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Preface

The purpose of this book is to describe recent applications of algebraic geom-
etry and representation theory to complexity theory. I focus on two central
problems: the complexity of matrix multiplication and Valiant’s algebraic
variants of P v. NP.

I have attempted to make this book accessible to both computer scien-
tists and geometers, and the exposition as self-contained as possible. The
two main goals of this book are to convince computer scientists of the util-
ity of techniques from algebraic geometry and representation theory, and
to show geometers beautiful, interesting, and important questions arising in
complexity theory.

Computer scientists have made extensive use of tools from mathemat-
ics such as combinatorics, graph theory, probability, and especially linear
algebra. I hope to show that even elementary techniques from algebraic
geometry and representation theory can substantially advance the search
for lower, and even upper bounds in complexity theory. For questions such
as lower bounds for the complexity of matrix multiplication and Valiant’s
algebraic variants of P v. NP, I believe this additional mathematics will be
necessary for further advances. I have attempted to make these techniques
accessible, introducing them as needed to deal with concrete problems.

For geometers, I expect that complexity theory will be as good a source
for questions in algebraic geometry as modern physics has been. Recent work
has indicated that subjects such as Fulton-McPherson intersection theory,
the Hilbert scheme of points, and the Kempf-Weyman method for computing
minimal free resolutions all have something to add to complexity theory. In
addition, complexity theory has a way of rejuvenating old questions that
had been nearly forgotten but remain beautiful and intriguing: questions of

ix



x Preface

Hadamard, Darboux, Luroth, and the classical Italian school. At the same
time, complexity theory has brought different areas of mathematics together
in new ways- combinatorics, representation theory and algebraic geometry
all play a role in understanding the coordinate ring of the orbit closure of
the determinant.

This book evolved from several classes I have given on the subject: a
spring 2013 semester course at Texas A&M, summer courses at: Sculoa
Matematica Inter-universitaria, Cortona (July 2012), CIRM, Trento (June
2014), and an IMA summer school at U. Chicago (July 2014), KAIST (Au-
gust 2015), a fall 2016 semester course at Texas A&M, and most importantly,
a fall 2014 semester course at UC Berkeley as part of the semester long pro-
gram, Algorithms and Complexity in Algebraic Geometry, at the Simons
Institute for the Theory of Computing.

Overview. To be written

Prerequisites. I have attempted to limit prerequisites to a solid back-
ground in linear algebra, although such a reader would have to accept several
basic results in algebraic geometry without proof (e.g. Noether normaliza-
tion). In Chapter 6 some further, but still elementary algebraic geometry
is needed, but nothing beyond [Sha94] is used. Starting with Chapter 9,
some advanced results from algebraic geometry are needed.

Acknowledgments. To be written later

Layout. To be written later

Dependency of chapters. To be written later



Chapter 1

Introduction

A dramatic leap in signal processing occurred in the 1960’s with the im-
plementation of the fast Fourier transform, an algorithm that surprised the
engineering community with its efficiency.1 How could one predict when
fast, perhaps non-intuitive, algorithms exist? Can we prove when they do
not? Complexity theory addresses these questions.

This book is concerned with the use of geometry in attaining these goals.
I focus primarily on two central questions: the complexity of matrix mul-
tiplication, and algebraic variants of the famous P versus NP problem. In
the first case, a surprising algorithm exists and it is conjectured that even
more amazing algorithms exist. In the second case it is conjectured that no
surprising algorithms exist.

1.1. Matrix multiplication

Much of scientific computation is linear algebra, and the basic operation
of linear algebra is matrix multiplication. All operations of linear algebra;
solving systems of linear equations, computing determinants etc., use matrix
multiplication.

1.1.1. The standard algorithm. The standard algorithm for multiplying
matrices is row-column multiplication: Let A,B be 2× 2 matrices

A =

(
a1

1 a1
2

a2
1 a2

2

)
, B =

(
b11 b12
b21 b22

)
.

1To this day, it is not known if there is an even more efficient algorithm than the FFT. See

[Val77, KLPSMN09, GHIL].

1



2 1. Introduction

Remark 1.1.1.1. While computer scientists generally keep all indices down
(to distinguish from powers), I use the convention from differential geometry
that in a matrix X, the entry in the i-th row and j-th column is labeled xij .

The usual algorithm to calculate the matrix product C = AB is

c1
1 = a1

1b
1
1 + a1

2b
2
1,

c1
2 = a1

1b
1
2 + a1

2b
2
2,

c2
1 = a2

1b
1
1 + a2

2b
2
1,

c2
2 = a2

1b
1
2 + a2

2b
2
2.

It requires 8 multiplications and 4 additions to execute, and applied to n×n
matrices, it uses n3 multiplications and n3 − n2 additions.

This algorithm has been around for a long time.

