3.5.4.

vp(n!) =
∑
m≥1

b n
pm
c.

Proof. Among 1, 2, . . . , n, exactly bnp c are multiples of p, contributing bnp c
to the summation, exactly b n

p2
c are multiples of p2, contributing an addi-

tional b n
p2
c to the summation (and thus multiples of p2 are counted two

times). Continuing, one gets the result. �

Recall that
(
m
q

)
= m!

q!(m−q)! . Note that

vp(

(
2n

n

)
) = vp(2n)− 2vp(n) =

∑
m≥1

b 2n

pm
c − 2b n

pm
c.

Exercise 3.5.5: Show that for all x ∈ R, b2xc − 2bxc ∈ {0, 1}. }

Note that if 2n
pm < 1, i.e., m > log(2n)

log(p) , then b 2n
pm c − 2b npm c = 0, and thus

vp(
(

2n
n

)
) ≤ log(2n)

log(p) .

Exercise 3.5.6: Show that
(

2n
n

)
≥ 22n

2n . }

By Exercise 3.5.6

2n log(2)− log(2n) ≤ log

(
2n

n

)
≤
∑
p≤2n

b log(2n)

log(p)
c log(p), as N =

∏
p

pvp(N)

≤
∑
p≤2n

log(2n) = π(2n) log(2n).

Thus

(3.5.1) π(2n) ≥ 2n

log(2n)
− 1.

proof of Theorem 3.5.3. For x ≤ 16, one can check the result by hand.
So assume x > 16 and take n such that 16 ≤ 2n ≤ x ≤ 2n+ 2. Then

π(x) ≥ π(2n) ≥ 2n

log(2n)
− 1 =

1

2 log(2n)
[4n− 1

2 log(2n)
]

≥ 1

2 log(x)
[4n− 1

2 log(2n)
]

≥ x

2 log(x)
.

3.5. Shor’s algorithm 45

The last line holds because we have x ≤ 2n + 2 ≤ 4n − 1
2 log(2n) , since

n ≥ 8. �

We will use Theorem 3.5.3 in the form:

Corollary 3.5.7. For every natural number r, there are at least Ω(r
log r)

numbers in {1, . . . , r10} relatively prime to r.

The corollary follows as r has at most log(r) prime factors and there are
at least r

20(log(r)−log(10)) prime numbers less than r
10 .

3.5.3. Preliminaries II: Continued Fractions. We will need to approx-
imate real numbers by sequences of rational numbers. A first idea would
simply be to use the decimal expansion. The following scheme has better
convergence properties for our purposes. (E.g., consider the decimal expan-
sion of 1

3 compared with the results below.) Given α ∈ R, consider the
expansion

α = α0 +
1

α1 + 1
α2+ 1

α3+
1

α4+···

where α0 = bαc, and

1

α− α0
= α1 + b 1

α− α0
c

etc... I.e., αk is the integer part of the reciprocal of the error term in the
previous estimate. Write pn

qn
= [α0, . . . , αn] for the rational number obtained

after the n-th step, which is an approximation to the real number α.

For example, taking the continued fraction expansion of π, one obtains
22
7 = [3, 7], 333

106 = [3, 7, 15], 355
113 = [3, 5, 15, 1].

If α is rational, we will see momentarily that the algorithm reproduces
α. For example 11

9 = 1 + 2
9 , so α0 = 1. Since 9

2 = 1 + 1
4 , we have α1 = 4,

and since 2 = 2 + 0, we have α2 = 2 and 11
9 = [1, 4, 2].

Proposition 3.5.8. In the continued fraction expansion of α ∈ R>0, if it
does not converge at the n-th step, then after the n-th step one obtains
[α0, . . . , αn] = a

b ∈ Q with b ≥ 2
n
2 .

Proof. Write [α0, . . . , αn] = pn
qn

. Then p0 = α0, q0 = 1, p1 = 1 + p0α1,

q1 = α1 and

pk = αkpk−1 + pk−2(3.5.2)

qk = αkqk−1 + qk−2.

Exercise 3.5.9: Verify the equalities (3.5.2).

46 3. Algorithms

Since αj > 0, we have pj ≥ 2pj−2 and qj ≥ 2qj−2, so pn−1, qn−1 ≥ 2b
n
2
c,

proving the lower bound on b. �

Theorem 3.5.10. Let α, sr ∈ Q be such that | sr −α| ≤
1

2r2
. Then s

r appears
in the continued fraction expansion for α.

Proof. Take the continued fraction expansion of sr = [β0, . . . , βn], and write
pj
qj

= [β0, . . . , βj]. Define δ by the equation

α =
s

r
+

δ

2r2
=
pn
qn

+
δ

2q2
n

.

Note that δ is a measure of the failure of pnqn to be equal to α. The hypothesis

implies |δ| < 1. Set

λ = 2

(
qnpn−1 − pnqn−1

δ

)
− qn−1

qn
.

Exercise 3.5.11: Show that α = λpn+pn−1

λqn+qn−1
.

Slightly abusing notation (as λ 6∈ Z) α = [β0, . . . , βn, λ]. Since λ ∈ Q,
we may write λ = [γ0, . . . , γm], so α = [β0, . . . , βn, γ0, . . . , γm] and s

r appears
at the n-th step. �

delete or clean this Punch line: Given α ∈ R and N ∈ Z, the
continued fraction algorithm, in poly(log(N)) steps finds a

b ∈ Q such that
b ≤ 16N and a

b approximates α better than any other rational number with
denominator at most b. **more details here***

3.5.4. Preliminaries III: the quantum Discrete Fourier Transform.
Recall the DFT for Z/MZ, which we may write in vector notation, for
j ∈ Z/MZ, as

|j〉 7→ 1√
M

M−1∑
k=0

ωjk|k〉

where ω = e
2πi
M . Also recall: the DFT is a unitary change of basis such that

in the new basis, multiplication in Z/MZ is given by a diagonal matrix, and
the classical FFT writes the DFT as a product of O(log(M)) sparse matrices
(each with M << M2 nonzero entries), for a total cost of O(log(M)M) <
O(M2) arithmetic operations to execute.

Write M = 2m. We show that the DFT can be written as a product
of O(m3) = O(log(M)3) controlled local unitary operators. We will thus
be able to produce an approximation of the output vector by a sequence of
poly(m) unitary operators from our gate set.

3.5. Shor’s algorithm 47

It will be convenient to express j in binary and view CM = (C2)⊗m, i.e.,
write

|j〉 = |j1〉⊗ · · · ⊗|jm〉
where j = j12m−1 + j22m−2 + · · ·+ jm20 and ji ∈ {0, 1}. Write the DFT as

|j1〉⊗ · · · ⊗|jm〉

7→ 1√
M

M−1∑
k=0

ωjk|k〉

=
1√
M

∑
ki∈{0,1}

ωj(
∑m
l=1 kl2

m−l)|k1〉⊗ · · · ⊗|km〉

=
1√
M

∑
ki∈{0,1}

m⊗
l=1

[
ωjkl2

m−l |kl〉
]

=
1√
M

∑
ki∈{0,1}

m⊗
l=1

[
ω(j122m−1−l+···+jm2m−l)kl |kl〉

]

=
1

2
m
2

(|0〉+ ωjm2−1 |1〉)⊗(|0〉+ ωjm−12−1+jm2−2 |1〉)⊗(|0〉+ ωjm−22−1+jm−12−2+jm2−3 |1〉)

(3.5.3)

⊗ · · ·⊗(|0〉+ ωj12−1+j22−2+···+jm2−m |1〉)

where for the last line if 2m−s−l > m, i.e., s+l < m, there is no contribution
with js because ω2m = 1, and we multiplied all terms by 1 = ω−2m to have
negative exponents.

It will be notationally more convenient to write the quantum circuit for
this vector with the order of factors reversed. I.e., we describe a quantum
circuit that produces

1√
2

((|0〉+ ωj12−1
ωj22−2 · · ·ωjm2−m |1〉))⊗ · · ·⊗ 1√

2
(|0〉+ ωjm−22−1+jm−12−2+jm2−3 |1〉)

(3.5.4)

⊗ 1√
2

(|0〉+ ωjm−12−1+jm2−2 |1〉)⊗ 1√
2

(|0〉+ ωjm2−1 |1〉).

Set

(3.5.5) Rk =

(
1 0

0 ω2−k

)
,

then (3.5.4) is obtained from |j1〉⊗ · · · ⊗|jm〉 as follows: first apply H to

(C2)1. Note that ω2−1
= ω2m−1

= −1, so at this point the first factor

becomes 1√
2
((|0〉 + ωj12−1 |1〉)). To get the next term in the product of ω’s

in the first term, apply Λ1R2 to (C2)2⊗(C2)1. Continue, applying Λ1Rj to

48 3. Algorithms

(C2)j⊗(C2)1 for j = 3, . . . ,m. Note that at this point only the (C2)1-term
has been altered, as all the other factors only acted as controlling qubits.

Exercise 3.5.12: Verify that at this point we have the correct term in the
(C2)1-slot in (3.5.4).

From now on we leave the (C2)1-slot alone. Next apply H to (C2)2

then Λ1Rj−1 to (C2)j⊗(C2)2 for j = 3, . . . ,m. Then apply H to (C2)3 then
Λ1Rj−2 to (C2)j⊗(C2)3 for j = 4, . . . ,m. Continue, until finally one just
applies H to (C2)m. In all these cases, the (C2)j ’s act as the control. Finally
to obtain the DFT, reverse the orders of the factors (a classical operation).

Exercise 3.5.13: Verify that the above sequence of maps produces (3.5.3).

In practice, one has to fix a quantum gate set in advance, so in general
we will have to approximate the transformations Rk from elements of our
gate set, so we will only approximate the DFT.

3.5.5. The order finding algorithm. We are given a andN with gcd(a,N) =
1 and want to find the order of a in (Z/NZ)∗. Set m = d3 log(N)e, M = 2m

and n = dlog(N)e. Work in (C2)⊗(m+n). (Here and in what follows, I ignore
the additional bits needed to execute the classical reversible computations.)
Initialize the state to |0m+n〉. Apply the quantum Fourier transform to the
first m qubits to obtain

1√
M

∑
x∈Z/MZ

|x〉⊗|0k〉.

Use our (polynomial in n) reversible powering mod N routine |x〉⊗|y〉 7→
|x〉⊗|y ⊕ ax modN〉 to obtain

1√
M

∑
x∈Z/MZ

|x〉⊗|ax modN〉.

Here and in what follows, ax modN is to be considered as an element of
{0, . . . , N −1} expressed in binary. Now perform a measurement on the last
n qubits (which recall involves re-normalizing the resulting vector to have
length one) to obtain some y0 ∈ {0, 1}n that appears in the image of the
map x 7→ ax modN , which will appear with all x’s such that ax modN = y0.
Let x0 be the smallest natural number such that ax0 ≡ y0 modN . Then y0

will appear paired with the values x0 + `r ∈ {0, . . . ,M − 1} where r is the
period. Thus the output vector is

(3.5.6)
1√
K

K−1∑
`=0

|x0 + `r〉⊗|y0〉,

3.5. Shor’s algorithm 49

where

K = bM − (1 + x0)

r
c.

Compare (3.5.6) with the step in Simons’ algorithm giving rise to (3.3.1).
As with Simons’ algorithm, we now have a vector that “sees” r that we will
manipulate to get information about r.

Apply the quantum Fourier transform to the first m qubits again to
obtain

1√
M
√
K

∑
x∈Z/MZ

K−1∑
`=0

ω(x0+`r)x|x〉⊗|y0〉.

Finally measure the first m qubits to obtain some x ∈ Z/MZ.

How will this be useful? We claim that the algorithm will tend to pro-
duce x such that x

M will be close to a fraction b
r . Then if we take the partial

fraction decomposition of x
M , the term b

r will appear. In fact we can just test
the denominators and qj and just take the first one such that aqj ≡ 1 modN .

We know if we draw x such that | br −
x
M | <

1
2r2

, we obtain r.

We need to show there are “enough” “good” x each with sufficiently
high probability of being chosen that we succeed. Since we may repeat the
experiment poly(logN) times while still being in polynomial time, if G is
the number of good x and P the probability of drawing a good x, whe need
GP = Ω(1

logN). We will show G = Ω(r
log r) and P = Ω(1

r), and since r < N ,

this will suffice.

The probability of drawing any given |x〉 is

1

MK
|ωx0x + ω(x0+r)x + ω(x0+2r)x + · · ·+ ω(x0+(K−1))rx|2

=
1

MK
|1 + ωrx + ω2rx + · · ·+ ω(K−1)rx|2

First consider the highly improbable but illustrative case M = rc for
some natural number c. Write η = ωrx. Note that ηc = (ωrc)x = 1. If c - x,
then 1 + η + η2 + · · · + ηc−1 = 0 and the probability of drawing such x is

zero, but if c | x, each power equals 1 as ωrjx = ω
M
c
jx and x

c ∈ Z, and thus

we will draw x = cb for a random b ∈ {0, . . . , r − 1} so x
M = cb

rc = b
r and all

such x’s are equally likely.

From this we can recover r with high probability: there are Ω(r
log(r))

numbers relatively prime to r, when we run the continued fraction algo-
rithm for x

M , the denominator it produces will be r with high probability.
clean*

Now for the general case: the idea is similar- we will prove that the
values of x that are most likely to be drawn will be such that xr is nearly

50 3. Algorithms

divisible by M . For the algorithm to work, we also need gcd(bxrM c, r) = 1
We first show there are “many ” such good x.

Lemma 3.5.14. There exist Ω(r
log(r)) elements x ∈ Z/MZ satisfying:

i) 0 ≤ xrmodM < r
10 , and

ii) gcd(bxrM c, r) = 1.

Proof. Consider the case gcd(r,M) = 1, i.e., r is odd. Then the map
x 7→ rxmodM is a permutation on (Z/MZ)∗. By Corollary 3.5.7 there are
Ω(r

log(r)) elements x such that xrmodM < r
10 and gcd(x, r) = 1.

Since xrmodM = rx − b rxM cM , we have gcd(b rxM c, r) = 1 as otherwise
rxmodM would also have a factor in common with r.

For the general case, write d = gcd(r,M), set r′ = r
d and M ′ = M

d .

Exercise 3.5.15: Apply the same argument to show there exists Ω(r
d log(r))

x’s in Z/M ′Z satisfying the condition. Finally show that for all c ∈ N,
x+ cM also satisfies the condition.

�

To conclude, we need to show the probability of drawing one of the good
x’s is sufficiently large.

Lemma 3.5.16. If x is such that 0 < xrmodM < r
10 , then the probability

of drawing x in Shor’s algorithm is Ω(1
r).

Proof. The probability of drawing x is

1

KM
|
K−1∑
`=0

ω`rx|2.

Recalling the sum of a geometric series, this is

1

KM
|1− e

2πirxK
M

1− e
2πirx
M

|2.

Note that M
2r < K < M

r . We need to show the quantity in absolute value is

Ω(Mr). Setting θ = rxmodM
M , it is at least

sin(θdMr e/2)

sin(θ/2)
.

Now use that for small θ, sin(θ) ∼ θ to conclude. �

The first assertion of Lemma 3.5.14 implies

|xr − cM | < r

10

3.7. What is a quantum computer? 51

for c = dxrM e, i.e.,

| x
M
− c

r
| < 1

10M
.

Thus the rational number c
r approximates x

M to within 1
10M .

Exercise 3.5.17: Show that for every 0 < α < 1 and N > 0, there is at
most a single rational number a

b such that b < N , and |α− a
b | <

1
2N2 .

By Exercise 3.5.17 our approximation is good enough to determine c
r ,

and thus r.

3.6. A unified perspective on quantum algorithms: the
hidden subgroup problem

Given G: a discrete group with a specific representation of its elements in
binary, an explicit function f : G→ Fn2 , and the knowledge that there exists
a subgroup G′ ⊂ G such that f(x) = f(y) if and only if xy−1 ∈ G′, find G′.

For abelian groups, it is sufficient to solve the problem for G = Z⊕k as
all abelian groups are quotients of some Z⊕2k.

Simons algorithm is the case G = Z⊕m2 . The DFT2 matrix is

H =
1√
2

(
1 −1
−1 1

)
and G′ is the subgroup generated by a ∈ Z⊕m2 .

Shor’s algorithm is the case G = Z and F is the function x 7→ ax modN .
Note that with Shor, as we did with multiplying polynomials, we restricted
to Z/MZ for M sufficiently large.

Both are solved via the DFT for the finite group G.

Another example, closely related to order finding, is as follows: the

discrete logarithm of a number a at base ζ = e
2πi
N is the smallest positive

integer s such that ζs = a. Consider the function f : Z2 → ZN given by
f(x1, x2) = ζx1ax2 modN . Take G = Z2, G′ = {(x1, x2) ∈ Z2 | ζx1ax2 ≡
1 modN}. Given G′, just find an element of the form (s,−1) ∈ G′, and s is
the discrete logarithm of a at base ζ.

3.7. What is a quantum computer?

Currently there are three approaches towards building a quantum computer:
adiabatic quantum optimization (D Wave), digital (IBM), topological (cur-
rently science fiction).

The main problem of quantum computing is on the one hand, one wants
an isolated system to be resistant to outside noise, on the other hand one
needs to be able to manipulate it.

52 3. Algorithms

3.7.1. D Wave’s computers. Claims of 2, 000 qubits. Machine only de-
signed for quadratic optimization. Yet to have an advantage over a classical
computer. Internal workings of machine kept private. Principle quantum
cousin of MRI. If they can scale up significantly, despite these drawbacks,
they will beat classical computers.

3.7.2. IBM’s digital quantum computer. It really exists and is quan-
tum, and the world is free to examine it. Problem: only 5 qubits.

3.7.3. Topological quantum computing. technology not yet there...

3.8. Appendix: review of basic information on groups and
rings

Let S be a set, a binary operation on S is a map f : S × S → S. One often
writes f(x, y) = x ∗ y.

A group is a set G with a binary operation such that 1) for all x, y, z ∈ G,
x ∗ (y ∗ z) = (x ∗ y) ∗ z) (associativity), 2) there exists and identity element
e ∈ G such that e ∗ x = x ∗ e = x for all x ∈ G and 3) for all x ∈ G, there
exists an inverse x−1 ∈ G such that x ∗ x−1 = x−1 ∗ x = e.

Examples: (G, ∗) = (Z,+), U(n) with operation matrix multiplication.
Let Z/NZ denote the set of equivalence classes in the integers defined by
remainder under division by N . Then (Z/NZ)∗, the set of elements of
Z/NZ with multiplicative inverses is a group, where the binary operation is
multiplication inherited from multiplication of the integers: [x]∗ [y] = [x∗y]
(one must verify this is well defined).

Non-examples: the set of stochastic matrices with operation matrix mul-
tiplication, the nonzero integers with operation multiplication.

A group G is abelian if x ∗ y = y ∗ x for all x, y ∈ G. (Z,+), (Z/NZ)∗

are abelian groups, U(n) is not, when n > 1.

An abelian group is cyclic if it is generated by a single element.

Exercise 3.8.1: Show that when p is prime (Z/NZ)∗ is cyclic of order p−1.

A ring is a set R with two binary operations, often denoted + and ∗, such
that 1) (R,+) is an abelian group, 2) ∗ is associative and has an identity,
often denoted 1 or 1R, 3) (compatibility) for all x, y, z ∈ R, (x + y) ∗ z =
x ∗ z + y ∗ z and z ∗ (x+ y) = z ∗ x+ z ∗ y.

Examples (Z,+, ∗), (Z/NZ,+, ∗) (where both operations are inherited
from the operations on Z), Z[x]: the polynomials in one variable with integer
coefficients.

3.8. Appendix: review of basic information on groups and rings 53

Let G,H be groups. A map f : G → H is a group homomorphism if
f(x ∗ y) = f(x) ∗ f(y) (where the first ∗ is in G and the second in H) for
all x, y ∈ G. Let R,S be rings. A map f : R → S is a ring homomorphism
if f(1R) = 1S , f(x + y) = f(x) + f(y) and f(x ∗ y) = f(x) ∗ f(y) for all
x, y ∈ R.

Chapter 4

Classical information
theory

We have been referring to the classical unit of information as a bit, a copy
of {0, 1}. The discovery/invention of the bit by Tukey and its development
by Shannon [Sha48] was one of the great scientific achievements of the
twentieth century, as it changed the way we view information, giving it an
abstract formalism that is discussed in this chapter. Instead of reading this
chapter, we suggest just reading Shannon’s classic article, as it is extremely
well written, with carefully chosen examples.

The basic question is: given a physical channel (e.g., telegraph wire),
what is the maximal rate of transmission, tolerating a small amount of
error. I begin with toy examples, leading up to Shannon’s two fundamental
theorems on channel capacity.

4.1. Data compression: noiseless channels

4.1.1. A toy problem. (Following [BCHW16]) A source emits symbols
x from an alphabet X that we want to store efficiently so we try to encode
x in a small number of bits, to say y ∈ Y in a way that we can decode it
later to recover x.

source x Y Xdest.

E
D

Figure 4.1.1. Message from source encoded into bits then decoded

55

56 4. Classical information theory

The symbols from X are not necessarily emitted with the same fre-
quency. Let p = PX denote the associated probability distribution. We
want to determine the minimum possible size for Y. Since we are dealing
in bits, it will be convenient to use the logarithms of cardinalities, so define
Cap(PX) := min log |Y|.

Consider the case X = {a, b, c, d} where Pr(a) = 0.1, Pr(b) = 0, Pr(c) =
0.4 and Pr(d) = 0.5. We can clearly get away with Y having cardinality
3, e.g., for the encoder, send a, b to 1, c to 2 and d to 3, then for the
decoder, send 1 to a, 2 to c and 3 to d. In general, we can always throw
away symbols with probability zero. On the other hand, we cannot map two
distinct symbols that do occur to the same symbol, as there would be no
way to distinguish them when decoding. Thus Cap(p) = log supp(p), where
supp(p) = #{x ∈ X | Pr(x) > 0}.

Now say we are willing to tolerate a small error. First rephrase what
we did probabilistically: Let penc(y|x) denote the conditional probability
distribution of the encoder E and pdec(x|y) that of the decoder D. Our
requirement was for all x,

Pr[∀x ∈ X , x = D ◦ E(x)] =
∑
x,y,x′

Prenc(y|x) Prdec(x′|y)δx,x′ = 1.

and we now relax it to∑
x,y,x′

Pr(x)penc(y|x)pdec(x′|y)δx,x′ ≥ 1− ε.

for some error ε that we are willing to tolerate. In addition to throwing
out the symbols that do not appear, we may also discard the largest set of
symbols whose total probability is smaller than ε. Call the corresponding
quantity Capε(p).

In the example above, if we take ε > 0.1, we can lower storage cost,
taking |Y| = 2.

Recall that a probability distribution p on X must satisfy
∑

x∈X Pr(x) =
1. We relax this to non-normalized probability distributions, q, where q(x) ≥
0 for all x ∈ X and

∑
x∈X q(x) ≤ 1. We obtain: Capε(p) = min log supp(q),

where the min is taken over all non-normalized probability distributions q
satisfying q(x) ≤ p(x) and

∑
x∈X q(x) ≥ 1− ε.

4.1.2. The case of interest. Now say the transmission is not a single sym-
bol, but a string of n symbols, so we seek an encoder E : X n → Y(n), where
Y(n) is a set that varies with n, and decoder D : Y(n)→ X n, and we want
to minimize |Y(n)|, with a tolerance of error that goes to zero for n going to
infinity. In practice one wants to send information through a communication
channel (e.g. telegraph wire). The channel can only send a limited number

4.1. Data compression: noiseless channels 57

of bits per second, and we want to maximize the amount of information
we can send per second. Define Rate(p) := limε→0 limn→∞

1
n Capε(pn). We

would like to simplify the right hand side of this expression.

4.1.3. Estimating |Y(n)|. Define a map wt : X n → Rd by xn 7→ (c1, . . . , cd),
where cj is the number of times j occurs in the string. Then E[wt(xn)] =
(np1, . . . , npd). The weak law of large numbers (1.3.2) states that for any
ε > 0,

lim
n→∞

Pr[|| 1
n

(wt(xn)− E[wt(xn))]||1 > ε] = 0

where for f : Z → Rd, define ||f ||1 =
∑

z∈Z |f(z)|. In our case, Z = X n and
f = wt.

Thus we now simply throw out all strings xn with || 1n(wt(xn)−E[wt(xn))]||1 >
ε, and we can take Y(n) of size

|Y(n)| = #{xn | || 1
n

(wt(xn)− E[wt(xn))]||1 < ε}

=
∑
xn|

|| 1n (wt(xn)−E[wt(xn))]||1<ε

(
n

wt(xn)

)
.

If ε is small, the multinomial coefficients appearing will all be very close
to (

n

np1, . . . , npd

)
and the number of xn of a given weight grows like a polynomial in n, so for
what follows, we can take the crude approximation (which will be justified
later)

(4.1.1) |Y(n)| ≤ poly(n)

(
n

np1, . . . , npd

)
(recall that d is fixed).

When we take logarithms, the right hand side of (4.1.1) becomes nH(p)+
O(log(n)). Thus

1

n
log |Y(n)| ≤ H(p) + o(1)

and Rate(p) ≤ H(p).

Theorem 4.1.1. [Sha48] Rate(p) = H(p)

We give a proof in §4.3. Since H(p) is a fundamental quantity, we first
discuss some of its properties.

58 4. Classical information theory

4.2. Entropy, i.e., uncertainty

The entropy is a measure of the uncertainty of an outcome. For example,
consider the case d = 2, with probabilities p, 1− p. The graph of H(p) is

graph here

Note that it has a unique maximum when p = 1
2 (situation of maximal

uncertainty) and is 0 in the two certain cases.

We arrived at H while approximating logs of multinomial coefficients.
Say we had not yet discovered it but were looking for a function h on prob-
ability distributions with the following properties:

(1) h is continuous in the pi.

(2) If pi = 1
d for all i and we increase d, h is monotonically increasing.

(3) h is additive with respect to breaking an event into a sequence of
conditional events: Write X = A1 t · · · tAk and assume p(Aj) > 0
for all j. Write pA = (p(A1), . . . , p(Ak)) Then h(pX) = h(pA) +∑k

i=1 p(Ai)h(pX|Ai).

For example, if X = {1, 2, 3}, with p1 = 1
2 , p2 = 1

3 , p3 = 1
6 , we can

choose one of the three at the outset, so we have H(1
2 ,

1
3 ,

1
6), or we can first

decide between the sets {1} and {2, 3}, both of which have probability 1
2

and then if we choose the second, decide between 2 and 3, the first with
probability 2

3 , the second with probability 1
3 . Thus we require the equality

H(1
2 ,

1
3 ,

1
6) = H(1

2 ,
1
2) + 1

2(0) + 1
2H(2

3 ,
1
3).

�
�
�
�

�
�
�
�

��
��
��
��

�
�
�
�

��

��
��
��
��

��

��
��
��
��

�
�
�
�

1/2

1/3

1/6

1/2

1/2

2/3

1/3

1/2

1/3

1/6

1/2

1/3

1/6

Figure 4.2.1. a choice of three outcomes viewed as a choice of two
followed by a second choice of two

Theorem 4.2.1. [Sha48] The only function h satisfying 1,2,3 is, up to a
constant, the entropy.

Proof. SetA(d) = h(1
d , . . . ,

1
d). By 3, A(sm) = mA(s) (recall that log(sm) =

m log(s)).

To see this, consider the example s = 2,m = 3:

Exercise 4.2.2: Show that A(s) = C log(s) for some constant C.

Now say we have a choice of D equally likely outcomes, which we break

up as D =
∑d

i=1 di. Write pi = di
D , and assume the di are natural numbers.

4.2. Entropy, i.e., uncertainty 59

1/8

1/2

1/2

1/4

1/4

1/4

1/4

1/4

1/4

1/4

1/4

1/2

1/2

1/2

1/2

1/2

1/2
1/2

1/2

1/2
1/2

1/2

1/2

1/2

1/2

Figure 4.2.2. repeated application of (3) gives A((1
2)3) = A(1

2) +
1
2A(1

4) + 1
2A(1

4) = 3A(1
2)

By property (3), C log(D) = H(p1, . . . , pd) + C
∑

i pi log di, i.e.,

H(p1, . . . , pd) = −C[
∑
i

pi log(di)− log(D)]

= −C[
∑
i

pi log(di)−
∑
i

pi log(D)]

= −C
∑
i

pi log(
di
D

)

= −C
∑
i

pi log(pi).

Finally use property 1 to extend by continuity to all probability distribu-
tions. �

Here are some further properties of entropy that are easily verified:

(1) 0 ≤ H(p) ≤ log(d) with H(p) = 0 if and only if the outcome is
certain, i.e., p = (0, . . . , 0, 1, 0, . . . , 0), and with H(p) = log(d) if
and only if p = (1

d , . . . ,
1
d).

(2) Say our space is X×Y, soH(pX×Y) = −
∑

i,j pX×Y(i, j) log pX×Y(i, j).

Then we can recover H(pX) as:

H(pX) = −
∑
i,j

pX×Y(i, j) log(
∑
k

pX×Y(i, k)).

In particular, H(pX×Y) ≤ H(pX) +H(pY), with equality if and
only if X ,Y are independent, i.e., pX×Y(i, j) = pX (i)pY(j). (The
uncertainty of pX×Y is at most the sum of the uncertainties of the
marginal distributions pX and pY .)

(3) A modification of the pi towards equalization increases H. More
precisely:

Exercise 4.2.3: Let A be a doubly stochastic matrix, i.e., the en-
tries of A are non-negative and the column and row sums of A

60 4. Classical information theory

are one. Show that H(Ap) ≥ H(p) and unless A is a permutation
matrix, that there exists p where the inequality is strict.

4.3. Shannon’s noiseless channel theorem

Theorem 4.3.1. [Sha48] Given ε > 0, δ > 0, there exists n0 such that for
all n ≥ n0, there is a decomposition X×n = X nε−typ t X nδ−small where

(1) Pr(X nδ−small) < δ, and

(2) ∀x ∈ X nε−typ,

| 1
n

log(Pr(x))−H(p)| < ε,

(3)

(1− δ)2n(H(p)−ε) ≤ |X nε−typ| ≤ 2n(H(p)−ε).

The set X nε−typ will play the role of Y(n) from §4.1. Informally, the
probability of not being ε-typical is small, if ε-typical, the probability is
close to the expectation, and if the entropy is large, most sequences are
ε-typical, and if it is small, there are few such.

Proof. The strong law of large numbers (1.3.3) means that given iid random
variables Xj , for all ε, δ > 0, there exists n0 such that for all n ≥ n0 such
that

P

(
| X1 + · · ·+Xn

n
− E[X] |> ε

)
< δ

Let X nδ−small be all events x = (x1, . . . , xn) where | 1n(x1 + · · ·+xn)−E[X]| ≥
ε, and X nε−typ the events x with | 1n(x1 + · · · + xn) − E[X]| < ε. In our case
X = − log(p(x)) and E[− log(p(x))] = H(p). Note that (3) is a quantitative
version of (4.1.1). To prove it, note that the second condition implies that
for all x ∈ X nε−typ, and n > 1

ε ,

(4.3.1) Pr(x) ≤ 2−n(H(p)−ε).

On the other hand

1− δ ≤ Pr(X nε−typ) ≤ 1

i.e.,

1− δ ≤
∑

x∈Xnε−typ

Pr(x) ≤ 1

so plugging in (4.3.1) we conclude.

�

It will be useful to give two variants of Theorem 4.3.1.

4.4. Transmission over noisy channels 61

Theorem 4.3.2. [Sha48] Fix q ∈ (0, 1). Let num(q) denote the minimum
cardinality of a subset S of X×n such that Pr(S) ≥ q. Then

lim
n→∞

log(num(q))

n
= H(p).

Note that the right hand side is independent of q, thus for large n, the
ratio is nearly independent of q and n. Theorem 4.3.2 will be a consequence
of:

Theorem 4.3.3. [Sha48] Let R < H(p) and let S(n) ⊂ X×n be a sequence
of subsets with |S(n)| ≤ 2nR, i.e., 1

n log |S(n)| ≤ R. Then for any η > 0,
there exists n0 such that for all n > n0, Pr(S(n)) < η.

In other words, any subset of size less than capacity can only accumulate
a small amount of the probability.

Proof of Theorem 4.3.3. Write S(n) = S(n)δ−small t S(n)ε−typ, where
S(n)δ−small = S(n)∩X nδ−small and S(n)ε−typ = S(n)∩X nε−typ. Then |S(n)ε−typ| <
|S(n)| < 2nR. By (4.3.1) each element of S(n)ε−typ has probability at most

2−n(H(p)−ε), so Pr(S(n)ε−typ) ≤ 2−n(H(p)−ε)2nR. So just take, ε < H(p)−R,

and n0, δ such that 2−n0(H(p)−R−ε) + δ < η. �

Theorem 4.3.4. [Sha48] Let a source X have entropy H(p) (bits per sym-
bol) and let a channel have capacity C (bits per second). Then for any
ε > 0, it is possible to encode the output of the source to transmit at the
rate C

H(p) − ε symbols/sec., and it is not possible to reliably transmit at an

average rate greater than C
H(p) .

The idea of the proof is clear: just transmit all the ε-typical sequences
and discard the others.

4.4. Transmission over noisy channels

Say we transmit symbols x and receive symbols y over a channel subject
to noise, so we may or may not have y = x. Intuitively, if the noise is
small, with some redundancy we should be able to communicate accurate
messages most of the time. Let Rate denote the maximal possible rate of
transmission. In a noiseless channel this is just H(pX), but now we must
subtract off something to account for the uncertainty that, upon receiving y,
that it was the signal sent. This something will be the conditional entropy,
H(pX |pY) defined below. The punch line will be:

Given a channel with noise and symbols sent according to pX , and noise
given by pY , the maximum rate of transmission is H(pX)−H(pX |pY).

Given a channel, with noise its maximal capacity for transmission is
maxqX (H(qX)−H(qX |pY)).

62 4. Classical information theory

Note that the second result is trivial in the noiseless case - one just
takes a uniform distribution for the symbols. What is going on here is that
if some symbols are more susceptible to corruption than others, the uniform
distribution will no longer be optimal.

4.4.1. Conditional entropy. Recall the conditional probability of i oc-
curring given knowledge that j occurs (assuming Pr(j) > 0): PrX|Y(i|j) =
PrX ,Y (i,j)

PrY (j) (also recall PrY(j) =
∑

i PrX ,Y(i, j)). Define the conditional en-
tropy

H(pY |pX) := −
∑
i,j

PrX ,Y(i, j) log PrY|X (j|i).

Note that

(4.4.1) H(pY |pX) = H(pX ,Y)−H(pX)

or equivalently H(pX ,Y) = H(pX) + H(pY |pX), the uncertainty of pX ,Y is
the uncertainty of pX plus the uncertainty of pY given pX .

In particular, we have H(pX)+H(pY) ≥ H(pX ,Y) = H(pX)+H(pY |pX),
i.e.,

H(pY) ≥ H(pY |pX),

i.e., with extra knowledge, our uncertainty about pY cannot increase, and
decreases unless pX and pY are independent).

4.4.2. Examples. We first give an example where pX is fixed. Say 0’s
and 1’s are transmitted with each having a probability of error .01, so
H(pX |pY) = −[.99 log(.99) + .01 log(.01)] ∼ .81 bits/symbol, and we can
transmit 1000 bits/second.

Exercise 4.4.1: Verify the above assertion about H(pX |pY).

The above discussion predicts a transmission rate of 1000 − 81 = 919
bits/second. If the probability of error goes up to 1

2 , then H(pX |pY) = 1
and our discussion predicts a rate of 1000 − 1000 = 0 bits/second, which
agrees with our intuition that what is received is just noise.

Here is an example where we choose pX to optimize capacity. Now say
X = {a, b, c} where the symbol a is never effected by noise, b has probability
p being transmitted correctly and 1 − p of being flipped to c, and c has
probability p being transmitted correctly and 1− p of being flipped to b.

Let pa be the probability that a is transmitted, let pb be the probability
that b is transmitted and pc the probability that c is transmitted: we get
to choose these. Given the symmetry of the situation, we should set pb =
pc =: pb,c.

4.4. Transmission over noisy channels 63

Thus

H(pX) = −pa log pa − 2pb,c log pb,c

H(pX |pY) = 2pb,cH(p, 1− p)

We want to maximize H(pX)−H(pX |pY) by a good choice of pa, pb,c, subject
to the constraint that pa + 2pb,c = 1. We have

H(pX)−H(pX |pY) = −pa log pa − 2pb,c log pb,c − 2pb,cH(p, 1− p).

Viewed as a function of pa, pb,c, we have a standard maximization problem
from calculus.

Exercise 4.4.2: Differentiating and imposing the constraint, show that it
is optimal to take

(4.4.2) pa =
eH(p,1−p)

eH(p,1−p) + 2
, pb,c =

1

eH(p,1−p) + 2
.

Using (4.4.2), we obtain

H(pX)−H(pX |pY) = log
eH(p,1−p) + 2

eH(p,1−p) .

For example, when p = 1, i.e., no errors, we obtain log(3), as we have
a noiseless channel. When p = 1

2 , we obtain log(2), as the second and
third symbols are indistinguishable, so we essentially have two channels.
In general, the capacity is between these two, and the first channel used
somewhere between the same amount and twice as often as the other two
channels.

4.4.3. Warm up: Communication with the help of a correction
channel. Before giving the proof of Shannon’s theorem, here is a warm-
up problem giving intuition into the conditional entropy H(pX |pY), which
Shannon calls the “equivocation”, as the amount of extra information that
must be supplied to correct errors on a noisy channel.

Consider the following picture ***

In the transmission from the source to the receiver, an observer is allowed
to see what is transmitted and what the receiver gets. The observer is
then allowed to send correction data to allow the receiver to correct the
message. The question is how much information must the observer send to
the receiver to enable correction, i.e., how much capacity does the correction
channel need to correct errors (assume the correction channel is not subject
to noise).

Theorem 4.4.3. [Sha48] If Cap(correction channel) ≥ H(pX |pY), then in
the scheme above, all but an arbitrarily small fraction of the errors can be
corrected.

64 4. Classical information theory

If Cap(correction channel) < H(pX |pY), then in the scheme above,
reliable error correction is not possible.

Proof. Assume we are in the first case, say yn is received when xn is sent
over t seconds. By the same argument as in Theorem 4.3.1(3) applied to

#{xn | PrX|Y(xn, yn) ≥ 1 − δ}, there exist on the order of 2tH(pX |pY) pos-
sible xn’s that could have reasonably produced yn. Thus we need to send
tH(pX |pY) bits each t seconds, which is possible with an ε-tolerance of error
on a channel of capacity H(pX |pY).

To prepare for the second case:

Exercise 4.4.4: For any random variables x, y, z, determining probability
distributions pX , pY , pZ , show that

H(pX |pY , pZ) ≥ H(pX |pY)−H(pZ |pY) ≥ H(pX |pY)−H(pZ).