In 1968, V. Strassen set out to prove the standard algorithm was optimal
in the sense that no algorithm using fewer multiplications exists. Since that
might be difficult to prove, he set out to show it was true at least for two by
two matrices – at least over Z2. His spectacular failure opened up a whole
new area of research:

1.1.2. Strassen’s algorithm for multiplying 2 × 2 matrices using
seven scalar multiplications [Str69]. Set

I = (a1
1 + a2

2)(b11 + b22),(1.1.1)

II = (a2
1 + a2

2)b11,

III = a1
1(b12 − b22)

IV = a2
2(−b11 + b21)

V = (a1
1 + a1

2)b22

V I = (−a1
1 + a2

1)(b11 + b12),

V II = (a1
2 − a2

2)(b21 + b22),

Exercise 1.1.2.1: (1) Show that if C = AB, then

c1
1 = I + IV − V + V II,

c2
1 = II + IV,

c1
2 = III + V,

c2
2 = I + III − II + V I.

This raises questions:

(1) Can one find an algorithm that uses just six multiplications?

(2) Could Strassen’s algorithm have been predicted in advance?
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(3) Since it uses more additions, is it actually better in practice?

(4) This algorithm was found by accident and looks ad-hoc. Is there
any way to make sense of it? E.g., is there any way to see that it
multiplies matrices other than a brute force calculation?

(5) What about algorithms for n× n matrices?

I address the last question first:

1.1.3. Fast multiplication of n × n matrices. In Strassen’s algorithm,
the entries of the matrices need not be scalars - they could themselves be
matrices. Let A,B be 4× 4 matrices, and write

A =

(
a1

1 a1
2

a2
1 a2

2

)
, B =

(
b11 b12
b21 b22

)
.

where aij , b
i
j are 2 × 2 matrices. One may apply Strassen’s algorithm to

get the blocks of C = AB in terms of the blocks of A,B performing 7
multiplications of 2× 2 matrices. Since one can apply Strassen’s algorithm
to each block, one can multiply 4× 4 matrices using 72 = 49 multiplications
instead of the usual 43 = 64.

If A,B are 2k × 2k matrices, one may multiply them using 7k multi-
plications instead of the usual 8k. If n is not a power of two, enlarge the
matrices with blocks of zeros to obtain matrices whose size is a power of two.
Asymptotically, by recursion and block multiplication one can multiply n×n
matrices using approximately nlog2(7) ' n2.81 arithmetic operations. To see
this, let n = 2k and write 7k = (2k)a so k log2 7 = ak log2 2 so a = log2 7.

1.1.4. Regarding the number of additions. The number of additions in
Strassen’s algorithm also grows like n2.81, so this algorithm is more efficient
in practice when the matrices are large. For any efficient algorithm for
matrix multiplication, the total complexity is governed by the number of
multiplications, see [BCS97, Prop. 15.1]. This is fortuitous because there
is a geometric object, tensor rank, that counts the number of multiplications
in an optimal algorithm (within a factor of two), and thus provides us with
a geometric measure of the complexity of matrix multiplication.

Just how large matrices one needs to obtain a substantial savings with
Strassen’s algorithm (one needs matrices of size about two thousand) and
other practical matters are addressed in [BB].

1.1.5. An even better algorithm? Regarding question (1) above, one
cannot improve upon Strassen’s algorithm for 2× 2 matrices. This was first
shown in [Win71]. I will give a proof, using geometry and representation
theory, of a stronger statement in §8.3.2. However for n > 2 very little is
known, as is discussed below and in Chapters 2-5. It is known that better
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algorithms than Strassen’s exist for n× n matrices when n is large, even if
they are not written down explicitly.

1.1.6. How to predict in advance? The answer to question (2) is yes!
In fact it could have been predicted 100 years ago.

Had someone asked Terracini in 1913, he would have been able to predict
the existence of something like Strassen’s algorithm from geometric consider-
ations alone. Matrix multiplication is a bilinear map (see §1.1.9). Terracini
would have been able to tell you, thanks to a simple parameter count (see
§2.1.6), that even a general bilinear map C4 × C4 → C4 can be executed
using seven multiplications and thus, fixing any ε > 0, one can perform any
bilinear map C4×C4 → C4 within an error of ε using seven multiplications.

1.1.7. Conventions/Notation. In this book, for simplicity, I work exclu-
sively over the complex numbers.

For functions f, g of a real variable x: f(x) = O(g(x)) if there exists a
constant C > 0 and x0 such that |f(x)| ≤ C|g(x)| for all x ≥ x0. f(x) =

o(g(x)) if limx→∞
|f(x)|
|g(x)| = 0, f(x) = Ω(g(x)) if there exists a constant C > 0

and x0 such that C|f(x)| ≥ |g(x)| for all x ≥ x0, and f(x) = Θ(g(x)) if
f(x) = O(g(x)) and f(x) = Ω(g(x)).

1.1.8. An astonishing conjecture. The following quantity is the stan-
dard measure of the complexity of matrix multiplication:

Definition 1.1.8.1. The exponent ω of matrix multiplication is

ω := inf{h ∈ R | n× n matrices may be multiplied using

O(nh) arithmetic operations}

where inf denotes the infimum.