Now let x be the output of the source, y the received signal, and z the
signal sent over the correction channel. We see H(pX |pY , pZ) > 0 so we
cannot recover x reliably by the noiseless theorem. �

Note that we have three interpretations of the rate:

Rate = H(pX)−H(pX |pY) the information sent minus the uncertainty of what sent

= H(pY)−H(pY |pX) the information received minus the noise

= H(pX) +H(pY)−H(pX×Y)
the sum of the information sent and received minus the
joint entropy, essentially the bits/sec. common to x, y

The Rate is also called the mutual information.

4.4.4. Capacity of a noisy channel. Define the capacity of a noisy chan-
nel to be the maximum rate over all possible probability distributions on the
source:

Cap := maxqX (H(qX)−H(qX |pY)) .

Theorem 4.4.5. [Sha48] Let a discrete channel have capacity Cap and
entropy per second H. If H < Cap, then there exists an encoding p of the
source such that information can be transmitted over the channel with an
arbitrarily small frequency of errors H(pX |pY) **check**. If H > Cap, then
there exists an encoding p such that the equivocation is less than H−Cap +ε
for any ε > 0, and there does not exist any p with equivocation less than
H − Cap.

The basic idea is the same as the noiseless case, however there is a novel
feature that now occurs frequently in complexity theory arguments - that
instead of producing an algorithm to find the efficient encoding, Shannon

4.4. Transmission over noisy channels 65

showed that a random choice of encoding will work. More on this after the
proof.

Proof. Split the transmitter and receiver X×n and Y×n into the union of
ε-typical δ-small subsets. For a high probability message yn in Ynε−typ, there

are roughly 2H(pX |pY)t “reasonable”xn’s, i.e., elements of X nε−typ, that could

have been sent for yn to be received, i.e., roughly 2H(pX |pY)t elements of
X nε−typ. On the other hand, if some xn ∈ X nε−typ is sent, there are about

2H(pY |pX)t elements of Ynε−typ that could be received.

pic*

Every t seconds we have 2tR high probability messages. Say yn is ob-
served, we want to know the probability that more than one message in
X nε−typ could arrive as yn, based on our choice of distribution.

Take a random encoding of X nε−typ, so we have 2tR messages distributed

at random among 2tH(pX) points. The probability of a particular message

being received as yn is 2tR

2tH(pX) = 2t(R−H(pX))). The probability that no

xn ∈ X nε−typ (other than yn) is sent to yn is

(4.4.3) [1− 2t(R−H(pX))]2
tH(pX |pY)

.

Now say R < Cap, and write R − H(pX) = −H(pX |pY) − η for some
η > 0, so (4.4.3) becomes

[1− 2−tH(pX |pY)−tη]2
tH(pX |pY)

.

This limits to 1 as t→∞.

To prove the second assertion, just send Cap bits/sec. of x’s generated
and throw away the rest. This gives H(pX |pY) equal to H(pX) − Cap plus
the ε from the first case.

�

Exercise 4.4.6: Verify that, for H ≥ 0, η > 0, limt→∞[1−2−tH−tη]2
tH

= 1.
}

Note that the phrase “Take a random encoding” is not constructive, as
it gives no recipe how to do so.

After presenting the proof, Shannon remarks: “An attempt to obtain a
good approximation to ideal coding by following the method of the proof
is generally impractical. ... Probably this is no accident but is related to
the difficulty of giving an explicit construction for a good approximation
to a random sequence”. To our knowledge, this is the first time that the
difficulty of “finding hay in a haystack” (phrase due to Howard Karloff) is
mentioned in print. This problem is central to complexity: for example,

66 4. Classical information theory

Valiant’s algebraic version of P 6= NP can be phrased as the problem of
finding a sequence of explicit polynomials that are difficult to compute,
while it is known that a random sequence is indeed difficult to compute.
(According to A. Wigderson, the difficulty of writing down random objects
was explicitly discussed by Erdös, in the context of random graphs, at least
as early as 1947, in relation to his seminar paper [Erd47]. This paper,
along with [Sha48] gave rise to the now ubiquitous probabilistic method in
complexity theory.

Chapter 5

Quantum information

In this chapter we give the rudiments of quantum information theory. We
first, in §5.1, give a convenient reformulation of the postulates of quantum
mechanics in terms of density operators. In order to discuss when one density
operator is “close” to another, we need to discuss distance functions on the
space of density operators, which is done in §5.2. We present a quantum
version of Shannon’s noiseless channel theorem in §5.3. This requires the
introduction of von Neumann entropy. Properties of von Neumann entropy
are discussed in §5.4. We conclude in §5.5, with a discussion of measures of
entanglement.

5.1. Reformulation of quantum mechanics

We discuss two inconveniences about our formulation of the postulates of
quantum mechanics, leading to a formulation of the postulates in terms of
density operators.

5.1.1. Partial measurements. Before, we defined a measurement of a
state |ψ〉 =

∑
zI |I〉 as a procedure that gives us I = (i1, . . . , in) ∈ {0, 1}n

with probability |zI |2. But in our algorithms, this is not what we did: we
were working not in (C2)⊗n, but (C2)⊗n+m where there were m “workspace”
qubits we were not interested in measuring. So our measurements were the
projections onto the spaces |I〉⊗(C2)⊗m. We define a generalized notion of
measurement that allows for projection onto spaces.

67

68 5. Quantum information

To make the transition, first rewrite

|zI |2 = |〈ψ|I〉|2

= 〈ψ|I〉〈I|ψ〉
= 〈ψ|ProjI |ψ〉,

where ProjI : (C2)⊗n → C|I〉 is the orthogonal projection onto the line
spanned by |I〉.

Now say we are only interested in the first n qubits of a system of n+m
qubits, and we want to know the probability a measurement gives rise to
some I represented by a vector |I〉 ∈ (C2)⊗n, but we have |ψ〉 ∈ (C2)⊗n+m.
Then the probability of obtaining |I〉 given |ψ〉 is

Pr(|I〉 | |ψ〉) =
∑

J∈{0,1}m
Pr(|ψ〉, |IJ〉)

=
∑
J

〈ψ|IJ〉〈IJ |ψ〉

= 〈ψ|(|I〉〈I|⊗ Id(C2)⊗m)|ψ〉
= 〈ψ|ProjM |ψ〉

where ProjM : (C2)⊗n+m → |I〉⊗(C2)⊗m =: M is the orthogonal projec-
tion operator. Then Pr(|I〉 | |ψ〉) = 〈ψ|ProjM |ψ〉. With this definition, we
can allow M ⊂ H to be any linear subspace, which will simplify our mea-
surements. (Earlier, if we wanted to measure the probability of a non-basis
state, we had to change bases before measuring.)

One may think of projection operators as representing outside interfer-
ence of a quantum system, like adding a filter to beams being sent that
destroy states not in M.

The following chart from [KSV02] illustrates the comparison between
the classical (`1) and quantum (`2) situations so far:

Classical (`1) probability Quantum (`2) probability

Event subset M ⊂ X subspace M⊂ H

Probability distribution p : X → R≥0 |ψ〉 ∈ H with |ψ|2 = 1
with |p|1 = 1

Probability Pr(M) =
∑

j∈M pj Pr(M) = 〈ψ|ProjM|ψ〉

Recall that in classical probability, one has the identity:

(5.1.1) Pr(M1 ∪M2) = Pr(M1) + Pr(M2)− Pr(M1 ∩M2).

5.1. Reformulation of quantum mechanics 69

The quantum analog is false in general: Let H = C2, M1 = C|0〉 and
M2 = C(|0〉+ |1〉) Let |ψ〉 = α|0〉+ β|1〉 with |α|2 + |β|2 = 1.

Exercise 5.1.1: Show that Pr(span{M1,M2}) 6= Pr(M1) + Pr(M2) −
Pr(M1 ∩M2). }

However, we can recover (5.1.1) if the projection operators commute:

Proposition 5.1.2. If ProjM1
ProjM2

= ProjM2
ProjM1

then Pr(span{M1,M2}) =
Pr(M1) + Pr(M2)− Pr(M1 ∩M2).

In particular, if M1 ⊥ M2, so ProjM1
ProjM2

= ProjM2
ProjM1

= 0,
then Pr(span{M1,M2}) = Pr(M1) + Pr(M2).

Exercise 5.1.3: Prove Proposition 5.1.2.

5.1.2. Mixing classical and quantum probability. A typical situation
in probability is as follows: you want a cookie, but can’t make up your mind
which kind, so you decide to take one at random from the cookie jar to
eat. However when you open the cupboard, you find there are two different
cookie jars H and T , each with a different distribution of cookies, say PH
and PT . You decide to flip a coin to decide which jar and say your coin is
biased with probability p for heads (choice H). The resulting probability
distribution is

pPH + (1− p)PT .
Let’s encode this scenario with vectors. Classically, if vectors corresponding
to PH , PT are respectively vH , vT , the new vector is pvH + (1 − p)vT . The
probability of drawing a chocolate chip (CC) cookie is pPH(CC) + (1 −
p)PT (CC) = pvH,CC + (1− p)vT,CC .

But what should we take in quantum probability, where we use the `2
norm instead of the `1 norm? Given |ψA〉 =

∑
zI |I〉, |ψB〉 =

∑
wJ |J〉,

we want to make a measurement that gives us p|zCC |2 + (1 − p)|wCC |2.
Unfortunately |pzCC + (1 − p)wCC |2 6= p|zCC |2 + (1 − p)|wCC |2 in general.
To fix this problem we will enlarge the notion of state and further modify
our notion of measurement.

Our problem comes from having a mixture of `1 and `2 norms. Our
fix will be to rewrite |ψ〉 in a way that the `2 norm becomes an `1 norm.
That is, we construct an object that naturally contains the squares of the
norms of the coefficients of |ψA〉. Consider the endomorphism |ψA〉〈ψA| =∑

I,J zIzJ |I〉〈J |. It is rank one, and its diagonal entries are the quantities
we want.

To measure them, let ProjJ denote the projection onto the J-th coordi-
nate. Then

trace(ProjJ |ψA〉〈ψA|) = |zA,J |2

is the desired quantity.

70 5. Quantum information

Now back to our cookie jars, set

ρ = p|ψA〉〈ψA|+ (1− p)|ψB〉〈ψB|
and observe that

trace(ProjJ ρ) = p|zA,J |2 + (1− p)|zB,J |2

as desired.

Given a finite set of states {|ψ1〉, . . . , |ψs〉}, with Pr(|ψi〉) = pi, and∑
i pi = 1, set ρ =

∑
k pk|ψk〉〈ψk| ∈ End(H). Then our probability of

measuring our state inM is trace(ProjM ρ). Note that ρ has the properties

(1) ρ = ρ†, i.e., ρ is Hermitian,

(2) ∀|η〉, 〈η|ρ|η〉 ≥ 0, i.e., ρ is positive,

(3) trace(ρ) = 1.

This motivates the following definition:

Definition 5.1.4. An operator ρ ∈ End(H) satisfying 1,2,3 above is called
a density operator.

Exercise 5.1.5: Show that property (2) implies property (1). }

Density operators will replace states in our quantum notion of probabil-
ity. Note that a density operator that is diagonal in the standard basis of
Cd corresponds to a probability distribution on {1, . . . , d}, so the definition
includes classical probability as well as our old notion of state (which are
the rank one density operators).

Exercise 5.1.6: Show that the set of density operators is invariant under
the induced action of U(H) on End(H).

Different scenarios can lead to the same density operator. However, two
states with the same density operator are physically indistinguishable.

5.1.3. Reformulation of the postulates of quantum mechanics.

Postulate 1. Associated to any isolated physical system is a Hilbert
space H, called the state space. The system is described by a density oper-
ator ρ ∈ End(H).

Remark 5.1.7. This postulate explains the d = n2 in the Hardy description
from §2.1.2, as the (real) dimension of the space of Hermitian operators is
n2.

Postulate 2. The evolution of an isolated system is described by the
action of unitary operators on ρ.

It will be convenient to have two formulations of the third postulate
(even more appear in the literature).

5.1. Reformulation of quantum mechanics 71

Postulate 3. (Projective) Measurements correspond to postive trace
one operators X ∈ EndH. Let X =

∑
j λj ProjMj

be its eigenspace decom-

position. The probability that ρ is in measured in stateMj is λj trace(ProjMj
ρ).

Note that X is the same mathematical object as a density operator, but
its role here is completely different. **Above is different from NC, because
what they have does not make sense mathematically, at least to me – need
to check** Such X are called observables.

Other than for the uncertainty principle, we will generally only need the
following types of measurements:

Postulate 3’. (POVM) Measurements correspond to a collection of
projection operators ProjMj

such that
∑

k ProjMk
= IdH. The probability

that ρ is in measured in state Mj is trace(ProjMj
ρ).

(Some texts use even more general measurement operators, but they
again give rise to an equivalent theory.) POVM stands for positive operator
valued measure, but since it is the primary measurement we will deal with,
we generally omit the POVM.

Postulate 4 is unchanged:

Postulate 4. The state of a composite physical system, that is a physi-
cal system arising from physical systems, is the tensor product of the Hilbert
spaces: HAB = HA⊗HB.

Exercise 5.1.8: **Add exercises on teleportation and super-dense coding
from this perspective following Christandl

5.1.4. Remarks on composite systems. Just as in classical probabil-
ity one is interested in marginal distributions, in the quantum setting we
have already seen several instances where one takes “marginals”. We now
formalize this.

We first give an interpretation of the map trace : End(H) → C. Since
End(H) = H⊗H∗, we may view trace as an element of (H⊗H∗)∗ = H∗⊗H =
End(H∗) ' End(H). It is some map H → H that is invariant under
the action of GL(H). There is a unique such up to scale, namely the
identity map, and checking the trace of any nonzero linear map, we see
as an endomorphism trace = IdH. To give yet another perspective, for
X ∈ EndH = H∗⊗H, trace(X) is the image of X under the contraction
map H∗⊗H → C, 〈v|⊗|w〉 7→ 〈v|w〉.

For Y ∈ End(H1⊗H2) = (H∗1⊗H∗2)⊗(H1⊗H2), define the partial trace
traceH1(Y) to be the image of Y under the contraction H∗1⊗H∗2⊗H1⊗H2 →
H∗2⊗H2 given by 〈φ|⊗〈ψ|⊗|v〉⊗|w〉 7→ 〈φ|v〉〈ψ|⊗|w〉 = 〈φ|v〉|w〉〈ψ|.

Compare the classical and quantum situations:

72 5. Quantum information

Classical probability Quantum probability

for
p = p1 × p2 on X1 ×X2, and Mj ⊂ Xj

Pr(M1 ×M2) = Pr(M1) Pr(M2)

for ρ = ρ1⊗ρ2 on H1⊗H2, and Mj ⊂ Hj
trace(ρ1⊗ρ2 ProjM1⊗M2

)
= trace(ρ1 ProjM1

) trace(ρ2 ProjM2
)

for p on X1 ×X2 general and M = M1 ×X2

Pr(M) =
∑

j∈X2
Pr(M1, j)

M =M1⊗H2

traceH1⊗H2(ρProjM)
= traceH1(traceH2(ρ) ProjM1

)

Exercise 5.1.9: Verify the above properties of quantum probability.

5.1.5. Expectation and the uncertainty principle. Allowing for non-
commuting measurements has dramatic consequences.

Let A ∈ End(H) be a Hermitian operator with eigenvalues λ1, . . . , λk
and eigenspaces Mj . If our system is in state ρ, we can consider A as a
random variable that takes the value λj with probability trace(ProjMj

ρ).

Recall the expectation of a random variable X : X → R is E[X] :=∑
j∈X X(j) Pr(j).

Proposition 5.1.10. If a system is in state ρ, the expectation of a Hermit-
ian operator A ∈ End(H) is trace(Aρ).

Proof.

E[A] =
∑
j

λj trace(ProjMj
ρ)

= trace((
∑
j

λj ProjMj
)ρ)

= trace(Aρ).

�

One way mathematicians describe the famous Heisenberg uncertainty
principle is that it is impossible to localize both a function and its Fourier
transform. Another interpretation comes from probability:

First note that given a random variable, or Hermitian operator X (and

a system in state ρ), we can replace it with an operator of mean zero X̂ :=
X −E[X] Id. For notational convenience, we state the uncertainty principle
for such shifted operators.

Recall from (1.3.4) that the standard deviation σ(X) =
√
var(X) of a

random variable X is a measure of the failure of the corresponding proba-
bility distribution to be concentrated at a point, i.e., failure of the induced
probability distribution to have a certain outcome.

5.1. Reformulation of quantum mechanics 73

Proposition 5.1.11. [Heisenberg Uncertainty Principle] Let X,Y be Her-
mitian operators of mean zero, corresponding to observables on a system in
state ρ. Then

σ(X)σ(Y) ≥ | trace([X,Y]ρ)|
2

.

The uncertainty principle says that the failure of two Hermitian opera-
tors to commute lower bounds the product of their uncertainties. In partic-
ular, if they do not commute, neither can give rise to a classical (certain)
measurement.

For X,Y ∈ End(H), introduce the notation {X,Y } := XY + Y X.

Exercise 5.1.12: For any Hermitian operators A,B ∈ EndH, and a density
operator ρ, show that

| trace([A,B]ρ)|2 + | trace({A,B}ρ)|2 = 4| trace(ABρ)|2.

Exercise 5.1.13: Prove Proposition 5.1.11. }

5.1.6. Pure and mixed states.

Definition 5.1.14. Let ρ ∈ End(H) be a density operator. If rank(ρ) = 1,
i.e. ρ = |ξ〉⊗〈ξ| =: |ξ〉〈ξ|, ρ is called a pure state, and otherwise it is called
a mixed state.

Exercise 5.1.15: Show that indeed, a rank one density operator is of the
form |ξ〉〈ξ| (as opposed to just |ξ〉〈ψ|).

Exercise 5.1.16: Show that ρ is pure if and only if ρ ◦ ρ = ρ.

The partial trace of a pure state can be a mixed state. For example, if
ρ = |ψ〉〈ψ| with ψ = 1√

2
(|00〉+ |11〉) ∈ H1⊗H2, then traceH2(ρ) = 1

2(|0〉〈0|+
|1〉〈1|).

The following proposition shows that we could avoid density operators
altogether by working on a larger space:

Proposition 5.1.17. An arbitrary mixed state ρ ∈ End(H) may be repre-
sented as the partial trace traceH′ |ψ〉〈ψ| of a pure state in End(H⊗H′) for
some Hilbert space H′. In fact, one can always take H′ = H∗.
Exercise 5.1.18: Show that given a density operator ρ ∈ End(H), there is
a well defined operator

√
ρ ∈ End(H) whose eigenspaces are the same as for

ρ, and whose eigenvalues are the positive square roots of the eigenvalues of
ρ.

Proof. We are given ρ ∈ H⊗H∗. Consider |√ρ〉〈√ρ| ∈ End(H⊗H∗). Then
ρ = traceH∗(|

√
ρ〉〈√ρ|). �

Exercise 5.1.19: Verify ρ = traceH∗(|
√
ρ〉〈√ρ|).

74 5. Quantum information

A pure state whose partial trace is ρ is called a purification of ρ. The
purification |√ρ〉〈√ρ| is called the standard purification.

Exercise 5.1.20: Show that if |ψ〉〈ψ|, |ξ〉〈ξ| ∈ End(H⊗H′) are purifications
of ρ, then |ψ〉 = U |ξ〉 for some U ∈ U(H′).

Exercise 5.1.21: Show that in a purification, one may take dimH′ =
rank ρ.

Now that we have our generalizations of probability distributions, we are
nearly ready for quantum information theory. It remains to discuss when a
sequence of density operators converges to a given density operator. For this
we need a measure of distance. We will give two after a detour on distances
between classical probabilities.