By Theorem 1.1.11.3 below, Strassen’s algorithm shows ω ≤ log2(7) <
2.81, and it is easy to prove ω ≥ 2. Determining ω is a central open problem
in complexity theory. After Strassen’s work it was shown ω ≤ 2.79 [Bin80]
in 1979, then ω ≤ 2.55 [Sch81] in 1981, then ω ≤ 2.48[Str87] in 1987
and then ω ≤ 2.38 [CW90] in 1989, which might have led people in 1990
to think a resolution was near. However, then nothing happened for over
twenty years, and the current “world record” of ω < 2.373 [Wil, Gal, Sto]
is not much of an improvement since 1990. These results are the topic of
Chapter 3.

This work has led to the following astounding conjecture:

Conjecture 1.1.8.2. ω = 2.
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That is, it is conjectured that asymptotically, it is nearly just as easy to
multiply matrices as it is to add them!

Although I am unaware of anyone taking responsibility for the conjec-
ture, all computer scientists I have discussed it with expect it to be true.

Since I have no opinion on whether the conjecture should be true or
false, I discuss both upper and lower bounds for the complexity of matrix
multiplication, focusing on the role of geometry.

1.1.9. Matrix multiplication as a bilinear map. I will use the notation

M〈n,m,l〉 : Cn×m × Cm×l → Cn×l

for matrix multiplication of an n ×m matrix with an m × l matrix, and
write M〈n〉 = M〈n,n,n〉.

Matrix multiplication is a bilinear map, that is, for all Xj , X ∈ Cn×m,

Yj , Y ∈ Cm×l and aj , bj ∈ C,

M〈n,m,l〉(a1X1 + a2X2, Y ) = a1M〈n,m,l〉(X1, Y ) + a2M〈n,m,l〉(X2, Y ), and

M〈n,m,l〉(X, b1Y1 + b2Y2) = b1M〈n,m,l〉(X,Y1) + b2M〈n,m,l〉(X,Y2).

The set of all bilinear maps Ca × Cb → Cc is a vector space. (In our
case a = nm, b = ml, and c = ln.) Write a1, . . . , aa for a basis of Ca and
similarly for Cb,Cc. Then T : Ca × Cb → Cc is uniquely determined by its
action on basis vectors,

(1.1.2) T (ai, bj) =

c∑
k=1

tijkck.

That is, the vector space of bilinear maps Ca × Cb → Cc, which I will
denote by Ca∗⊗Cb∗⊗Cc, has dimension abc. (The notation is motivated in
§2.1.) If we represent a bilinear map by a three dimensional matrix, it may
be thought of as eating two column vectors and returning a third column
vector.

1.1.10. Ranks of linear maps. I use the notation Ca for the column
vectors of height a and Ca∗ for the row vectors.

Definition 1.1.10.1. A linear map f : Ca → Cb has rank one if there exist
α ∈ Ca∗ and w ∈ Cb such that f(v) = α(v)w. (In other words, every rank
one matrix is the product of a row vector with a column vector.) In this
case I write f = α⊗w. The rank of a linear map h : Ca → Cb is the smallest
r such that h may be expressed as a sum of r rank one linear maps.

Given an a×b matrix X, one can always change bases, i.e., multiply X
on the left by an invertible a × a matrix and on the right by an invertible
b×b matrix, to obtain a matrix with some number of 1’s along the diagonal
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and zeros elsewhere. The number of 1’s appearing is called the rank of the
matrix and is the rank of the linear map X determines. In other words,
the only property of a linear map Ca → Cb that is invariant under changes
of bases is its rank, and for each rank we have a normal form. This is not
surprising because the dimension of the space of such linear maps is ab, we
have a2 parameters of changes of bases in Ca that we can make in a matrix
representing the map, and a2 + b2 > ab. Another way of saying a matrix
X has rank at most r is that it is possible to write X as the sum of r rank
one matrices.

1.1.11. Tensor rank. For bilinear maps Ca×Cb → Cc we are not so lucky
as with linear maps, as usually abc > a2 + b2 + c2, i.e., there are fewer free
parameters of changes of bases than the number of parameters needed to
describe the map. This already indicates why the study of bilinear maps is
vastly more complicated than the study of linear maps.

Nonetheless, there are properties of a bilinear map that will not change
under a change of basis. The main property we will use is tensor rank. It is
a generalization of the rank of a linear map. Tensor rank is defined properly
in §2.1.3. Informally, a bilinear map T has tensor rank one if it can be
computed with one multiplication. More precisely, T has tensor rank one if
in some coordinate system the multi-dimensional matrix representing it has
exactly one nonzero entry. This may be expressed without coordinates:

Definition 1.1.11.1. T ∈ Ca∗⊗Cb∗⊗Cc has tensor rank one if there exist
row vectors α ∈ Ca∗, β ∈ Cb∗ and a column vector w ∈ Cc such that
T (u, v) = α(u)β(v)w. T has tensor rank r if it can be written as the sum
of r rank one tensors but no fewer, in which case we write R(T ) = r. Let
σ̂0
r = σ̂0

r,a,b,c denote the set of bilinear maps in Ca∗⊗Cb∗⊗Cc of tensor rank
at most r.