5.2. Distances between classical and quantum probability
distributions

We first consider when two classical probability distributions are close. It
is convenient to define two notions of closeness because the quantum analog
of the first does not behave well under purification **check**.

5.2.1. Classical distances. Say we have a source X = {1, . . . , d} generat-
ing elements according to a probability distribution p, and then we send the
symbol generated through a channel where some corruption occurs, altering
the symbol with probability at most ε. Let the resulting distribution of p
followed by corruption be q. We would like a measure of how much p has
been corrupted by noise. We have already seen the `1-norm:

||p− q||1 :=
1

2

∑
j

|pj − qj |.

We included the 1
2 because another natural definition of the `1-norm is

then given by the following exercise:

Exercise 5.2.1: Show that ||p− q||1 = maxM⊂[d] |p(M)− q(M)|.

We will also use a second measure of how distributions p, q are close.
Given p, q define corresponding vectors p, q ∈ Rd, where p = (p1, . . . , pd).
Consider the vectors

√
p := (

√
p1, . . . ,

√
pd),
√
q ∈ Sd−1 ⊂ Rd, where Sd−1

denotes the unit sphere.

Define the fidelity of p and q to be

F (p, q) := 〈
√
p|
√
q〉 =

∑
j

√
pjqj .

5.2. Distances between classical and quantum probability distributions 75

Note that F (p, p) = 1. If one prefers a measure that is zero when p = q, one
can define the fidelity distance

dF (p, q) :=
√

2(1− F (p, q)).

Given this language, we may rephrase Shannon’s noiseless theorem as
saying that if one transmits below capacity, i.e., |Y(n)| > 2nH(p), there exist
En,Dn such that the encoding and decoding

X×n En−→ Y(n)
Dn−−→ X×n

satisfies F (Dn ◦En(p), p)→ 1 as n→∞ or ||Dn ◦En(p)−p||1 → 0 as n→∞.

5.2.2. Distances between density operators. Recall that if ρ ∈ End(Cd)
is diagonal, it corresponds to a classical probability distribution, so whatever
distances we define on density operators, we could ask them it to specialize
to the `1 distance and fidelity distance when the density operators measured
are classical. The quantum cousin of the `1 norm is the trace norm: The

trace norm of A ∈ End(H) is ||A||tr := trace(
√
A†A). Recall that A†A is

Hermitian and non-negative so the square root makes sense.

Note that if A is Hermitian, ||A||tr is the sum of the absolute values
of the eigenvalues and thus for density operators ρ, ||ρ||tr is the sum of
the eigenvalues. In particular, if ρ, σ are diagonal with diagonals p, q, then
||ρ− σ||tr = ||p− q||1.

Exercise 5.2.2: Show that ||A||tr is indeed a norm and that

||A||tr = maxU∈U(H) | traceAU |.

}

Exercise 5.2.3: Show that for A ∈ End(H1) and B ∈ End(H2), for A⊗B ∈
End(H1⊗H2), one has ||A⊗B||tr = ||A||tr||B||tr.

Now for the quantum version of fidelity and fidelity distance: For density
operators ρ, σ the fidelity is

F (ρ, σ) : = max

{
|〈ξ|η〉| | ξ, η ∈ H⊗H′ and

ρ = traceH′ |ξ〉〈ξ|, σ = traceH′ |η〉〈η|

}
= trace(

√
ρ
√
σ)

= trace
√√

ρσ
√
ρ

where the maximum is over all possible purifications.

The first description illustrates a convenience of fidelity.

Exercise 5.2.4: Verify the three quantities are equal.

76 5. Quantum information

Note that if ρ, σ are classical (i.e., diagonal in the standard basis), this
fidelity agrees with the classical fidelity.

As before, the fidelity distance is dF (ρ, σ) =
√

2(1−
√
F (ρ, σ)).

Exercise 5.2.5: Show that

dF (ρ, σ) = min{|||ξ〉 − |η〉|| | ρ = traceH′(|ξ〉〈ξ|), σ = traceH′ |σ〉〈σ|}.

Here again we see a utility of fidelity when taking purifications.

5.3. The quantum noiseless channel theorem

5.3.1. What is a quantum channel? A quantum channel should be a
linear map sending ρ ∈ End(HA) to some Φ(ρ) ∈ End(HB).

First consider the special case HA = HB. We should allow coupling with
an auxiliary system, i.e.,

(5.3.1) ρ 7→ ρ⊗σ ∈ End(HA⊗HC).

We should allow the state ρ⊗σ to evolve in End(HA⊗HC), i.e., be acted
upon by an arbitrary U ∈ U(HA⊗HC).

Finally we should allow measurements, i.e., tracing out the HC part.

In summary, ρ 7→ traceHC (U(ρ⊗σ)U−1). More generally to go from HA
to HB, one needs to allow isometries as well. That is, we should allow maps
of the form:

(5.3.2) ρ 7→ ΦA,B traceHC (U(ρ⊗σ)U−1),

where ΦA,B : HA → HB is an isometry.

Exercise 5.3.1: Show that any isometry Cn → Cm may be viewed as the
restriction of an element of U(n+m) to Cn.

Maps of the form (5.3.2) are completely positive trace preserving maps
(CPTP), where a map Λ is completely positive if Λ⊗ IdHE is positive for
all HE . These maps should be viewed as the discrete time evolution of a
quantum system.

Exercise 5.3.2: Show that the transpose map X 7→ XT is positive, but not
completely positive. }

Moreover, all CPTP maps HA → HA are of the form (5.3.2):

Theorem 5.3.3 (Stinespring dilation [Sti55]). Let Λ : End(HA)→ End(HB)
be CPTP. Then there exists an isometric embedding Z : HA → HB⊗HE
for some space HE , inducing Z̃ : End(HA) → End(HB⊗HE) (i.e., Z̃(X) =

ZXZ†), such that Λ = traceHE ◦Z̃, i.e., Λ(X) = traceHE (ZXZ†).

5.3. The quantum noiseless channel theorem 77

Proof. First note that we have a canonical isomorphism:

Hom(End(HA),End(HB)) = (H∗A⊗HA)∗⊗(H∗B⊗HB)

= (H∗A⊗HB)∗⊗(H∗A⊗HB)

= End(H∗A⊗HB).

Given Λ ∈ Hom(End(HA),End(HB)), write ρΛ ∈ End(H∗A⊗HB) for the
induced operator.

Exercise 5.3.4: Show that if Λ is CPTP, then ρΛ is a density operator.

Exercise 5.3.5: Show that if Λ is CPTP, then traceHB (ρλ) = 1
dimH∗A

IdH∗A .

Exercise 5.3.6: Show that the canonical isomorphism restricted to CPTP
operators surjects onto the set of density operators whose partial trace on
HB is the rescaled identity map, and thus identifies the two sets.

add hints

The above isomorphism is called the Choi-Jamilkowski isomorphism, and
we will denote it CJ .

To prove the theorem, given a CPTP Λ, apply CJ to get a density
operator, then take a purification, to get some |ΨΛ〉 ∈ H∗A⊗HB⊗HC , where
HC ' (H∗A⊗HB)∗ is the purifying space. Then apply CP−1. The upshot is
we have realized Λ as stated in the theorem starting with ρΛ. �

The map Z is called the Stinespring dilation of Λ.

Call a CPTP map an instrument if Λ =
∑

i |i〉〈i|⊗Λi where each Λi is
completely positive. From this perspective, we could view a measurement
say which kind as the application of an instrument to a state.

5.3.2. Set up. Now instead of having a source X×n our “source” is H⊗n,
where we think of H⊗n = H⊗nA , and Alice will transmit a state to Bob via
a CPTP map, and instead of a probability distribution p we have a density
operator ρ.

We seek an encoder E and decoder D and a compression space H0n:

H⊗nA
E−→ H0n = (C2)⊗nR

D−→ H⊗nB
with R as small as possible such that F (ρ⊗n, E ◦ D(ρ⊗n)) → 1 as n → ∞.
To determine R, we need a quantum version of entropy.

5.3.3. von Neumann entropy.

Definition 5.3.7. The von Neumann entropy of a density operator ρ is
H(ρ) = − trace(ρ log(ρ)).

78 5. Quantum information

Here log(ρ) is defined as follows: write ρ in terms of its eigenvectors and
eigenvalues, ρ =

∑
j λj |ψj〉〈ψj |, then log(ρ) =

∑
j log(λj)|ψj〉〈ψj |.

Note that if ρ =
∑

j λj |ψj〉〈ψj |, then H(ρ) = −
∑

j λj log(λj) so if ρ is

classical (i.e., diagonal), one obtains the Shannon entropy.

Proposition 5.3.8. The von Neumann entropy has the following properties:

(1) H(ρ) ≥ 0 with equality if and only if ρ is pure.

(2) Let dimH = d. Then H(ρ) ≤ log(d) with equality if and only if
ρ = 1

d IdH.

(3) If ρ = |ψ〉〈ψ| ∈ End(HA⊗HB), then H(ρA) = H(ρB), where ρA =
traceHB (ρ) ∈ End(HA).

Exercise 5.3.9: Prove the first two assertions.

Proof of (3). Write |ψ〉 =
∑

j zj |φj〉⊗|ηj〉 where the |φj〉 ∈ HA are a basis

as are the |ηj〉 ∈ HB and
∑
|zj |2 = 1. Then |ψ〉〈ψ| =

∑
i,j zizj |φi〉〈φj |⊗|ηi〉〈ηj |,

so traceHB (|ψ〉〈ψ|) =
∑

j |zj |2|φj〉〈φj | and traceHB (|ψ〉〈ψ|) =
∑

j |zj |2|ηj〉〈ηj |.
�

5.3.4. Quantum typical subspace theorem. Recall that in the classical
case, given a probability distribution on X we had a splitting X×n = X nε−typt
X nδ−small. Here is a quantum analog:

Theorem 5.3.10. Given (H, ρ) and ε, δ > 0, there exists n0 such that for
all n ≥ n0, there exists an orthogonal direct sum decomposition H⊗n =
Hnε−typ ⊕Hnδ−small satisfying:

(1) trace(ProjHnδ−small
ρ⊗n) ≤ δ, i.e., events inHnδ−small are improbable,

(2) Hnε−typ is spanned by eigenvectors with eigenvalues close to the
expected value. More precisely, it is spanned by vectors of the
form |x〉 = |x1〉⊗ · · · ⊗|xn〉 where |xj〉 is an eigenvector for ρ with
eigenvalue λ(xj), so |x〉 is an eigenvector for ρ⊗n with eigenvalue
λ(x) := λ(x1) · · ·λ(xn). The for all |x〉 ∈ Hnε−typ,

| 1
n

log(
1

λ(x)
)−H(ρ)| < ε,

(3) (1− δ)2nH(ρ)−ε ≤ dimHnε−typ ≤ 2nH(ρ)+ε.

The proof is identical to the classical case Theorem 4.3.1. Here is a
quantum analog of Theorem 4.3.3.

Theorem 5.3.11. Given (H, ρ), let R < H(ρ) and η > 0. Then there exists
ñ such that for all n ≥ ñ, and all sequencesMn ⊂ H⊗n with dimMn ≤ 2nR,
trace(ProjMn

ρ⊗n) ≤ η.

5.3. The quantum noiseless channel theorem 79

Proof. The proof is the same as the classical case except for one step. Write

trace(ProjM ρ⊗n) = trace(ProjM ρ⊗n ProjHnε−typ)+trace(ProjM ρ⊗n ProjHnδ−small
).

Since the decompositionH⊗n = Hnε−typ⊕Hnδ−small is orthogonal and the first

space is spanned by eigenvectors of ρ⊗n, whose eigenvectors are orthogonal,
the second is as well, so it commutes with ρ⊗n. Moreover, Proj(Hnδ−small)2

=

ProjHnδ−small
, so we may rewrite the second term as

trace(ProjM ProjHnδ−small
ρ⊗n ProjHnδ−small

).

Thus even without the projection to M, by choosing n sufficiently large,
the second term is at most some δ of our choosing. The operators ρ⊗n

and ProjHnε−typ also commute, and since Proj2Hnε−typ = ProjHnε−typ , we have

ρ⊗n ProjHnε−typ = ProjHnε−typ ρ
⊗n ProjHnε−typ , the projection of ρ⊗n ontoHnε−typ.

Thus

trace(ProjM ρ⊗n ProjHnε−typ) ≤ 2nR2−n(H(ρ)−ε),

the first factor because we are projecting to a space of dimension at most 2nR

and the second because the eigenvalues in the typical subspace are all at most
2−n(H(ρ)−ε). Now simply choose ε, δ and ñ such that 2ñε2−n(H(ρ)−R) + δ <
η. �

5.3.5. The quantum noiseless channel theorem.

Theorem 5.3.12. [Sch95] Let (H, ρ) be an i.i.d. quantum source. If R >
H(ρ), then there exists a reliable compression scheme of rate R. That is,
there exists a compression space H0n, of dimension 2nR, and encoder E :
H⊗n → H0n and a decoder D : H0n → H⊗n such that limn→∞ F (ρ⊗n,D ◦
E(ρ⊗n)) = 1. If R < H(ρ), then any compression scheme is unreliable.

The idea of the proof is the same as the classical case. Here are details.

Proof. Say R > H(ρ), write R = H(ρ) + ε. The quantum typical subspace
theorem implies that for all δ > 0 and n sufficiently large, trace(ρ⊗n ProjHnε−typ) ≥
1− δ and dim(Hnε−typ) ≤ 2nR. Fix Hn0 = C2nR ⊇ Hnε−typ. Let P0,n : H⊗n →
C|ψn〉 be an operator sending Hnε−typ to zero and Hnδ−small to C|ψn〉. Define

the encoder E : H⊗n → Hn0 to be E(ρ⊗n) = ProjHnε−typ ρ
⊗n ProjHnε−typ +P0,nρ

⊗nP †0,n,

and the decoder D : Hn0 → H⊗n to simply be the inclusion. We estimate

80 5. Quantum information

the fidelity:

F (ρ⊗n,D ◦ E(ρ⊗n)) = [trace
(√

ρ⊗nD ◦ Eρ⊗n
√
ρ⊗n

) 1
2
]2

= [trace
(√

ρ⊗n ProjHnε−typ ρ
⊗n ProjHnε−typ

√
ρ⊗n) +

√
ρ⊗nP0,nρ

⊗nP †0,n
√
ρ⊗n

) 1
2
]2

≥ [trace
(√

ρ⊗n ProjHnε−typ ρ
⊗n ProjHnε−typ

√
ρ⊗n

) 1
2
]2

= [trace(ρ⊗n ProjHnε−typ)]
2 because ProjHnε−typ ,

√
ρ⊗n commute

≥ (1− δ)2

Now just let δ → 0.

The proof of the other direction is similar to the classical case, see Ex-
ercise 5.3.13 below. �

Exercise 5.3.13: Prove that for any D, E used when dimH0n < 2nH(ρ),
that F (ρ⊗n,D ◦ E(ρ⊗n)) becomes arbitrily small as n→∞. }

5.4. Properties of von Neumann entropy

5.4.1. Von Neumann entropy of classical/quantum systems. We
introduced density matrices to facilitate the mixing of classical and quantum
probability. Here is another example:

Proposition 5.4.1. If ρ =
⊕

i piρi where ρi ∈ End(Hi), H =
⊕

iHi is an
orthogonal decomposition, and p is a probability distribution, then H(ρ) =
H(p) +

∑
i piH(ρi).

Proof. Let λji be the eigenvalues of ρi.

H(
∑
i

piρi) = −
∑
i,j

(piλ
j
i) log(piλ

j
i)

= −
∑
i,j

piλ
j
i log(pi)−

∑
i,j

piλ
j
i log(λji)

= H(p) +
∑
i

piH(ρi)

where the last line holds because for each fixed i,
∑

j λ
j
i = 1. �

Exercise 5.4.2: Show that if ρ =
∑

i pi|i〉〈i|⊗ρi ∈ End(Cd⊗H), with terms
as above, then H(ρ) = H(p) +

∑
i piH(ρi).

5.4. Properties of von Neumann entropy 81

5.4.2. Relative entropy. We introduce yet another quantity that will fa-
cilitate the comparisons of density operators. First for the classical case,
define the relative entropy H(p||q) := −

∑
pi log qi

pi
= −H(p)−

∑
i pi log(qi).

Note that it is zero when p = q. It is otherwise positive:

Proposition 5.4.3. H(p||q) ≥ 0 with equality if and only if p = q.

Proof. Recall that log(x) ln(2) = lnx ≤ x− 1 for all x > 0 with equality if
and only if x = 1, i.e., log(x) ≤ 1

ln(2)(x− 1). We have

H(p||q) =
∑

pi log
qi
pi

≥ −
∑

pi
1

ln(2)
(
qi
pi
− 1)

=
1

ln(2)

∑
j

(pj − qj)

=
1

ln(2)
(0− 0).

�

Define the relative von Neumann entropy H(ρ||σ) := trace(ρ log(ρ)) −
trace(ρ log(σ)). It shares the positivity property of its classical cousin:

Proposition 5.4.4. [Kle] H(ρ||σ) ≥ 0 with equality if and only if ρ = σ.

Proof. Write the eigenvalue decompositions ρ =
∑

i pi|vi〉〈vi|, σ =
∑

j qj |wj〉〈wj |.
Then

H(ρ||σ) =
∑
i

pi log(pi)− trace((
∑
i

pi|vi〉〈vi|)(
∑
j

log(qj)|wj〉〈wj |))

=
∑
i

pi log(pi)− trace((
∑
i,j

pi log(qj)〈vi|wj〉)|vi〉〈wj |))

=
∑
i

pi log(pi)−
∑
i,j

pi log(qj)〈vi|wj〉〈wj |vi〉.

Write Pij = 〈vi|wj〉〈wj |vi〉. Note that Pij ≥ 0 for all i, j, and for all j,∑
i Pij = 1 and for all i,

∑
j Pij = 1. This is the definition of the matrix

(Pij) being doubly stochastic (cf. Exercise 4.2.3).

Recall that a function f(x) is concave if for all 0 ≤ λ1, λ2 with λ1+λ2 = 1,
f(λ1x1 + λ2x2) ≥ λ1f(x1) + λ2f(x2).

Now log(x) is a concave function, so∑
j

Pij log(qj) ≤ log(
∑
j

Pijqj).

82 5. Quantum information

Set q̃i =
∑

j Pijqj and recall from Exercise 4.2.3 that q̃i is a probability

distribution. Thus H(ρ||σ) ≥
∑

i pi log(q̃ipi) = H(p||q̃) and we conclude by

the classical case. �

Proposition 5.4.4 shows that relative entropy is a measure of distance
between two density operators

Corollary 5.4.5 (von Neumann Entropy is non-decreasing under projective
measurements). Let Proji be a complete set of orthogonal projectors, set
ρ′ =

∑
i Proji ρProji. Then H(ρ′) ≥ H(ρ) with equality if and only if

ρ′ = ρ.

Proof. We have 0 ≤ H(ρ||ρ′) = −H(ρ)− trace(ρ log(ρ′)). Now

trace(ρ log(ρ′)) = trace

(∑
i

Proji ρ log(ρ′)

)

= trace

(∑
i

Proji ρ log(ρ′) Proji

)
because Proj2i = Proji and trace(ABC) = trace(BCA). Now Proji com-
mutes with ρ′ and log(ρ′) because Proji Projj = 0 if i 6= j, so

trace(ρ log(ρ′)) = trace(
∑
i

Proji ρProji log(ρ′))

= trace(ρ′ log(ρ′))

= −H(ρ′)

Putting it all together, we obtain the result. �

5.4.3. von Neumann entropy and composite systems. In what fol-
lows ρAB is a density operator on HA⊗HB and ρA = traceHB (ρAB), ρB =
traceHA(ρAB) are respectively the induced density operators on HA, HB.

Exercise 5.4.6: Show that trace(ρAB log(ρA⊗ρB)) = −H(ρA)−H(ρB). }

Proposition 5.4.7 (Sub-additivity of von Neumann entropy). H(ρAB) ≤
H(ρA) +H(ρB) with equality if and only if ρAB = ρA⊗ρB.

Proof. We have 0 ≤ H(ρAB||ρA⊗ρB) = H(ρAB)− trace(ρAB log(ρA⊗ρB)),
and we conclude by Exercise 5.4.6. �

Proposition 5.4.8 (Triangle inequality for von Neumann entropy). H(ρAB) ≥
|H(ρA)−H(ρB)|

Proof. Let HR ' (HA⊗HB)∗ be a space purifying ρAB, i.e., ρABR is a pure
state density operator on HA⊗HB⊗HR such that traceHR(ρABR) = ρAB.
Sub-additivity implies H(ρR) + H(ρA) ≥ H(ρAR), and since ρABR is pure

5.4. Properties of von Neumann entropy 83

we have H(ρR) = H(ρAB) and H(ρAR) = H(ρB). Putting these together
gives H(ρAB) ≥ H(ρB) − H(ρA) and combining this with the analogous
calculation with the roles of A and B reversed gives the result. �

5.4.4. von Neumann entropy and classical-quantum density. Here
is another example how the reformulation in terms of density operators
facilitates the combining of classical and quantum probability.

Proposition 5.4.9 (Concavity of von Neumann entropy). Let ρi, 1 ≤ i ≤ d
be density operators on H, let p be a probability distribution on [d], and
consider the density operator

∑
i piρi. Then∑

i

piH(ρi) ≤ H(
∑
i

piρi).

Proof. Let H′ = Cd and let ρHH′ :=
∑

i piρi⊗|i〉〈i|. By Exercise 5.4.2,
H(ρHH′) = H(p)+

∑
i piH(ρi). On the other hand H(ρH′) = H(p) (because

each ρi has trace one) and H(ρH) = H(
∑

i piρi), so we conclude. �

Remark 5.4.10. It is also true that H(
∑

i piρi) ≤
∑
piH(ρi) +H(p), see,

e.g., [NC00, §11.3.6].

5.4.5. Conditional von Neumann entropy. Recall the conditional Shan-
non entropy is defined to be H(pX |pY) = −

∑
i,j pX×Y(i, j) log pX|Y(i|j),

the entropy of pX conditioned on y = j, averaged over Y. It is not clear
how to “condition” one density matrix on another, so we need to find
a different definition. Recall that Shannon entropy satisfies H(pX |pY) =
H(pX×Y) −H(pY), and the right hand side of this expression makes sense
for density operators, so define, for ρAB a density operator on HA⊗HB,

(5.4.1) H(ρA|ρB) := H(ρAB)−H(ρB).

WARNING: it is possible that the conditional von Neumann entropy is
negative. Consider the following example: Let |ψ〉 = 1√

2
(|00〉 + |11〉) ∈

HA⊗HB. Then ρA = 1
2 IdHA = 1

2(|0〉〈0| + |1〉〈1|) so H(ρA) = 1, but
H(|ψ〉〈ψ|) = 0 because |ψ〉〈ψ| is pure.

Despite this, we will see that for ρABC ∈ HA⊗HB⊗HC , one always has

H(ρAC)−H(ρA) +H(ρBC)−H(ρB) ≥ 0.

This result is called strong sub-additivity, and we will have to work a little
to prove it. Before doing that, note that as with the classical case, we have

84 5. Quantum information

three expressions for the mutual information, each of which has a quantum-
informational interpretation:

Muinfo(ρA : ρB) : = H(ρA) +H(ρB)−H(ρAB)

= H(ρA)−H(ρA|ρB)

= H(ρB)−H(ρB|ρA)

5.4.6. Lieb’s lemma. We prove a concavity Lemma that will be the key
to proving strong sub-additivity.

Definition 5.4.11. A function f : RN × RN → R is jointly concave in its
arguments if f(λ1x1 + λ2x2, λ1y1 + λ2y2) ≥ λ1f(x1, y1) + λ2f(x2, y2).

Lemma 5.4.12 (Lieb [Lie73]). Let X ∈ End(H). For all 0 ≤ p ≤ 1,

f(A,B) := trace(ApX†B1−pX),

defined on pairs of positive operators, is jointly concave.

Note that Ap, B1−p make sense as A,B are positive.

Proof. We follow the proof in [Rus04]. First note that it is sufficient to
prove the case A = B because

trace(ApX†B1−pX) = trace

(
A 0
0 B

)p(
0 X†

0 0

)(
A 0
0 B

)1−p(
0 0
X 0

)
.

We need to show, for λj ≥ 0 and λ1 + λ2 = 1, that
(5.4.2)

λ1 trace(Ap1X
†A1−p

1 X)+λ2 trace(Ap2X
†A1−p

2 X) ≤ trace(λ1A1+λ2A2)pX†(λ1A1+λ2A2)1−pX.

We may assume C := λ1A1 +λ2A2 is invertible (the general case will follow
by continuity). Write

M = C
1−p
2 XC

p
2 .

Set

fk(p) = trace(ApkC
− p

2M †C−
1−p
2 A1−p

k C−
1−p
2 MC−

p
2),

then (5.4.2) becomes

(5.4.3) λ1f1(p) + λ2f2(p) ≤ trace(M †M).

We need to prove this for 0 ≤ p ≤ 1. Now we use a standard trick from
complex analysis: Extend fj(p) to be defined for complex numbers. We can
do so on the strip 0 ≤ Re(z) ≤ 1. Why would we want to do this? First
recall that if Z is hermitian, then Ziy is unitary, in particular ||Ziy||op = 1.
The maximum principle (see, e.g., [Ahl78, §4.3.4]) implies that if f(z) is
uniformly bounded on a region, then the maximum of f(z) is achieved on
the boundary of the region. So we will trade proving (5.4.3) on the interval
(0, 1) to proving λ1f1(p) + λ2f2(p) is bounded on a strip, and proving the

5.4. Properties of von Neumann entropy 85

inequality (5.4.3) on the lines 0 + iy and 1 + iy where we will have more
control over the operators.

Using that | trace(XY)| ≤ trace |XY | ≤ ||X||op trace(Y), we see

fk(z) ≤ ||Ak||||C−1|| trace(M †M)

≤ ||Ak||||C−1||||C|| trace(X†X),

so fk(z) is indeed uniformly bounded.

Consider

fk(0 + iy) = trace(Aiyk C
− iy

2 M †C
iy
2 C−

1
2A1−iy

k C−
iy
2 C−

1
2MC−

iy
2)

= trace

(
(A

iy
2
k C

− iy
2 M †C

iy
2 C−

1
2A

1
2
k)(A

1
2A−iyk A

1
2
kC
− iy

2 C−
1
2MC−

iy
2 A

iy
2
k)

)
where we used Aiyk = A

iy
2
k A

iy
2
k , trace(ZW) = trace(WZ), and split A1−iy

k =

A
1
2
kA

1
2
kA
−iy
k .

Note that | trace(ZW)| ≤
[
trace(ZZ†) trace(WW †)

] 1
2 by the Cauchy-

Schwartz inequality. We have

|fk(0 + iy)| ≤
[
trace(A

iy
2
k C

− iy
2 M †C

iy
2 C−

1
2A

1
2
k) trace(A

1
2A−iyk A

1
2C−

iy
2 C−

1
2MC−

iy
2 A

iy
2
k)

] 1
2

=
[
trace(M †C

iy
2 C−

1
2AC−

1
2C−

iy
2 M) trace(A

1
2C−

1
2C−

iy
2 MM †C−

iy
2 C−

1
2A

1
2)
] 1

2

Noting that these two traces are the same, we obtain

|fk(0 + iy)| ≤ trace(M †C
iy
2 C−

1
2AC−

1
2C−

iy
2 M).

Putting it all together,

|λ1f1(0 + iy) + λ2f2(0 + iy)| ≤ λ1|f1(0 + iy)|+ λ2|f2(0 + iy)|

≤ trace(M †C
iy
2 C−

1
2 (λ1A1 + λ2A2)C−

1
2C−

iy
2 M)

= trace(M †M).

The case of f(1 + iy) is similar. �

Theorem 5.4.13. The relative entropy H(ρ||σ) is jointly convex in ρ, σ.

Proof. Let A,X ∈ End(H) with A positive. Define

It(A,X) := trace(X†AtXA1−t)− trace(X†XA),

where the second term is just to normalize I0(X,A) = 0. Lieb’s lemma
implies the first term is concave in A, and since the second is linear in A,
It(A,X) is concave in A. Write I ′0(A,X) = d

dt |t=0It(A,X). Recall that

86 5. Quantum information

d
dt |t=0a

t = ln(a), and the same holds for positive operators, so I ′0(A,X) =

trace(X† ln(A)XA)− trace(X†X ln(A)A). Consider

I ′0(λ1A1 + λ2A2, X) = lim
ε→0

Iε(λ1A1 + λ2A2, X)− 0

ε

≥ lim
ε→0

λ1
Iε(A1, X)

ε
+ λ2

Iε(A2, X)

ε
by concavity

= λ1I
′
0(A1, X) + λ2I

′
0(A2, X),

so I ′0(A,X) is a concave function of A. Now let A =

(
ρ 0
0 σ

)
and X =(

0 0
Id 0

)
, we obtain

I ′0(A,X) = −H(ρ||σ))

and we conclude H(ρ||σ) is jointly convex in ρ, σ. �

Corollary 5.4.14. The conditional entropy H(ρA|ρB) is concave in ρAB.

Proof. Let d = dimHA, consider

H(ρAB||
1

d
IdHA ⊗ρB) = −H(ρAB)− traceHA⊗HB (ρAB log(

1

d
IdH ⊗ρB)).

Exercise 5.4.6 implies that

traceHA⊗HB (ρAB log(
1

d
IdHA ⊗ρB)) = − trace(ρB log(ρB) + log(d))

= −H(ρB) + log(d)

so

H(ρA|ρB) = log(d)−H(ρAB||
1

d
IdHA ⊗ρB)

and the second term is jointly concave in both its arguments, so we conclude.
�

Finally we have

Theorem 5.4.15 (Strong sub-additivity). Let ρABC be a density operator
on HA⊗HB⊗HC . Then

(5.4.4) H(ρC |ρA) +H(ρC |ρB) ≥ 0

i.e.,

(5.4.5) H(ρAC)−H(ρA) +H(ρCB)−H(ρB) ≥ 0.

Proof. Let f(ρABC) = H(ρC |ρA) +H(ρC |ρB), which is a concave function
of ρABC because it is a sum of two concave functions of ρABC . Write

ρABC =
∑

λi|vi〉〈vi|.

5.4. Properties of von Neumann entropy 87

The concavity of f implies f(ρABC) ≥
∑
λif(|vi〉〈vi|) = 0 because |vi〉〈vi|

is pure, and we conclude f(ρABC) ≥ 0. �

Corollary 5.4.16. Let ρABC be a density operator on HA⊗HB⊗HC . Then

(5.4.6) H(ρABC)− [H(ρAB) +H(ρBC)] +H(ρB) ≥ 0.

Proof. Introduce a purification ρABCR of ρABC , ρABC = traceHR(ρABCR).
Then by (5.4.5) H(ρR) + H(ρB) ≤ H(ρCR) + H(ρBC), but since ρABCR is
pure H(ρR) = H(ρABC) and H(ρCR) = H(ρAB) and we conclude. �

Applications:

Corollary 5.4.17. [Conditional Entropy is non-increasing under further
conditioning] Let ρABC be a density operator onHA⊗HB⊗HC , thenH(ρA|ρBC) ≤
H(ρA|ρB).

Exercise 5.4.18: Prove Corollary 5.4.17.

Corollary 5.4.19. [Mutual information is non-increasing when quantum
systems are discarded] Let ρABC be a density operator on HA⊗HB⊗HC ,
then Muinfo(ρA : ρB) ≤ Muinfo(ρA : ρBC).

Exercise 5.4.20: Prove Corollary 5.4.19.

Theorem 5.4.21 (Sub-additivity of conditional entropy).

(1) Let ρABCD be a density operator on HA⊗HB⊗HC⊗HD, then

H(ρAB|ρCD) ≤ H(ρA|ρC) +H(ρB|ρD).

(2) Let ρABC be a density operator on HA⊗HB⊗HC , then

H(ρAB|ρC) ≤ H(ρA|ρC) +H(ρB|ρC)

H(ρA|ρBC) ≤ H(ρA|ρB) +H(ρA|ρC)

Proof. Proof of (1): Considering HB⊗HC as a single space, (5.4.6) implies

H(ρABCD) +H(ρC) ≤ H(ρAC) +H(ρBCD).

Now add H(ρD) to both sides and observe H(ρBCD) +H(ρD) ≤ H(ρAC) +
H(ρBD) +H(ρBC), substitute this in and rearrange to obtain the result.

The first assertion in (2) is just (5.4.6). The second is equivalent to

H(ρABC) +H(ρB) +H(ρC) ≤ H(ρAB) +H(ρBC) +H(ρAC).

By strong sub-additivity, at least one of of the inequalities H(ρC) ≤ H(ρAC),
H(ρB) ≤ H(ρAB) must hold. Say the first does, adding it to the equation
gives the result. �

We also obtain more evidence that the relative entropy is a useful dis-
tance measure:

88 5. Quantum information

Corollary 5.4.22. [Monotonicity of the relative entropy] Let ρAB, σAB be
density operators on HA⊗HB. Then

H(ρA||σA) ≤ H(ρAB||σAB).

Corollary 5.4.22 says that ignoring part of a physical system makes it
harder to distinguish the state of the system.

5.5. Entanglement and LOCC

We have seen several ways that entanglement is a resource already for the
space HA⊗HB = C2⊗C2: given a shared qubit |epr〉 = 1√

2
(|00〉+ |11〉), one

can transport two bits of classical information using only one qubit (“super
dense coding”) and one can also transmit one qubit of quantum information
from Alice to Bob by sending two classical bits (“teleportation”).

In this section we study entanglement as a resource. Unlike quanti-
ties such as quantum channel capacity and von Neumann entropy, there
is no obvious classical cousin of entanglement. For pure states |ψ〉〈ψ| ∈
End(H1⊗ · · ·⊗Hn), ψ was defined to be entangled if it is not a decompos-
able (i.e. rank one) tensor. We have not yet defined what it means for a
mixed state to be entangled. This will be rectified by Definition 5.5.18.

In this section we will assume several different laboratories can com-
municate classically, have prepared some shared states in advance, and can
perform unitary and projection operations on their parts of the states, as
was the situation for quantum teleportation. More precisely, we make the
following assumptions:

• H = H1⊗ · · ·⊗Hn, and the Hj share an entangled state ρ. Often
we will just have H = HA⊗HB and ρ = α|00〉+ β|11〉.
• The laboratories can communicate classically.

• Each laboratory is allowed to perform unitary and measurement
operations on their own spaces.

The above assumptions are called LOCC for “local operations and clas-
sical communication”. It generalizes the set-up for teleportation §2.4.

Restrict to the case H = HA⊗HB, each of dimension two. We will use
|epr〉 as a benchmark for measuring the quality of entanglement.

We will not be concerned with a single state |ψ〉, but the tensor product
of many copies of it, |ψ〉⊗n ∈ (HA⊗HB)⊗n. We ask “how much” entangle-
ment does |ψ〉⊗n have? More precisely, how many copies of |epr〉 (or any
|φ〉) can we construct from it via LOCC? We will be content with output
that is “close” to many copies of |ψ〉, i.e., has high fidelity with |ψ〉⊗n.

5.5. Entanglement and LOCC 89

To gain insight as to which states can be produced via LOCC from
a given density operator, we return to the classical case. For the classical
cousin of LOCC, by considering diagonal density operators, we see we should
allow alteration of a probability distribution by permuting the pj (permu-
tation matrices are unitary), and more generally averaging our probability
measure under some probability measure on elements of Sd (the classical
cousin of a projective measurement), i.e., we should allow

(5.5.1) p 7→
∑
σ∈Sd

qσµ(σ)p

where µ : Sd → GLd is the representation, and q is a probability distribution
on Sd.

This is because the unitary and projection local operators allowed amount
to

ρ 7→
k∑
j=1

pjUjρUj
−1

where the Uj are unitary and p is a probability distribution on {1, . . . , k}
for some finite k.

Recall from Exercise 4.2.3 that Shannon entropy is non-increasing under
an action of the form (5.5.1). We want to understand the partial order on
probability distributions determined by (5.5.1).

5.5.1. A partial order on probability distributions compatible with
entropy. Given probability distributions p, q on {1, . . . , d}, consider the cor-
responding vectors p, q ∈ Rd. Recall that the entropy H(p) gives a measure
of the uncertainty of a probability distribution, telling us how much infor-
mation we can transfer along a channel if it sends out signals according
to the distribution p. We would like a partial order on distributions that
is compatible with the degenerations (5.5.1), and thus with entropy. The
dominance order satisfies these properties:

Definition 5.5.1. Let x, y ∈ Rd, write x↓ for x re-ordered such that x1 ≥
x2 ≥ · · · ≥ xd. We say x ≺ y if for all k ≤ d,

∑k
j=1 x

↓
j ≤

∑k
j=1 y

↓
j . The

partial order determined by ≺ is called the dominance order.

Note that if p is a probability distribution concentrated at a point, then
q ≺ p for all probability distributions q, and if p is such that pj = 1

d for all j,
then p ≺ q for all q, and more generally the dominance order is compatible
with the entropy in the sense that p ≺ q implies H(p) ≥ H(q).

We will show that p can degenerate to q in the sense of (5.5.1) if and
only if p ≺ q.
Exercise 5.5.2: Fix y ∈ Rd. Show that the set {x | x ≺ y} is convex.

90 5. Quantum information

Now observe that the set of matrices of the form
∑

σ∈Sd pσµ(σ) is the

convex hull of µ(Sd), which we will denote conv(µ(Sd)), where in general,

z ∈ conv{w1, . . . , wk} means z =
∑k

j=1 pjwj , for some probability distribu-

tion on {1, . . . , k}.
Recall that a matrix D ∈ Matd×d is doubly stochastic if Dij ≥ 0 and

all column and row sums equal one. Let DSd ⊂ Matd×d denote the set of
doubly stochastic matrices.

Theorem 5.5.3. (G. Birkoff 1946 [Bir46]) DSd = conv(µ(Sd)).

Note that it is clear conv(µ(Sd)) ⊆ DSd.
Theorem 5.5.4. (Hardy-Littlewood-Polya [HLP52]) {x | x ≺ y} = DSd ·y.

Note that it is clear DSd · y ⊆ {x | x ≺ y}.
We prove both theorems following [Mir58].

Lemma 5.5.5. Let D ∈ DSd\ Id. Then there exists σ ∈ Sd\ Id such that
the diagonal elements of µ(σ)A are all nonzero.

Proof. Say not, so for all σ ∈ Sd\ Id there exists some k such that Aj,σ(j) =
0. Then det(A) =

∑
σ∈Sd sgn(σ)A1σ(1) · · ·Adσ(d) = A11 · · ·Add. Similarly,

det(A+ t Id) = Projj(Ajj + t) so the eigenvalues of A are the diagonal ele-

ments. But at least one eigenvalue is 1 because of the eigenvector (1, . . . , 1)T .
Say this is Ajj . Then strike out the j-th row and column of A and apply
the argument again, continuing, we see A = Id, a contradiction. �

Exercise 5.5.6: Show that x ∈ conv{y1, . . . , ym} if and only if for all a ∈ Rd,
〈a|x〉 ≤ maxα∈{1,...,m}〈a|yα〉. **give hint***

Exercise 5.5.7: Prove Theorem 5.5.4.