Remark 1.1.11.2. The peculiar notation σ̂0
r will be explained in §4.8.1. To

have an idea where it comes from for now: σr = σr(Seg(Pa−1×Pb−1×Pc−1))
is standard notation in algebraic geometry for the r-th secant variety of the
Segre variety, which is the object we will study. The hat denotes its cone in
affine space and the 0 indicates the subset of this set consisting of tensors
of rank at most r.

The following theorem shows that tensor rank is a legitimate measure
of complexity:

Theorem 1.1.11.3. (Strassen [Str69], also see [BCS97, §15.1] ) R(M〈n〉) =
O(nω).

Our goal is thus to determine, for a given r, whether or not matrix
multiplication lies in σ̂0

r .
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1.1.12. How to use algebraic geometry to prove lower bounds for
the complexity of matrix multiplication? Algebraic geometry deals
with the study of zero sets of polynomials. By a polynomial on the space
of bilinear maps Ca∗⊗Cb∗⊗Cc, I mean a polynomial in the coefficients tijk,
i.e., in abc variables. Algebraic geometry may be used to prove both upper
and lower complexity bounds. For lower bounds:

Plan to show M〈n,m,l〉 6∈ σ̂0
r via algebraic geometry.

• Find a polynomial P on the space of bilinear maps Cnm × Cml →
Cnl, such that P (T ) = 0 for all T ∈ σ̂0

r .

• Show that P (M〈n,m,l〉) 6= 0.

Chapters 2 and 5 discuss techniques for finding such polynomials, using
algebraic geometry and representation theory, the study of symmetry in
linear algebra.

1.1.13. Representation theory. Representation theory is the systematic
study of symmetry in linear algebra. The study of polynomials is facilitated
by sorting the polynomials by degree. When the objects one is interested
in have symmetry, one can make a finer sorting of polynomials. This finer
sorting has been essential for proving lower bounds for the complexity of
M〈n〉.

We will frequently be concerned with properties of bilinear maps, ten-
sors, polynomials, etc.. that are invariant under changes of bases. Repre-
sentation theory will facilitate the exploitation of these properties.

Let V be a complex vector space of dimension v. (I reserve the notation
Cv for the column vectors with their standard basis.) Let GL(V ) denote the
group of invertible linear maps V → V . If we have fixed a basis of V , this is
the group of invertible v×v matrices. If G is a group and µ : G→ GL(V ) is
a group homomorphism, we will say G acts on V and that V is a G-module.

For example the permutation group on n elements Sn acts on Cn by,
for a permutation σ ∈ Sn,

σ

v1
...
vn

 =

vσ−1(1)
...

vσ−1(n)


i.e., the image of Sn in GLn is the set of permutation matrices.

An action is irreducible if there does not exist a proper subspace U ⊂ V
such that µ(g)u ∈ U for all u ∈ U and g ∈ G.
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The action of Sn on Cn is reducible since the line spanned by e1+· · ·+en
is preserved by Sn. Note that the subspace spanned by e1−e2, . . . , e1−en is
also preserved by Sn. Both these Sn-modules are irreducible. For reasons
that will be explained in §8.6, the first is denoted [n] and the second is
denoted [n− 1, n]

For another example of a group action, the group GL(V ) acts on the
space End(V ) of linear maps V → V , by µEnd(V )(g)(f) = g ◦ f ◦ g−1, i.e.,

µEnd(V )(g)(f)(v) = g(f(g−1(v))). It also acts on the space of bilinear forms
V ×V → C, which I will denote V ∗⊗V ∗, by µV ∗⊗V ∗(g)(b)(v, w) = b(gv, gw).
Note that if we choose a basis of V , then both End(V ) and V ∗⊗V ∗ are
represented by the space of v × v matrices. However the group actions are
very different. In the first case, the action on a matrix X is X 7→ gXg−1.
In the second the action on a matrix Y (so the map is (v, w) 7→ vTY w) is
Y 7→ gTY g. There is a dramatic difference in the two spaces as GL(V )-
modules.

The essential point we will use is: the sets we are looking for polynomials
on, such as X = σ̂0

r ⊂ Cabc are invariant under the action of groups:

Definition 1.1.13.1. A set X ⊂ V is invariant under a group G ⊂ GL(V )
if for all x ∈ X and all g ∈ G, g(x) ∈ X. Let GX ⊂ GL(V ) denote the group
preserving X, the largest subgroup of GL(V ) under which X is invariant.

When one says that an object has symmetry, it means the object is
invariant under the action of a group.