Exercise 5.5.8: Show that for all A ∈ Matd×d, supD∈DSd trace(DA) =
maxσ∈Sd(trace(µ(σ)A)). Hint: assume wlog the RHS is traceA as both
sides are invariant under permutation matrices.

Exercise 5.5.9: Using Exercise 5.5.6 with {y1, . . . , ym} the set of permuta-
tion matrices, prove Theorem 5.5.3.

5.5.2. Dominance order for Hermitian operators. Let X,Y be Her-
mitian operators and write spec(X) for the set of eigenvalues of X (the
spectrum of X). We will say X ≺ Y if spec(X) ≺ spec(Y).

Theorem 5.5.10. Let X,Y be Hermitian operators on H = Cd. Then
Y ≺ X if and only if there exists a probability distribution on Sd and
unitary matrices Uσ ∈ U(H) such that X =

∑
σ∈Sd pσUσY Uσ

−1.

Proof. Say Y ≺ X so that spec(X) =
∑

σ∈Sd pσµ(σ) spec(Y). Write

X = UΛ(X)U−1 where U is unitary and Λ(X) is a diagonal matrix with

5.5. Entanglement and LOCC 91

the eigenvalues of X on the diagonal and similarly Y = V Λ(Y)V −1. By
hypothesis Λ(X) =

∑
σ∈Sd pσµ(σ)Λ(Y)µ(σ)−1, so

X = U−1(
∑
σ

pσµ(σ)V −1Y V µ(σ)−1)U

so just set Uσ = U−1µ(σ)V −1.

For the other direction, we have

UΛ(X)U−1 =
∑
σ

pσUσV Λ(Y)V −1Uσ
−1

i.e.,

Λ(X) =
∑
σ

pσ(UUσV)Λ(Y)(UUσV)−1.

Write Wσ = UUσV . Since Λ(X),Λ(Y) are diagonal, conjugation by Wσ

must take diagonal matrices to diagonal matrices. If the eigenvalues of X
are distinct, then Wσ must be a permutation matrix, and in general, without
loss of generality, we may assume it to be so. �

Exercise 5.5.11: Let X ∈ End(Cd) be Hermitian. Show that there ex-
ists a probability distribution pj and Uj ∈ Ud such that

∑
i piUiXUi

−1 =
1
d trace(X) IdCd . Hint: find U that diagonalizes X then apply permutations
to average.

5.5.3. A reduction theorem. The study of LOCC is potentially unwieldy
because there can be numerous rounds of local operations and classical com-
munication, making it hard to model. The following result eliminates this
problem:

Proposition 5.5.12. If |ψ〉 ∈ HA⊗HB can be transformed into |φ〉 by
LOCC, then it can be transformed to |φ〉 by the following sequence of oper-
ations:

(1) Alice performs a single measurement with operators ProjMj
.

(2) She sends the result of her measurement (some j) to Bob classically.

(3) Bob performs a unitary operation on his system.

Proof. The key point is that for any vector spaces V,W , an element f ∈
V⊗W , may be considered as a linear map W ∗ → V . In our case, H∗B ' HB
so |ψ〉 induces a linear map HB → HA which gives us the mechanism to
transfer Bob’s measurements to Alice.

Now for the details. WriteHA = Lker |ψ〉⊕H′A andHB = Rker |ψ〉⊕H′B,
where Lker |ψ〉 ⊂ HA, Rker |ψ〉 ⊂ HB are the kernels of the induced linear
maps. Thus |ψ〉 induces an isomorphism isoψ : H′B → H′A, which in turn
induces an isomorphism endisoψ : End(H′B) → End(H′A), which we may
extend by zero to a map endψ : End(HB)→ End(HA). Now say M ⊂ HB.

92 5. Quantum information

Note that IdHA ⊗ProjM |ψ〉 = IdHA ⊗ProjM |H′B |ψ〉 (the right hand side

makes sense because |ψ〉 ∈ H′B).

Write the singular value decomposition |ψ〉 =
∑

µ

√
λµ|vµ〉⊗|wµ〉 with

|vµ〉 ∈ H′A, |wµ〉 ∈ H′B. Let Mµ,ν denote the matrix for πM in the basis
{wµ}. On Bob’s side,

IdHA ⊗ProjM |ψ〉 =
∑
µ,ν

√
λµ|vµ〉⊗Mµ,ν |wν〉

=
∑
µ,ν

√
λµMµ,ν |vµ〉⊗|wν〉.(5.5.2)

On the other hand

(5.5.3) ProjisoψM ⊗ IdHB |ψ〉 =
∑
µ,ν

√
λµ(Mµ,ν |νA〉)⊗|µB〉.

The expressions (5.5.2),(5.5.3) are elements of HA⊗HB with the same singu-
lar values, so there exist UA ∈ U(HA), UB ∈ U(HB) such that IdHA ⊗ProjM |ψ〉 =
UA⊗UB · ProjisoψM ⊗ IdHB |ψ〉. So we may effect Bob’s ProjM by Alice’s

ProjisoψM , followed by isometries UA and UB. So we may get rid of all of

Bob’s measurements, and Bob’s communication with Alice (since she has
the result!). Finally, Alice’s local actions commute with the local actions of
Bob, so we can just combine all of Alice’s local actions into one, then she
sends the results all at once to Bob, who combines all his unitary actions to
a single unitary operator. �

Now we can state the main theorem on LOCC:

Theorem 5.5.13. [Nie99] |ψ〉 |φ〉 by LOCC if and only if singvals(|ψ〉) ≺
singvals(|φ〉).

Recall that singvals(|ψ〉) = spec(ρψ,A) = spec(ρψ,B).

Exercise 5.5.14: Given A ∈ End(H), show that there exists U ∈ U(H)

such that A = U
√
A†A =

√
AA†U , and that if A is invertible, U is unique.

Hint: A†A is Hermitian so it has a spectral decomposition.

Proof. ψ can be transformed to φ by LOCC means that there exist Mj ⊂
HA giving an orthogonal decomposition, and a probability distribution pj ,
such that

ProjMj
ρψ,A Proj†Mj

= pjρφ,A.

By Exercise 5.5.14, there exist Uj ∈ U(HA) such that

ProjMj

√
ρψ,A =

√
ProjMj

√
ρψ,A(ProjMj

√
ρψ,A)†Uj

=
√
pjρφ,AUj

5.5. Entanglement and LOCC 93

and similarly with
√
ρψ,A Proj†Mj

, so

√
ρψ,A)† ProjMj

√
ρψ,A = pjUj

−1ρφ,AUj .

Now sum on j, the projections sum to the identity and we conclude

ρψ,A =
∑
j

pjUj
−1ρφ,AUj

which means spec(ρψ,A) ≺ spec(ρφ,A). If ρψ is invertible, the argument can
be run in the other direction to get the reverse conclusion, if not, one splits
HA,HB as in the proof of Proposition 5.5.12 and the argument still goes
through. �

Exercise 5.5.15: (Entanglement catalysis) Say HA,HB are four dimen-
sional and Alice and Bob share |ψ〉 =

√
.4(|00〉 + |11〉) +

√
.1(|22〉 + |33〉).

Show that |ψ〉 cannot be degenerated to |φ〉 =
√
.5|00〉+

√
.25|11〉+

√
.25|22〉.

But now say a bank is willing to loan them |c〉 =
√
.6|00〉 +

√
.4|11〉. Show

that |ψ〉⊗|c〉 can be degenerated by LOCC to |φ〉⊗|c〉, so they can obtain
|φ〉 and return |c〉 to the bank. In this context, |c〉 is called a “catalyst”.

5.5.4. Entanglement distillation (concentration) and dilution. To
compare the entanglement resources of two states |φ〉 and |ψ〉, we will con-
sider |φ〉⊗m for large m, and determine the largest n = n(m) such that |φ〉⊗m
may be degenerated to |ψ〉⊗n via LOCC. Due to the approximate and prob-
abilistic nature of quantum computing, we will be content to degenerate
|φ〉⊗m to a state that has high fidelity with |ψ〉⊗n.

There is a subtlety for this question worth pointing out. Teleportation
was defined in such a way that Alice did not need to know the state she
was teleporting, but for distillation and dilution, she will need to know its
right singular vectors are standard basis vectors. More precisely, if she is in
possesion of |ψ〉 =

√
p1|v1〉⊗|1〉+

√
p2|v2〉⊗|2〉 , she can teleport the second

half of it to Bob if they share |epr〉 ∈ HA⊗HB. More generally, we will see

that if she is in possession of |ψ〉 =
∑d

j=1
√
pj |vj〉⊗|j〉 ∈ HA′⊗HA′′ , she can

teleport it to Bob if they share enough EPR states. In most textbooks, Alice
is assumed to possess states whose singular vectors are |jj〉’s and we will

follow that convention here. Similarly, if |ψ〉 =
∑d

j=1
√
pj |jj〉 ∈ HA⊗HB, we

will discuss how many shared EPR states they can construct from a shared
|ψ〉⊗m.

We define the entanglement cost EC(ψ) to be infm
n(m)
m where n(m)

copies of ψ can be constructed from |epr〉⊗m by LOCC with fidelity going
to 1 as m → ∞. Similarly, define the entanglement value, or distillable

entanglement EV (ψ) to be supm
n(m)
m where n(m) copies of |epr〉 can be

constructed from |ψ〉⊗m by LOCC.

94 5. Quantum information

Since entanglement cannot be created by LOCC, EV (ψ) ≤ EC(ψ). Oth-
erwise by going through rounds of LOCC, one could construct and arbi-
trary number of EPR states. **better mathematical justification?*** We
will show that (asymptotically) cost equals value.

Say |ψ〉 =
√
p1|11〉+ · · ·+√pd|dd〉 ∈ HA′⊗HA′′ . Consider

|ψ〉⊗n =
∑√

pi1 · · · pin |i1 · · · in〉⊗|i1 · · · in〉.

Project |ψ〉⊗n to the ε-typical subspace for some small ε. Recall that this

subspace has dimension at most 2n(H(|ψ〉〈ψ|)+ε).

Now |ψ〉⊗nε−typ can be teleported using 2n(H(|ψ〉〈ψ|)+ε) classical bits and a

pre-shared |epr〉⊗n(H(|ψ〉〈ψ|)+ε) with probability of error at most δ. However
we can make ε, δ as small as we want, so we conclude EC(ψ) ≤ H(|ψ〉〈ψ|).

Now say Alice and Bob share |ψ〉⊗m ∈ H⊗mA ⊗H
⊗m
B and they want

to construct |epr〉⊗n for some n = n(m). For simplicity, assume |ψ〉 =√
p|00〉+

√
1− p|11〉. Project |ψ〉⊗m onto the ε-typical subspace. The largest

coefficient is 2−m(H(|ψ〉〈ψ|))−ε) and after renormalization to have a vector of
length one, this coefficient grows at most by a factor of 1√

1−δ . Take any n

such that

(5.5.4) 2−n ≥ 2−m(H(|ψ〉〈ψ|))−ε)

1− δ
.

Then

spec(|ψ〉〈ψ|⊗mε−typ) ≺ (2−n, . . . , 2−n),

so we can create |epr〉⊗n by LOCC from |ψ〉〈ψ|⊗mε−typ. Further note that if
n ∼ mH(|ψ〉〈ψ|), then (5.5.4) will hold. We conclude EV (ψ) ≥ H(|ψ〉〈ψ|).

Putting together the inequalitiesH(|ψ〉〈ψ|) ≤ EV (ψ) ≤ EC(ψ) ≤ H(|ψ〉〈ψ|),
we see they are all equalities.

Remark 5.5.16. In classical computation one can reproduce information,
but this cannot be done with quantum information in general. This is be-
cause the map |ψ〉 7→ |ψ〉⊗|ψ〉, called the Veronese map in algebraic geome-
try, is not a linear map. This observation is called the no cloning theorem in
the quantum literature. However, one can define a linear map, e.g., C2 →
C2⊗C2 that duplicates basis vectors, i.e., |0〉 7→ |0〉⊗|0〉 and |1〉 7→ |1〉⊗|1〉.
But then of course α|0〉+ β|1〉 7→ α|0〉⊗|0〉+ β|1〉⊗|1〉 6= (a|0〉+ β|1〉)⊗2.

Remark 5.5.17. The level of noise in a classical channel can support before
it becomes useless is higher than the level of noise a quantum channel can
support before it becomes useless **ref**. However, via LOCC, one can
raise the admissible level of noise of a quantum channel and still have it
useful... ***more detail here***

5.5. Entanglement and LOCC 95

5.5.5. Cost and Value of mixed states. For mixed states ρ on HA⊗HB,
we can still define EC(ρ) and EV (ρ), but there exist examples where they
differ, so there is not a canonical measure of entanglement. **give exam-
ple*** In fact, at this point we still don’t even have a definition of what it
means for a mixed state to be entangled.

Let’s make a wish list of what we might want from an entanglement
measure E

• Non-increasing under LOCC.

• If ρ is a product state, i.e., ρ = |φA〉〈φA|⊗|ψB〉〈ψB|, then E(ρ) = 0.

The two conditions together imply any state constructible from such
a ρ by LOCC should also have zero entanglement. Hence the following
definition:

Definition 5.5.18. A density operator ρ ∈ End(H1⊗ · · ·⊗Hn) is separable
if ρ =

∑
i piρi,1⊗ · · ·⊗ρi,n, where ρi,α ∈ End(Hα) are density operators,

pi ≥ 0, and
∑

i pi = n. If ρ is not separable, we say ρ is entangled.

So we replace our second condition by requiring that E(ρ) = 0 for any
separable ρ.

Finally, we would like any new entanglement measure to agree with
EC , EV on pure states.

Definition 5.5.19. An entanglement monotone E is a function on density
operators on HA⊗HB that is non-increasing under LOCC.

This implies E is zero on separable states. One would also like E to
agree with EC , EV on pure states.

Recall the mutual information Muinfo(ρA : ρB) := H(ρA) + H(ρB) −
H(ρAB). This vanishes on product states.

If ρ is pure, then Muinfo(ρA : ρB) = 2H(ρA) = 2H(ρB), so a first idea
would be to take half the mutual information.

However, the mutual information fails to be zero on separable states. To
fix this, define the squashed entanglement [CW04]

Esq(ρAB) := infC{
1

2
Muinfo(A : B|C) | ρAB = traceHC (ρABC)}.

Exercise 5.5.20: Show that Esq vanishes on separable states.

The squashed entanglement is (at least as of this writing) hard to com-
pute in general, but it does have the desirable property that it is additive
under tensor products:

Esq(ρAB⊗ρCD) = Esq(ρAB) + Esq(ρCD).

96 5. Quantum information

add more and/or references

Chapter 6

Representation theory
and Quantum
information

In this chapter we show how many results in quantum information the-
ory can be understood in terms of representation theory. We also discuss
the quantum marginal problem: what are the conditions on density op-
erators ρA ∈ End(HA), ρB ∈ End(HB), σ ∈ End(HA⊗HB), such that
ρA = traceHB (σ) and ρB = traceHA(σ)?

We begin with a crash course in representation theory.

6.1. Representation theory

6.1.1. Basic definitions. We will be primarily concerned with the repre-
sentation theory of the permutation group Sd and the general linear group
GL(V). Informally, a representation of a group G is a realization of G as a
subgroup of the group of n× n matrices for some n.

Definition 6.1.1. Let G be a group. A representation of G is a group
homomorphism µ : G → GL(V) for some vector space V . One says G acts
on V and that V is a G-module.

For example Sd acts on Cd by permuting basis vectors and extending
the action linearly.

Definition 6.1.2. Let V be a G-module, and let W ⊂ V be a proper
subspace. We say W is a submodule if for all g ∈ G and w ∈W , µ(g)w ∈W .
The representation V is said to be irreducible if it has no proper submodules.

97

98 6. Representation theory and Quantum information

For example the action of Sd on Cd is not irreducible.

Exercise 6.1.3: Write Cd = W1 ⊕W2 where W1,W2 are Sd-submodules.

A G-module V is trivial if µ(g)v = v for all g ∈ G and v ∈ V .

If V,W are G-modules, a linear map f : V → W commuting with the
actions of G is called a G-module map. The modules V,W are said to be
isomorphic if there exists a G-module map between them that is a linear
isomorphism.

Lemma 6.1.4 (Schur’s Lemma). Let V,W be irreducible G-modules and
f : V →W a G-module map. Then either f = 0 or f is an isomorphism. If
furthermore V = W , then f = λ Id for some constant λ.

Exercise 6.1.5: Prove Schur’s Lemma. Hint: show that the kernel and
image of a G-module map are submodules.

If G acts on V by µV , it acts on V ∗ by µV ∗ , where [µV ∗(g)(α)](v) =
α(µV (g)v) for all α ∈ V ∗, v ∈ V , g ∈ G. If G acts on V1, V2, by µ1, µ2,
then it acts on V1⊗V2 by µ(g)(v1⊗v2) = µ1(g)v1⊗µ2(g)v2. In particular, it
G acts on V , it acts on all tensor powers of V and V ∗. These actions are
called induced actions.

Exercise 6.1.6: Show that if G acts on V , then the induced action on
End(V) = V⊗V ∗ contains a trivial submodule. Show that moreover if V is
irreducible, the trivial submodule is unique.

A basic problem is: given G, determine the irreducible G-modules up to
isomorphism.

6.1.2. Representations of the permutation group and Schur-Weyl
duality. We describe the irreducible modules for the permutation group.
For a proof, see e.g., [Lan17, §8.6.8], [FH91, §I.4], or [Mac95, I.7].

Proposition 6.1.7. The irreducible representations of Sd are in one to one
correspondence with the partitions of d.

To a partition π = (p1, . . . , pd), let [π] denote the corresponding irre-
ducible Sd-module.

Example 6.1.8. π = (d) = (d, 0, . . . , 0) corresponds to the one-dimensional
trivial representation. π = (1, . . . , 1) = (1d) corresponds to the one-dimensional
sign representation µ(σ)v = sgn(σ)v. The partition π = (d − 1, 1) corre-
sponds to the action on Cd−1 ⊂ Cd where Cd−1 is the subspace of vectors
whose entries add to zero.

We will give a recipe for constructing all the irreducible Sd-modules as
submodules of V ⊗d, where dimV ≥ d.

6.1. Representation theory 99

First note that for any vector space V , Sd acts on V ⊗d by permuting the
factors: µ(σ)(v1⊗ · · ·⊗vd) = vσ−1(1)⊗ · · ·⊗vσ−1(d). One takes the inverse so
that µ(σ)µ(τ)T = µ(στ)T .

To visualize a partition π, define the Young diagram associated to π to
be a collection of left-aligned boxes with pj boxes in the the j-th row, as in
Figure 6.1.1.

Figure 6.1.1. Young diagram for π = (4, 2, 1, 1)

Label the boxes in the diagram by {1, . . . , d}, such is called a Young
tableau without repetitions. For example

3 7 2 5
1 4
6
8 .

The default Young tableau is labeled left to right and top to bottom:

1 2 3 4
5 6
7
8 .

Given any Young tableau without repetitions, consider the following pro-
jection operator on V ⊗d constructed from it: first write V ⊗d = V1⊗V2⊗ · · ·⊗Vd,
where the subscript is to remember the position. Then for each row in the
Young tableau, symmetrize the corresponding copies of V , e.g., for π =
(4, 2, 1, 1) after the symmetrization, one obtains an element of S4V⊗S2V⊗V⊗V ⊂
V ⊗8. Next, skew symmetrize along the columns.