In the case at hand, X = σ̂0
r ⊂ V = A⊗B⊗C. Then σ̂0

r is invariant
under the image of the group GL(A)×GL(B)×GL(C) in GL(V ), i.e., this
image lies in Gσ̂0

r
.

Definition 1.1.13.2. For a set X ⊂ V , we will say a polynomial P vanishes
on X if P (x) = 0 for all x ∈ X. The set of all polynomials vanishing on X
forms an ideal in the space of polynomials on V , called the ideal of X and
denoted I(X).

If any polynomial P is in the ideal of X, then g · P will also vanish on
X for all g ∈ GX . That is:

The ideal of polynomials vanishing on X is a GX-module.

This remark is the cornerstone to this book.

1.1.14. How to use algebraic geometry to prove upper bounds for
the complexity of matrix multiplication? Based on the above discus-
sion, one could try:

Plan to show M〈n,m,l〉 ∈ σ̂0
r with algebraic geometry.
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• Find a set of polynomials {Pj} on the space of bilinear maps Cnm×
Cml → Cnl such that T ∈ σ̂0

r if and only if Pj(T ) = 0 for all j.

• Show that Pj(M〈n,m,l〉) = 0 for all j.

This plan has a problem: Consider the set S = {(w, z) ∈ C2 | z = 0, w 6=
0}, whose real picture looks like the z-axis with the origin removed.

Any polynomial P ∈ I(S), i.e., any P that evaluates to zero at all points
of S, will also be zero at the origin.

Exercise 1.1.14.1: (1!) Prove the above assertion.

Just as in this example, the zero set of the polynomials vanishing on σ̂0
r

is larger than σ̂0
r when r > 1 (see §2.1.5) so one cannot certify membership

in σ̂0
r via polynomials.

Definition 1.1.14.2. Define the Zariski closure of a set S ⊂ V , denoted S,
to be the set of u ∈ V such that P (u) = 0 for all P ∈ I(S). A set S is said
to be Zariski closed or an algebraic variety if S = S, i.e., S is the common
zero set of a collection of polynomials.

In the example above, S = {(w, z) ∈ C2 | z = 0}.
When U = Ca∗⊗Cb∗⊗Cc, let σ̂r := σ̂0

r denote the Zariski closure of the
set of bilinear maps of tensor rank at most r.

We will see that for almost all a,b, c and r, σ̂0
r ( σ̂r. The problem with

the above plan is that it would only show M〈n〉 ∈ σ̂r.

Definition 1.1.14.3. T ∈ Ca⊗Cb⊗Cc has border rank r if T ∈ σ̂r and
T 6∈ σ̂r−1. In this case we write R(T ) = r.

For the study of the exponent of matrix multiplication, we have good
luck:

Theorem 1.1.14.4 (Bini [Bin80], see §3.2). R(M〈n〉) = O(nω).

That is, although we may have R(M〈n〉) < R(M〈n〉), they are not dif-
ferent enough to effect the exponent. In other words, as far as the exponent
is concerned, the plan does not have a problem.

For n = 2, we will see that R(M〈2〉) = R(M〈2〉) = 7. It is expected that
for n > 2, R(M〈n〉) < R(M〈n〉). For n = 3 we only know 15 ≤ R(M〈3〉) ≤ 20

and 19 ≤ R(M〈3〉) ≤ 23. In general, we know R(M〈n〉) ≥ 3n2 − o(n), see

§2.7, and R(M〈n〉) ≥ 2n2 − dlog2(n)e − 1, see §5.4.3.
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1.1.15. Symmetry and algorithms. In this subsection I mention three
uses of symmetry groups in the study of algorithms.

I first address the question raised in §1.1.2: Can we make sense of (1.1.1)?
Just as the set σ̂r has a symmetry group, the point M〈l,m,n〉 also has a
symmetry group that includes GLl × GLm × GLn. (Do not confuse this
with GLlm×GLmn×GLnl which preserves σ̂0

r .) If we let this group act on
Strassen’s algorithm for M〈2〉, in general we get a new algorithm that also
computes M〈2〉. But perhaps the algorithm itself has symmetry.

It does, and the first step to seeing the symmetry is to put all three
vector spaces on an equal footing. A linear map f : A → B determines a
bilinear form A × B∗ → C by (a, β) 7→ β(f(a)). Similarly, a bilinear map
A×B → C determines a trilinear form A×B × C∗ → C.

Exercise 1.1.15.1: (2!) Show that M〈n〉, considered as a trilinear form, is
(X,Y, Z) 7→ trace(XY Z) }

Since trace(XY Z) = trace(Y ZX), we see that GM〈n〉 also includes a
cyclic Z3-symmetry. In Chapter 4 we will see that Strassen’s algorithm is
invariant under this Z3-symmetry!

This hints that we might be able to use geometry to help find algorithms.
This is the topic of Chapter 4.

For tensors or polynomials with continous symmetry, their algorithms
come in families. So to prove lower bounds, i.e., non-existence of a family of
algorithms, one can just prove non-existence of a special member of the fam-
ily. This is key to the state of the art lower bound for matrix multiplication
presented in §5.4.3. The general theory is discussed in §??.

A third use of geometry in algorithms is for the restricted models dis-
cussed below. There one creates a restricted model by imposing symmetry.
This has led to the only exponential separation of permanent and determi-
nant in any restricted model, see §7.4.7.

1.2. Separation of algebraic complexity classes

In 1950, John Nash (see [NR16, Chap. 1]) sent a letter to the NSA regarding
cryptography, conjecturing an exponential increase in mean key computa-
tion length with respect to the length of the key. In a 1956 letter to von
Neumann (see [Sip92, Appendix]) Gödel tried to quantify the apparent dif-
ference between intuition and systematic problem solving. Around the same
time, researchers in the Soviet Union were trying to determine if “brute force
search” was avoidable in solving problems such as the famous traveling sales-
man problem where there seems to be no fast way to find a solution, but
a proposed solution can be easily checked, see [Tra84]. (The problem is to
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determine if there exists a way to visit, say twenty cities traveling less than
a thousand miles. If I claim to have an algorithm to do so, you just need to
look at my plan and check the distances.) These discussions eventually gave
rise to the complexity classes P, which models problems admitting a fast
algorithm to produce a solution, and NP which models problems admitting
a fast algorithm to verify a proposed solution. The famous conjecture of
Cook, Karp and Levin that these two classes are distinct. See [Sip92] for a
history of the problem and [NR16, Chap. 1] for an up to date survey.

The transformation of this conjecture to a conjecture in geometry goes
via algebra:

1.2.1. From complexity to algebra. The P v. NP conjecture is gener-
ally believed to be out of reach at the moment, so there have been weaker
conjectures proposed that might be more tractable. One such comes from a
standard counting problem discussed in §6.1.1. This variant has the advan-
tage that it admits a clean algebraic formulation that I now discuss.

L. Valiant [Val79a] conjectured that a sequence of polynomials that is
“easy” to write down should not necessarily admit a fast evaluation. He
defined algebraic complexity classes that are now called VP and VNP,
respectively the sequences of polynomials that are “easy” to evaulate, and
the sequences that are “easy” to write down (see §6.1.3 for their definitions),
and conjectured:

Conjecture 1.2.1.1 (Valiant [Val79a]). VP 6= VNP.

For the precise relationship between this conjecture and the P 6= NP
conjecture see [BCS97, Chap. 21].

Many problems from graph theory, combinatorics, and statistical physics
(partition functions) are in VNP. A good way to think of VNP is as the
class of sequences of polynomials that can be written down “explicitly”.

Most problems from linear algebra (e.g., inverting a matrix, computing
its determinant, multiplying matrices) are in VP.

Valiant also showed that a particular polynomial sequence, the perma-
nent (permn), is complete for the class VNP, in the sense that VP 6= VNP
if and only if (permn) 6∈ VP. As explained in §6.1.1, the permanent is nat-
ural for computer science. Although it is not immediately clear, the perma-
nent is also natural to geometry, see §6.6.2. The formula for the permanent
of an n× n matrix x = (xij) is:

(1.2.1) permn(x) :=
∑
σ∈Sn

x1
σ(1) · · ·x

n
σ(n).

Here Sn denotes the group of permutations of {1, . . . , n}.
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How would one show there is no fast algorithm for the permanent? In
§6.1.3 we will define algebraic circuits, which are a class of algorithms for
computing a polynomial, and their size, which is a measure of the complex-
ity of the algorithm. Let circuit-size(permn) denote the size of the small-
est algebraic circuit computing permn. Valiant’s conjecture 1.2.1.1 may be
rephrased as:

Conjecture 1.2.1.2 (Valiant [Val79a]). circuit-size(permn) grows faster
than any polynomial in n.

1.2.2. From algebra to algebraic geometry. As with our earlier dis-
cussion, one could work as follows:

Let SnCN denote the vector space of all homogeneous polynomials of

degree n in N variables, so permn is a point of the vector space SnCn2
. If we

write an element of SnCN as p(y1, . . . , yN ) =
∑

1≤i1≤···≤in≤N c
i1,...,inyi1 · · · yin ,

then we may view the coefficients ci1,...,in as coordinates on the vector space
SnCN . We will look for polynomials on our space of polynomials, that is,
polynomials in the coefficients ci1,...,in .

Plan to show (permn) 6∈ VP, or at least bound its circuit size by r
with algebraic geometry.

• Find a polynomial P on the space SnCn2
such that P (p) = 0 for

all p ∈ SnCn2
with circuit-size(p) ≤ r.

• Show that P (permn) 6= 0.

By the discussion above on Zariski closure, this may be a more difficult
problem: we are not just trying to exclude permn from having a circuit, but
we are also requiring it not be “near” to having a small circuit. I return to
this issue in §1.2.5 below.