For example, if we take the default Young tableau for π = (2, 1), the
maps are vi⊗vj⊗vk 7→ vi⊗vj⊗vk+vj⊗vi⊗vk followed by vi⊗vj⊗vk+vj⊗vi⊗vk 7→
vi⊗vj⊗vk − vi⊗vk⊗vj + vj⊗vi⊗vk − vj⊗vk⊗vi.

For the default Young tableau, write the resulting map as

Pπ−def : V ⊗d → V ⊗d

and let Sπ−defV := Pπ−def (V ⊗d) denote the image.

Since Pπ−def is a GL(V)-module map, Sπ−defV is a GL(V)-module.

100 6. Representation theory and Quantum information

Fact : Sπ−defV is an irreducible GL(V)-module, and if π 6= ν, then Sπ−defV
is not isomorphic to Sν−defV .

Let V = Cd be equipped with its standard basis e1, . . . , ed. Set

vπ−def := Pπ−def (e⊗p11 ⊗e⊗p22 ⊗ · · ·⊗e⊗pdd).

For any group G and any G-module W , the span of the G-orbit of any
v ∈W is a submodule (or all of W).

Fact : The span of the Sd-orbit of vπ−def is an irreducible Sd-module
isomorphic to [π].

If one defines the corresponding map for a different Young tableau with-
out repetitions associated to π, one obtains an isomorphic GL(V)-module.
Let SπV denote the isomorphism class. Similarly, the Sd-module one ob-
tains by a similar process for a different Young tableau without repetitions
is also isomorphic to [π].

Definition 6.1.9. If W,M are G-modules with M irreducible, the isotypic
component of M in W is the largest submodule of W isomorphic to M⊕m

for some m. The integer m is called the multiplicity of M in W .

Let σ ∈ Sd, the map µ(σ) : V ⊗d → V ⊗d is a GL(V)-module map, as is
µ(σ)|Sπ−defV . Thus by Schur’s lemma, its image is either zero or a module
isomorphic to SπV . It is clearly not zero as µ(σ) is an isomorphism.

Fact : The span of µ(Sd)Sπ−defV is the isotypic component of SπV in V ⊗d.

Similarly, for g ∈ GL(V), the image under g of the span of Sd · vπ−def
is an Sd-module isomorphic to [π].

All these observations are consequences of:

Theorem 6.1.10 (Schur-Weyl duality). As a GL(V)×Sd-module,

V ⊗d =
⊕
|π|=d

SπV⊗[π].

In particular mult([π], V ⊗d) = dimSπV and mult(SπV, V
⊗d) = dim[π].

The projection Pπ : V ⊗d → SπV⊗[π] may be obtained as the direct sum
of projection operators Pπ,std where the Young tableaux without repetitions
are labeled such that the numbers increase along the rows and columns.
Such tableaux are called standard. For example

P(2,1) = P 1 2
3

⊕ P 1 3
1

.

6.1.3. Decomposition of tensor products. One is often interested in
decompositions of a module under the action of a subgroup. For example

6.1. Representation theory 101

Sd(V⊗W) is an irreducible GL(V⊗W)-module, but as a GL(V)×GL(W)-
module it has the decomposition, called the Cauchy formula,

(6.1.1) Sd(V⊗W) = ⊕|π|=dSπV⊗SπW.

For the quantum marginal problem, we will be particularly interested in
the decomposition of Sd(U⊗V⊗W) as a GL(U)×GL(V)×GL(W)-module.
An explicit formula for this decomposition is not known. Write

Sd(U⊗V⊗W) =
⊕

|π|,|µ|,|ν|=d

(SπU⊗SµV⊗SνW)⊕kπ,µ,ν .

The numbers kπ,ν,µ that record the multiplicities are called Kronecker coef-
ficients. They have several additional descriptions. For example, we could
try to obtain the decomposition of Sd(U⊗V⊗W) first using the Cauchy
formula to write Sd(U⊗V⊗W) =

⊕
|π|=d SπU⊗Sπ(V⊗W) and then further

decomposing Sπ(V⊗W). Comparing the formulas, we see

Sπ(V⊗W) =
⊕
|µ|,|ν|=d

(SµV⊗SνW)⊕kπ,µ,ν .

For yet another perspective, Schur-Weyl duality allows us to define the
GL(V)-module SπV as SπV := HomSd([π], V ⊗d). From this perspective

Sπ(V⊗W) = HomSd([π], (V⊗W)⊗d)

= HomSd([π], V ⊗d⊗W⊗d)

= HomSd([π], (
⊕
|µ|=d

SµV⊗[µ])⊗
⊕
|ν|=d

SνW⊗[ν])

=
⊕
|µ|,|ν|=d

HomSd([π], [µ]⊗[ν])⊗SµV⊗SνW.

We conclude kπ,µ,ν = dim HomSd([π], [µ]⊗[ν]). To recover the symmetry
from the permutation group perspective, we use that fact that representa-
tions of the permutation group are self-dual: [π]∗ ' [π], so

HomSd([π], [µ]⊗[ν]) = ([π]∗⊗[µ]⊗[ν])Sd

= ([π]⊗[µ]⊗[µ])Sd ,

i.e., kπ,µ,ν = dim([π]⊗[µ]⊗[µ])Sd .

In other words kπ,µ,ν = mult([d], [π]⊗[µ]⊗[ν]) = mult([π], [µ]⊗[ν]).

102 6. Representation theory and Quantum information

6.2. Projections onto isotypic subspaces of H⊗d

Above we discussed representations of the general linear group GL(V) where
V is a complex vector space. In quantum theory, we are interested in repre-
sentations on the unitary group U(H) on a Hilbert space H. A subtlety we
ignored before is that the unitary group is a real Lie group, not a complex
Lie group, because complex conjugation is not a complex linear map. It
is a special case of a general fact about representations of a maximal com-
pact subgroups of complex Lie groups have the same representation theory
as the the original group, so in particular the decomposition of H⊗d as a
U(H)-module coincides with its decomposition as a GL(H)-module.

For a partition π = (p1, . . . , pd) of d, introduce the notation π = (p1d , . . . ,
pd
d)

which is a probability distribution on {1, . . . , d}. Recall the relative entropy
H(p||q) = −

∑
i pi log qi

pi
, which may be thought of as measuring how close

p, q are because it is non-negative, and zero if and only if p = q.

6.2.1. The quantum marginal problem: statement of results. The
results in the following three theorems appeared almost at the same time:

Theorem 6.2.1. [CM06] Let ρAB be a density operator on HA⊗HB. Then
there exists a sequence (πj , µj , νj) of triples of partitions such that kπj ,µj ,νj 6=
0 for all j and

lim
j→∞

πj = spec(ρAB)

lim
j→∞

µj = spec(ρA)

lim
j→∞

νj = spec(ρB).

Theorem 6.2.2. [Kly04] Let ρAB be a density operator on HA⊗HB such
that spec(ρAB), spec(ρA) and spec(ρB) are all rational vectors. Then there
exists an M > 0 such that kM spec(ρA),M spec(ρB),M spec(ρC) 6= 0.

Theorem 6.2.3. [Kly04] Let π, µ, ν be partitions of d with kπ,µ,ν 6= 0 and
satisfying `(π) ≤ mn, `(µ) ≤ m, and `(ν) ≤ n. Then there exists a density
operator ρAB on Cn⊗Cm = HA⊗HB with spec(ρAB) = π, spec(ρA) = µ,
and spec(ρB) = ν.

Klyatchko’s proofs are via co-adjoint orbits and vector bundles on flag
varieties, while the proof of Christandl-Mitchison is infomation-theoretic
in flavor. In the spirit of this course, we will give the information-theoretic
proof, as well as information-theoretic proofs of Klyatchko’s results following
[CHM07].

6.2.2. The Keyl-Werner theorem. Informally, the following theorem
states that for a density operator ρ on H, the projection of ρ⊗d onto the

6.2. Projections onto isotypic subspaces of H⊗d 103

GL(H)×Sd submodules SπH⊗[π] of H⊗d for large d is negligible unless π
is close to spec(ρ).

Theorem 6.2.4. Let ρ ∈ End(H) be a density operator, where dimH = n.
Let |π| = d and let Pπ : H⊗d → SπH⊗[π] be the projection operator. Then

trace(Pπρ
⊗d) ≤ (d+ 1)(

n
2)e−dH(π|| spec(ρ)).

Before giving the proof we will need a few more notions from repre-
sentation theory. Let e1, . . . , en be a basis of H and write elements of
the induced basis of H⊗d as eI = ei1⊗ · · ·⊗eid . Define the weight of eI ,
wt(eI) := (w1, . . . , wn) where wj is the number of it’s equal to j.

For a partition π = (p1, . . . , pd), let `(π) denote the number of nonzero
pj ’s, the length of π.

Consider the projection Pπ. If eI contains less than `(π) distinct indices,
then Pπ(eI) = 0, because the projections skew-symmetrize over `(π) slots.
More generally, consider the Young diagram of π: its first column has `
boxes. Say its second column has q2 boxes, then in addition to I containing
` distinct indices, taking away those ` indices, among the remaining indices,
there must be q2 distinct, and taking these away as well, there must be q3

(the height of the third column) distinct indices remaining, etc...

For a partition π, let π′ denote the partition whose Young diagram is
the transpose of the Young diagram of π.

Exercise 6.2.5: Show that for partitions µ, ν of d, that µ ≺ ν if and only
if ν ′ ≺ µ′.

Exercise 6.2.6: Show that the projection of eI to SπV⊗[π] is nonzero if
and only if wt(eI) ≺ π. Hint for the sufficiency: we are projecting to the
entire isotypic component, and one can always construct a Young tableau
tailor made to the ordering of I.

So for example, when π = (d) no basis vector maps to zero and when
π = (1, . . . , 1) = (1d) only basis vectors with weights having at least d
positive wi have nonzero images.

Proof of the Keyl-Werner Theorem. Choose a basis (e1, . . . , en) of H
consisting of eigenvectors of ρ, so the eigenvectors of ρ⊗d are the eI . Write
r = spec(ρ) = (r1, . . . , rn) with rj ≥ rj+1, so ρ⊗d =

∑
I rI |eI〉〈eI |, where

rI = ri1 · · · rid . The eigenvalues that do not project to zero are {rI | wt(eI) ≺
π}. By the definition of the dominance order, these satisfy

rI ≤ rp11 · · · r
pd
d .

We conclude

trace(Pπρ
⊗d) ≤ dim(SπH⊗[π])rp11 · · · r

pd
d .

104 6. Representation theory and Quantum information

To finish the proof we need an estimate of dim(SπH⊗[π]). The dimension of
this space may be computed as follows (see, e.g., **** for proofs): identify
π with its Young diagram, and write x ∈ π for a box in the diagram. define
the hook length of x to be the number of boxes to the right of it in its row,
plus the number of boxes below it in its column, plus one, and define the
content c(x) of x to be zero if x is on the main diagonal, j, if it is on the
j-th diagonal above the main diagonal, and −j if it is on the j-th diagonal
below the main diagonal. For example we have the following hook lengths
for (4, 2, 1, 1):

7 4 2 1
4 1
2
1 .

Then

dimSπCn =
∏
x∈π

n+ c(x)

h(x)
= Π1≤i<j≤n

πi − πj + j − 1

j − i
, and

(6.2.1)

dim[π] =
d!∏

x∈π h(x)
=
d!
∏

1≤s<t≤d `i − `j∏d
u=1 `u!

, where `s := ps + d− s.

(6.2.2)

Exercise 6.2.7: Show that dimSπCn ≤ (d + 1)(
n
2) and d!

Πdj=1(pj+d−j)!
≤

dim[π] ≤ d!∏d
i=1 pi!

.

We conclude

trace(Pπρ
⊗d) ≤ (d+ 1)(

n
2)

d!

Πpi!
rp11 · · · r

pd
d .

Finally

e−dH(π|| spec(ρ)) = exp
(
−d(−

∑
(pi log(ri)− pi log(pi)))

)
= ed

∏
rpii∏
ppii

>
d!

Πpi!
rp11 · · · r

pd
d

where for the last line, recall that m! > (me)m and d =
∑
pi. �

Let SPECn denote the set of possible spectra for density operators on
Cn.

6.2. Projections onto isotypic subspaces of H⊗d 105

Corollary 6.2.8. Let ρ be a density operator and let S ⊂ SPECn. Set

PS :=
∑

|π|=d,π∈S

Pπ.

Then

trace(PXρ
⊗d) ≤ (d+ 1)(

n
2)+n exp (−dminπ∈S H(π|| spec(ρ))) .

Proof. The number of Young diagrams with d boxes in n rows is at most
(d+ 1)n, and we are taking the worst case in the exponential. �

For r ∈ SPECn, let

Bε(r) := {r′ ∈ SPECn | ||r − r′||1 < ε}
Sε,r := SPECn\Bε(r).

Corollary 6.2.9. For all ε, δ > 0, there exists a d0 such that for all d > d0,
trace(PSε,spec(ρ)ρ

⊗d) < δ, i.e., trace(PBε(spec(ρ))ρ
⊗d) ≥ 1− δ.

6.2.3. Proof of Theorem 6.2.1.

Proof of Theorem 6.2.1. It will be more convenient to view the theorem
symmetrically by taking a purification |ψ〉 ∈ HA⊗HB⊗HC , so ρC = ρAB =
traceHA⊗HB (|ψ〉〈ψ|). By Corollary 6.2.9, for all ε, δ > 0, there exists d0 such
that for all d ≥ d0

trace(PBε(spec(ρA))ρ
⊗d
A) ≥ 1− δ

trace(PBε(spec(ρB))ρ
⊗d
B) ≥ 1− δ

trace(PBε(spec(ρC))ρ
⊗d
C) ≥ 1− δ.

Now, for all projection operators P ∈ End(HA), Q ∈ End(HB), R ∈
End(HC), and density operators ρABC on HA⊗HB⊗HC , we have
(6.2.3)

trace((P⊗Q⊗R)ρABC) ≥ trace(PρA) + trace(QρB) + trace(RρC)− 2.

Exercise 6.2.10: Verify (6.2.3). Hint: First show that for all P,Q,

trace((P⊗Q)ρAB) ≥ trace(PρA) + trace(QρB)− 1

by considering trace((IdHA −P)⊗(IdHB −Q)ρAB) ≥ 0.

We obtain

trace
(
PBε(spec(ρA))⊗PBε(spec(ρB))⊗PBε(spec(ρC))(|ψ〉〈ψ|)⊗d

)
≥ 1− 3δ.

Assuming δ < 1
3 , since each of PBε(spec(ρA)), PBε(spec(ρB)), PBε(spec(ρC)) is

a sum of projection operators, there must be one triple (µ, ν, π), with µ ∈
Bε(spec(ρA)), ν ∈ Bε(spec(ρB)), π ∈ Bε(spec(ρC)), with kπ,µ,ν 6= 0 for which
the projection is nonzero. Now just take a sequence of such as ε→ 0. �

106 6. Representation theory and Quantum information

6.2.4. Consequences. We can recover standard facts about von Neumann
entropy from Theorem 6.2.1.

Corollary 6.2.11 (subadditivity of von Neumann entropy). H(ρAB) ≤
H(ρA) +H(ρB).

Proof. Since [µ]⊗[ν] =
⊕

π[π]⊕kπµν , if kπµν 6= 0, then dim([µ]⊗[ν]) ≥
dim[π]. Now take a sequence (πj , µj , νj) as in the proof of Theorem 6.2.1,
so in particular, for each j, dim[πj] ≤ dim[µj] dim[νj]. Write spec(ρAB) =
(pAB1 , . . . , pABmn), by Exercise 6.2.7,

d!

Πx(px + d− x)!
≤ dim[π] ≤ d!

Πxpx!

so 1
dj

log(dim[πj]) ∼ −
∑

log(pj !) tends to −
∑

i p
AB
i log pABi = H(ρAB) and

analogously for H(ρA), H(ρB), so we obtain the result. �

Corollary 6.2.12 (triangle inequality for von Neumann entropy). H(ρAB) ≥
|H(ρA)−H(ρB)|.

This is an immediate consequence of the symmetry of the Kronecker
coefficients and Corollary 6.2.11.

6.2.5. Weights, Cartan products and a result on Kronecker coef-
ficients. Before giving the proof of Theorem 6.2.2 we need a little more
reprsentation theory. We say v ∈ (Cn)⊗d is a weight vector if v =

∑
s cIseIs

where wt(eIs) = wt(eIt) for all s, t in the sum.

Note that for all I, π, the projection Pπ(eI) is either a weight vector of
weight wt(eI) or zero.

A weight vector v is a highest weight vector if g · v = v for all g ∈ Nn,
where Nn ⊂ GLn is the subgroup of matrices with 1’s on the diagonal and
zero’s below the diagonal.

We extend the notion of weight vectors and highest weight vectors to
G = GLm ×GLn ×GLk in the natural way, e.g., the weight of eI⊗fJ⊗hK
is a triple of weights and a weight vector is a highest weight vector if it is
invariant under Nm ×Nn ×Nk.

Fact: If V is an irreducible G-module, where G is reductive group (a class
of groups including GLn and products of general linear groups) then there
exists a unique up to scale highest vector in V .

Exercise 6.2.13: If v ∈ SπCn is a highest weight vector, then wt(v) = π.

Exercise 6.2.14: If v ∈ V ⊗d and w ∈ V ⊗δ are highest weight vectors, then
v⊗w ∈ V ⊗d+δ is a highest weight vector.

6.2. Projections onto isotypic subspaces of H⊗d 107

The following theorem was apparently “known to the experts” in repre-
sentation theory but unknown in the quantum information theory commu-
nity until 2004.

Theorem 6.2.15. If kπ,µ,ν 6= 0 and kπ′,µ′,ν′ 6= 0, then kπ+π′,µ+µ′,ν+ν′ 6= 0.
In particular, if kπ,µ,ν 6= 0, then kMπ,Mµ,Mν 6= 0 for all M ∈ N.

Proof. Let Xµ,µ,ν ∈ Sd(Ck⊗Cm⊗Cn) be a highest weight vector for GLk×
GLm × GLn of weight (π, µ, ν), and let X ′µ′,µ′,ν′ ∈ Sd

′
(Ck⊗Cm⊗Cn) be

a highest weight vector for GLk × GLm × GLn of weight (π′, µ′, ν ′), both
of which exist by the non-vanishing of the Kronecker coefficients in the
hypothesis. Letting W = Ck⊗Cm⊗Cn, Xµ,µ,ν⊗X ′µ′,µ′,ν′ ∈ SdW⊗Sd

′
W is a

G = GLk ×GLm ×GLn highest weight vector. We would like to construct
such a vector in Sd+d′W .

Consider the following diagram, for g ∈ Nk ×Nm ×Nn.

SdW⊗Sd′W g·−→ SdW⊗Sd′W
mult ↓ mult ↓

Sd+d′W
g·−→ Sd+d′W

This diagram is commutative as the vertical arrows come from an ac-
tion of the permutation group and the horizontal from the action of the
general linear group, and these actions commutes. Applying g first then
symmetrizing is the same as just symmetrizing, so the same must be true in
the other order, thus the image of Xµ,µ,ν⊗X ′µ′,µ′,ν′ under the multiplication
map is a highest weight vector or zero, but since the multiplication of two
polynomials is nonzero, we conclude.

�

Let

Kronm,n,k := {(µ, ν, π) | kµ,ν,π 6= 0 and `(µ) ≤ m, `(ν) ≤ n, `(π) ≤ k}.