1.2.3. Benchmarks and restricted models. Valiant’s conjecture is ex-
pected to be extremely difficult, so it is reasonable to work towards partial
results. Two types of partial results are as follows: First, one could attempt
to prove the conjecture under additional hypotheses. In the complexity lit-
erature, the modified conjecture is called a restricted model. For an example
of a restricted model, one could restrict to circuits which are formulas (the
underlying graph is a formula, see Remark 6.1.5.2). The definition of a
formula coincides with our usual notion of a formula. Numerous restricted
models are discused in Chapter 7. Second, one can fix a complexity measure,
e.g., circuit-size(permn), and prove lower bounds for it. I will refer to such
progress as improving benchmarks.
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In some cases, one can rephrase Conjecture 1.2.1.1 in a restricted model
(shallow circuits) at the following cost: instead of needing to prove non-
polynomial growth, one needs to prove non-nearly-exponential growth. This
is also discussed in Chapter 7.

1.2.4. Another path to algebraic geometry. The permanent resembles
one of the most, perhaps the most, studied polynomial, the determinant of
an n× n matrix x = (xij):

(1.2.2) detn(x) :=
∑
σ∈Sn

sgn(σ)x1
σ(1) · · ·x

n
σ(n).

Here sgn(σ) denotes the sign of the permutation σ. The determinant, despite
its enormous formula of n! terms, can be computed very quickly, e.g., by
Gaussian elimination. (See §6.1.3 for an explicit division free algorithm.) In
particular (detn) ∈ VP. It is not known if detn is complete for VP, that is,
whether or not a sequence of polynomials is in VP if and only if it can be
reduced to the determinant in the sense made precise below.

Although

perm2

(
a b
c d

)
= det2

(
a −b
c d

)
,

Marcus and Minc [MM61], building on work of Pólya and Szegö (see
[Gat87]), proved that one could not express permm(y) as a size m de-
terminant of a matrix whose entries are affine linear functions of the xij
when m > 2. This raised the question that perhaps the permanent of an
m × m matrix could be expressed as a slightly larger determinant, which
would imply VP = VNP. More precisely, we say p(y1, . . . , yM ) is an
affine linear projection of q(x1, . . . , xN ), if there exist affine linear functions
xα(y) = xα(y1, . . . , yM ) such that p(y) = q(x(y)). For example

(1.2.3) perm3(y) = det7



0 0 0 0 y3
3 y3

2 y3
1

y1
1 1
y1

2 1
y1

3 1
y2

2 y2
1 0 1

y2
3 0 y2

1 1
0 y2

3 y2
2 1


.

This formula is due to B. Grenet [Gre11], who also generalized it to express
permm as a determinant of size 2m − 1, see §6.6.3.

Valiant conjectured that one cannot do much better than this:

Definition 1.2.4.1. Let p be a polynomial. Define the determinantal com-
plexity of p, denoted dc(p), to be the smallest n such that p is an affine
linear projection of the determinant.
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Valiant shows that for any polynomial P , dc(P ) is finite but possibly
larger than circuit-size(P ), so the following conjecture is possibly weaker
than Conjecture 1.2.1.2.

Conjecture 1.2.4.2 (Valiant [Val79a]). dc(permm) grows faster than any
polynomial in m.

The state of the art, obtained with classical differential geometry, is

dc(permm) ≥ m2

2 , due to Mignon and Ressayre [MR04]. An exposition of
their result is given in §6.4.

1.2.5. Geometric Complexity Theory. The “Zariski closed” version of
Conjecture 1.2.4.2 is the flagship conjecture of Geometric Complexity Theory
(GCT) and is discussed in Chapters 6 and 8. To state it in a useful form,
first rephrase Valiant’s conjecture as follows:

Let End(Cn2
) denote the space of all linear maps Cn2 → Cn2

, which

acts on SnCn2
under the action L · p(x) := p(LT (x)), where x is viewed as a

column vector of size n2, L is an n2 × n2 matrix, and T denotes transpose.
(The transpose is used so that L1 · (L2 · p) = (L1L2) · p.) Let

End(Cn
2
) · p = {L · p | L ∈ End(Cn

2
)}.

Define an auxiliary variable ` ∈ C1 so `n−m permm ∈ SnCm
2+1. Consider

any linear inclusion Cm2+1 → Cn2
(e.g. with the Matm×m in the upper left

hand corner and ` in the (m+ 1)× (m+ 1) slot and zeros elsewhere in the

space of n× n matrices), so we may consider `n−m permm ∈ SnCn
2
. Then

(1.2.4) dc(permm) ≤ n⇐⇒ `n−m permm ∈ End(Cn
2
) · detn .