Theorem 6.2.15 implies that Kronm,n,k is a semi-group.

Fact: Kronm,n,k is finitely generated.

The finite generation is a consequence of Hilbert’s famous basis the-
orem, which, in its simplest form says that ideals in the polynomial ring
C[x1, . . . , xN] are finitely generated. Similarly, if G is a reductive algebraic
group and A is an algebra equipped with a G-action, if A is finitely gener-
ated, then so is the subalgebra of G-invariants AG. The algebra of highest
weight vectors for GLn-modules in the tensor algebra of Cn is finitely gener-
ated by e1∧· · ·∧eu, 1 ≤ u ≤ n, the highest weight vectors for ΛuCn = S1uCn,
and similarly for GLm ×GLn ×GLmn highest weight vectors in the tensor

108 6. Representation theory and Quantum information

algebra of Cm⊗Cn⊗Ck. (Note that the group for which this is the algebra of
invariants is Nm×Nn×Nk which is not reductive.) We must deal with the
highest weight vectors in the symmetric algebra, and the same group. An
extension of Hilbert’s theorem to Grosshans subgroups (see, e.g., [Dol03,
Chap. 4]) gives the result.

Let KRONm,n,k := {(µ, ν, π) | (µ, ν, π) ∈ Kronm,n,k}, the normalized
Kronecker coefficients.

6.2.6. Proofs of Klyatchko’s theorems.

Proof of Theorem 6.2.2. Let (rA, rB, rC) ∈ SPECm,n,mn. Theorem 6.2.1
implies there exists a sequence (µj , νj , πj) with (µj , νj , πj) converging to
(rA, rB, rC).

Let (µα, να, πα) be a finite set of generators for KRONm,n,mn. By hy-
pothesis,

(6.2.4) (rA, rB, rC) =
∑
α

pα(µα, να, πα)

for some pα ∈ Q with pα ≥ 0 and
∑

α pα = 1.

SayKRONm,n,mn has t+1 vertices, in fact we can get away with just t+1
elements on the vertices **so why start with original expression?**. Now,
considering the pα as unknowns, (6.2.4) is a set of m + n + mn equations,
which we can select a subset of t independent equations involving only vertex
elements, and add the constraint that the coefficients sum to one. Since
(rA, rB, rC) is rational, the new solution coefficients, will be as well. Thus
we can write

(rA, rB, rC) =
∑ nφ

N
(µφ, νφ, πφ)

for some non-negative integers nφ, N . Let d be the least common multiple
of the |µφ|’s, so taking M = dN , we have that kMrA,MrB ,MrC 6= 0 as desired.

�

Exercise 6.2.16: Use Theorem 6.2.2 to prove Theorem 6.2.1.

To prove Theorem 6.2.3 we will need the following Lemma:

Lemma 6.2.17. Let (µ, ν, π) ∈ Kronm,n,mn with |µ| = d. Then there exists
|ψ〉 ∈ HA⊗HB⊗HC such that the marginals of the corresponding density

6.2. Projections onto isotypic subspaces of H⊗d 109

operator ρABC = |ψ〉〈ψ| satisfy

|| spec(ρA)− µ||1 ≤ 3mn

√
log(d)

d

|| spec(ρA)− ν||1 ≤ 3mn

√
log(d)

d

|| spec(ρA)− π||1 ≤ 3mn

√
log(d)

d

Theorem 6.2.3 follows, as (jµ, jν, jπ) ∈ Kronm,n,mn, so we may obtain a
sequence of ψ’s whose associated density operator has marginals converging
to (µ, ν, π).

To prove Lemma 6.2.17 we will need the following lemma from classical
probability:

Lemma 6.2.18 (Pinsker’s inequality). Let p, q be probability distributions
on [d]. then

H(p||q) ≥ 1

2 ln 2
||p− q||21.

Proof. First consider the special case d = 2, so p = (p, 1−p), q = (q, 1−q).
Say p ≥ q.

Consider

f(p, q) := H(p||q)− 1

2 ln 2
||p−q||21 = p log

p

q
+(1−p) log

1− p
1− q

− 1

2 ln 2
(2(p−q))2.

Note that f(p, q) = 0 for q = p and we need to show f(p, q) ≥ 0 for q < p.

Exercise 6.2.19: Show that ∂f
∂q ≤ 0 to prove the special case.

Now for the general case, set A := {j ∈ [d] | pj ≥ qj}, write pA =
(
∑

j 6∈A pj ,
∑

j∈A pj) and qA = (
∑

j 6∈A qj ,
∑

j∈A qj) Now

||p− q||1 =
∑
j

|pj − qj |

=
∑
j∈A

pj − qj +
∑
j 6∈A

qj − pj

= |
∑
j∈A

pj − qj |+ |(1−
∑
j 6∈A

pj)− (1−
∑
j 6∈A

qj)|

= ||pA − qA||1.

Let Z be the random variable taking 1 on A and 0 on [d]\A. Then

H(p||q) = H(p(Z)||q(Z)) +H(p||q|Z).

110 6. Representation theory and Quantum information

The first term is H(pA||qA) and the second is non-negative. Putting it all
together

H(p||q) ≥ H(pA||qA) ≥ 1

2 ln 2
||pA − qA||21 =

1

2 ln 2
||p− q||21.

�

Proof of Lemma 6.2.17. Let |v〉 ∈ SµCm⊗SνCn⊗SπCmn ⊂ Sd(Cm⊗Cn⊗Cmn)
have length one. We want to find |ψ〉 ∈ Cm⊗Cn⊗Cmn =: W such that
|ψ〉⊗d is close to |v〉. Since the Veronese variety of d-th powers v̂d(PW)
spans PSdW , at worst |v〉 is a sum of dimW unit vectors in v̂d(PW), all
equidistant from |v〉, so we certainly may attain

|〈ψ⊗d|v〉| ≥ 1

dimSdW
>>

1

(mn)2d
.

Now v is just one vector in SµCm⊗SνCn⊗SπCmn so

trace(Pµ⊗Pν⊗Pπ(|ψ〉〈ψ|)⊗d) ≥ trace(|v〉〈v|(|ψ〉〈ψ|)⊗d) = |〈ψ⊗d|v〉|2 > 1

(mn)d
.

In particular

trace(Pµρ
⊗d
A) = trace(Pµ⊗ IdHB ⊗ IdHC (|ψ〉〈ψ|)⊗d) ≥ 1

(mn)d
.

On the other hand, the Keyl-Werner theorem 6.2.4 says

trace(Pµρ
⊗d
A) ≤ (d+ 1)(

m
2)e−dH(µ| spec(ρA)),

so

H(µ|| spec(ρA)) ≤
(
m
2

)
log(d+ 1)m2n2 log(d)

d
.

Exercise 6.2.20: Finish the proof by using Pinsker’s inequality.

�

Combining the theorems we also conclude

Specm,n,mn = KRONm,n,mn.

In particular, Specm,n,mn is a convex polytope.

Remark 6.2.21. We can use quantum theory to deduce representation-
theoretic consequences: kµ,ν,π 6= 0 implies H(π) ≤ H(µ) + H(ν), H(µ) ≤
H(π) +H(ν), and H(ν) ≤ H(µ) +H(π).

Hints and Answers to
Selected Exercises

Chapter 1.

1.2.3 see Figure 1.2.1.

1.2.4 Write(
DFTM ∆MDFTM
DFTM −∆MDFTM

)
=

(
IdM ∆M

− IdM −∆M

)(
DFTM 0

0 DFTM

)
.

Also note that a k × k permutation matrix has k nonzero entries, and the
product of two permutation matrices is a permutation matrix.

?? Choose the first four rows and last four columns. One obtains a 4 × 4
matrix M ′ and the associated tensor T ′, so R(Taft,3) ≥ 8+R(T ′). Iterating
the method twice yields R(Taft,3) ≥ 8 + 4 + 2 + 1 = 15.

Chapter 2.

2.1.5 Consider 〈vi|vj〉 = 〈Avi|Avj〉.
2.2.9 It is sufficient to work in bases, i.e., with matrices. First prove the

case X is diagonal, then the case X is diagonalizable, then either write
X = Xs +Xn as the sum of a diagonlizable matrix and a nilpotent matrix
or argue that the diagonalizable matrices is a dense open subset in the space
of all matrices.

2.2.11 First consider the case X is diagonal, and use that the eigenvalues
of a Hermitian matrix are real.

2.5.3 7
8 .

111

112 Hints and Answers to Selected Exercises

Chapter 3.

3.1.9 Consider the binomial coefficients in the expansion of (x+ a)N .

3.1.5 First do the case a = 2`. Then show the general case by using the
binary expansion of a.

3.5.5 Write x = bxc+{x}. If {x} < 1
2 , then 2x = 2bxc+{2x} and therefore

b2xc = 2bxc. If If {x} ≥ 1
2 , then b2xc = b(2bxc)c+ 1.

3.5.6 Use (1.3.9).

Chapter 4.

4.4.6 Prove an upper and a lower bound for the quantity.

5.1.1

Pr(span{M1,M2}) = 1

Pr(M1) = |α|2

Pr(M2) =
1

2
|α+ β|2

Pr(M1 ∩M2) = 0

5.1.5 Use that any X ∈ End(H) may be uniquely written as a sum of a
Hermitian and an anti-Hermitian (i.e., i times a Hermitian) operator.

5.1.13 Use the Cauchy-Schwartz inequality, in the form | trace(ABρ)|2 ≤
trace((Aρ)2) trace((Bρ)2).

5.2.2 Use the polar or singular value decomposition.

Chapter 5.

5.3.2 Note that transpose⊗ Id(
∑

i,j |ii〉〈jj|) =
∑

i,j |ji〉〈ij|.
5.3.13 Use Theorem 5.3.11 and the Cauchy-Schwartz inequality.

5.4.6 Write ρAB =
∑

ij λi,j |vi〉〈vi|⊗|wj〉〈wj |, the eigenbasis decomposition.

Bibliography

[Aar13] Scott Aaronson, Quantum computing since Democritus, Cambridge Univer-
sity Press, Cambridge, 2013. MR 3058839

[AB09] Sanjeev Arora and Boaz Barak, Computational complexity, Cambridge
University Press, Cambridge, 2009, A modern approach. MR 2500087
(2010i:68001)

[Ad89] V. I. Arnol′ d, Mathematical methods of classical mechanics, Graduate
Texts in Mathematics, vol. 60, Springer-Verlag, New York, [1989?], Trans-
lated from the 1974 Russian original by K. Vogtmann and A. Weinstein,
Corrected reprint of the second (1989) edition. MR 1345386

[Adl78] Leonard Adleman, Two theorems on random polynomial time, 19th Annual
Symposium on Foundations of Computer Science (Ann Arbor, Mich., 1978),
IEEE, Long Beach, Calif., 1978, pp. 75–83. MR 539832

[Ahl78] Lars V. Ahlfors, Complex analysis, third ed., McGraw-Hill Book Co., New
York, 1978, An introduction to the theory of analytic functions of one
complex variable, International Series in Pure and Applied Mathematics.
MR 510197

[AKS04] Manindra Agrawal, Neeraj Kayal, and Nitin Saxena, PRIMES is in P, Ann.
of Math. (2) 160 (2004), no. 2, 781–793. MR 2123939

[BCHW16] F. G. S. L. Brandao, M. Christandl, A. W. Harrow, and M. Walter, The
Mathematics of Entanglement, ArXiv e-prints (2016).

[Bel64] J.S. Bell, On the einstein-podolsky-rosen paradox, Physics 1 (1964), 195–
200.

[Bir46] Garrett Birkhoff, Three observations on linear algebra, Univ. Nac. Tu-
cumán. Revista A. 5 (1946), 147–151. MR 0020547

[BW92] Charles H. Bennett and Stephen J. Wiesner, Communication via one- and
two-particle operators on einstein-podolsky-rosen states, Phys. Rev. Lett.
69 (1992), 2881–2884.

[CHM07] Matthias Christandl, Aram W. Harrow, and Graeme Mitchison, Nonzero
Kronecker coefficients and what they tell us about spectra, Comm. Math.
Phys. 270 (2007), no. 3, 575–585. MR MR2276458 (2007k:20029)

113

114 Bibliography

[CHSH69] John F. Clauser, Michael A. Horne, Abner Shimony, and Richard A. Holt,
Proposed experiment to test local hidden-variable theories, Phys. Rev. Lett.
23 (1969), 880–884.

[Chu36] Alonzo Church, An Unsolvable Problem of Elementary Number Theory,
Amer. J. Math. 58 (1936), no. 2, 345–363. MR 1507159

[CM06] Matthias Christandl and Graeme Mitchison, The spectra of quantum states
and the Kronecker coefficients of the symmetric group, Comm. Math. Phys.
261 (2006), no. 3, 789–797. MR 2197548

[CT65] James W. Cooley and John W. Tukey, An algorithm for the machine
calculation of complex Fourier series, Math. Comp. 19 (1965), 297–301.
MR 0178586

[CW04] Matthias Christandl and Andreas Winter, “Squashed entanglement”: an
additive entanglement measure, J. Math. Phys. 45 (2004), no. 3, 829–840.
MR 2036165

[Dol03] Igor Dolgachev, Lectures on invariant theory, London Mathematical Soci-
ety Lecture Note Series, vol. 296, Cambridge University Press, Cambridge,
2003. MR MR2004511 (2004g:14051)

[EPR35] A. Einstein, B. Podolsky, and N. Rosen, Can quantum-mechanical descrip-
tion of physical reality be considered complete?, Phys. Rev. 47 (1935), 777–
780.

[Erd47] P. Erdös, Some remarks on the theory of graphs, Bull. Amer. Math. Soc.
53 (1947), 292–294. MR 0019911

[FH91] William Fulton and Joe Harris, Representation theory, Graduate Texts in
Mathematics, vol. 129, Springer-Verlag, New York, 1991, A first course,
Readings in Mathematics. MR 1153249 (93a:20069)

[Gau] C. F. Gauss, Nachlass: Theoria interpolationis methodo nova tractata,
gauss, werke, band 3.

[GHIL16] Fulvio Gesmundo, Jonathan D. Hauenstein, Christian Ikenmeyer, and J. M.
Landsberg, Complexity of linear circuits and geometry, Found. Comput.
Math. 16 (2016), no. 3, 599–635. MR 3494506

[Gle11] James Gleick, The information, Pantheon Books, 2011.

[Har01] L. Hardy, Quantum Theory From Five Reasonable Axioms, eprint
arXiv:quant-ph/0101012 (2001).

[HLP52] G. H. Hardy, J. E. Littlewood, and G. Pólya, Inequalities, Cambridge, at
the University Press, 1952, 2d ed. MR 0046395

[Kle] O. Klein.

[KLPSMN09] Abhinav Kumar, Satyanarayana V. Lokam, Vijay M. Patankar, and Jayalal
Sarma M. N., Using elimination theory to construct rigid matrices, Foun-
dations of software technology and theoretical computer science—FSTTCS
2009, LIPIcs. Leibniz Int. Proc. Inform., vol. 4, Schloss Dagstuhl. Leibniz-
Zent. Inform., Wadern, 2009, pp. 299–310. MR 2870721

[Kly04] A. Klyachko, Quantum marginal problem and representations of the sym-
metric group, preprint arXiv:quant-ph/0409113v1 (2004).

[KSV02] A. Yu. Kitaev, A. H. Shen, and M. N. Vyalyi, Classical and quantum compu-
tation, Graduate Studies in Mathematics, vol. 47, American Mathematical
Society, Providence, RI, 2002, Translated from the 1999 Russian original
by Lester J. Senechal. MR 1907291

Bibliography 115

[Lan61] R. Landauer, Irreversibility and heat generation in the computing process,
IBM Journal of Research and Development 5 (1961), 183–191.

[Lan17] J.M. Landsberg, Geometry and complexity theory, Cambridge studies in
advanced mathematics, vol. 169, Cambridge Univ. Press, 2017.

[Lie73] Elliott H. Lieb, Convex trace functions and the Wigner-Yanase-Dyson con-
jecture, Advances in Math. 11 (1973), 267–288. MR 0332080

[Lyo09] Jonathan Lyons, The house of wisdom, Bloomsbury Press, 2009.

[Mac95] I. G. Macdonald, Symmetric functions and Hall polynomials, second ed.,
Oxford Mathematical Monographs, The Clarendon Press Oxford University
Press, New York, 1995, With contributions by A. Zelevinsky, Oxford Science
Publications. MR 1354144 (96h:05207)

[Mir58] L. Mirsky, Proofs of two theorems on doubly-stochastic matrices, Proc.
Amer. Math. Soc. 9 (1958), 371–374. MR 0095180

[NC00] Michael A. Nielsen and Isaac L. Chuang, Quantum computation and
quantum information, Cambridge University Press, Cambridge, 2000.
MR MR1796805 (2003j:81038)

[Nie99] M. A. Nielsen, Conditions for a class of entanglement transformations, P
H Y S I C A L R E V I E W L E T T E R S 83 (1999), 436–439.

[Rab80] Michael O. Rabin, Probabilistic algorithm for testing primality, J. Number
Theory 12 (1980), no. 1, 128–138. MR 566880

[Rus04] M. B. Ruskai, Lieb’s simple proof of concavity of Tr Aˆp Kˆ* Bˆ(1-p) K
and remarks on related inequalities, eprint arXiv:quant-ph/0404126 (2004).

[Sch95] Benjamin Schumacher, Quantum coding, Phys. Rev. A (3) 51 (1995), no. 4,
2738–2747. MR 1328824

[Sch03] Rüdiger Schack, Quantum theory from four of Hardy’s axioms, Found. Phys.
33 (2003), no. 10, 1461–1468, Special issue dedicated to David Mermin,
Part I. MR 2039620

[Sha48] C. E. Shannon, A mathematical theory of communication, Bell System Tech.
J. 27 (1948), 379–423, 623–656. MR 0026286

[Sho94] Peter W. Shor, Algorithms for quantum computation: discrete logarithms
and factoring, 35th Annual Symposium on Foundations of Computer Sci-
ence (Santa Fe, NM, 1994), IEEE Comput. Soc. Press, Los Alamitos, CA,
1994, pp. 124–134. MR 1489242

[Sho97] , Polynomial-time algorithms for prime factorization and discrete
logarithms on a quantum computer, SIAM J. Comput. 26 (1997), no. 5,
1484–1509. MR 1471990

[Sti55] W. Forrest Stinespring, Positive functions on C∗-algebras, Proc. Amer.
Math. Soc. 6 (1955), 211–216. MR 0069403

[Str69] Volker Strassen, Gaussian elimination is not optimal, Numer. Math. 13
(1969), 354–356. MR 40 #2223

[Val77] Leslie G. Valiant, Graph-theoretic arguments in low-level complexity, Math-
ematical foundations of computer science (Proc. Sixth Sympos., Tatranská
Lomnica, 1977), Springer, Berlin, 1977, pp. 162–176. Lecture Notes in Com-
put. Sci., Vol. 53. MR 0660702 (58 #32067)

[VSD86] A Vergis, K Steiglitz, and B Dickinson, The complexity of analog computa-
tion, Math. Comput. Simul. 28 (1986), no. 2, 91–113.

Index

E[X], 6

O, 6

σ(X): standard deviation, 7

var(X), 7

o, 6

big O notation, 6

convolution, 2

DFT, 3

discrete Fourier transform, 3

discrete logarithm, 46

expectation, 6

iid, 6

marginal distributions, 7

probability distribution

discrete, 6

random variable

discrete, 6

random variables

identically distributed, 6

independent, 6

standard deviation, 7

strong law of large numbers, 7

tensor product, 7

variance, 7

weak law of large numbers, 7

Young diagram, 91

117