This situation begins to resemble our matrix multiplication problem: we

have an ambient space SnCn2
(resp. (Cn2

)⊗3 for matrix multiplication), a

subset End(Cn2
) · detn (resp. σ̂0

r , the tensors of rank at most r), and a
point `n−m permm (resp. M〈n〉) and we want to show the point is not in
the subset. Note one difference here: the dimension of the ambient space is
exponentially large with respect to the dimension of our subset. As before,
if we want to separate the point from the subset with polynomials, we are
attempting to prove a stronger statement.

Definition 1.2.5.1. For p ∈ SdCM , let dc(p) denote the smallest n such

that `n−dp ∈ End(Cn2) · detn, the Zariski closure of End(Cn2
) · detn. Call

dc the border determinantal complexity of p.

Conjecture 1.2.5.2. [MS01] dc(permm) grows faster than any polynomial
in m.

For this problem, we do not have an analog of Bini’s theorem 1.1.14.4
that promises similar asymptotics for the two complexity measures. In this
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situation Mulmuley [Mul] conjectures that there exist sequences of polyno-
mials (pm) such that dc(pm) grows like a polynomial in m but dc(pm) grows
faster than any polynomial. Moreover he speculates that this gap explains
why Valiant’s conjecture is so difficult.

Representation theory indicates a path towards solving Conjecture 1.2.5.2.
To explain the path, introduce the following terminology: a polynomial
p ∈ SnCN is characterized by its symmetries if, letting Gp := {g ∈ GLN |
g · p = g}, for any q ∈ SnCN with Gq ⊇ Gp, one has p = λq for some λ ∈ C.

There are two essential observations:

• End(Cn2) · detn = GLn2 · detn, that is the variety End(Cn2) · detn
is an orbit closure.

• detn and permn are characterized by their symmetries.

Representation theory (more precisely, the Peter-Weyl Theorem, see
§8.6), in principle gives a description of the polynomials vanishing on an
orbit closure modulo the effect of the boundary. (More precisely, it de-
scribes the ring of regular functions on the orbit.) Unfortunately for the
problem at hand, this approach, outlined in [MS01, MS08] was recently
shown [IP15, BIP16] to be not viable as proposed. Nevertheless, it has
pointed out several paths one could potentially use. For this reason, I ex-
plain the approach and the proof of its non-viability in Chapter 8.

*** Mention additional paths, e.g., Kayal, LR, possible comm alge-
bra.....****

Unlike matrix multiplication, progress on Valiant’s conjecture and its
variants is in its infancy and I do not expect the conjecture to be fully re-
solved in the near future. To gain insight as to what techniques might work,
it will be useful to examine “toy” versions of the problem - these questions
are of mathematical significance in their own right, and lead to interest-
ing connections between combinatorics, representation theory and geometry.
Chapter 9 is dedicated to one such problem, dating back to Hermite and
Hadamard, to determine the ideal of the Chow variety of polynomials that
decompose into a product of linear forms.

1.3. How to find Hay in a haystack: the problem of
explicitness

A “random” bilinear map b : Cm × Cm → Cm will have tensor rank dm2

2 e,
see §4.8. (In particular, the standard algorithm for matrix multiplication

already shows that it is pathological as a tensor as n3 << (n2)2

2 .) Now say
someone hands you an explicit bilinear map, how would you determine if

has tensor rank dm2

2 e? This is the problem of finding hay in a haystack. Our
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state of the art for this question is so dismal that there is no known explicit
bilinear map of tensor rank 3m, in fact the highest rank of an explicit tensor
known is for matrix multiplication [Lan14b]: R(M〈n〉) ≥ 3n2 − o(n2). A
second explicit sequence Tm : Cm × Cm → Cm with R(Tm) ≥ 3m − o(m)
was found in [Zui15]. It is a frequently stated open problem to find explicit
bilinear maps Tm : Cm × Cm → Cm with R(Tm) ≥ (3 + ε)m. I discuss the
state of the art of this problem and the related border rank problem, where
no explicit tensor T ∈ Cm⊗Cm⊗Cm with R(T ) > 2m is known, in Chapter
5.

***maybe delete below if not in book - also a lot for just one section in
any case***

Another famous hay in a haystack problem is polynomial identity test-
ing (PIT): given a polynomial, e.g., described by a circuit (or some other
recipe), determine if it is identically zero. **refs** A recent approach to
this problem, via hitting sets, could be of interest to algebraic geometers. I
discuss it in §7.12.

Yet another such problem arises in GCT: the problem of explicit Noether

normalization. The variety End(Cn2) · detn has dimension (see §3.1.5 for
the definition of the dimension of a variety) roughly n4 but it lives in a

space of dimension exponentially large with respect to n, namely
(
n2+n−1

n

)
.

If one could project this variety isomorphically into a smaller space, say
of dimension polynomial in n, that did not destroy the non-inclusion of
the point `n−m permm then techniques from complexity such as hitting sets
might enable a resolution of the problem. If one chooses a random such
projection, it will work with probability one. See §7.12 for a discussion.

***more on advanced chapters****



Chapter 2

The complexity of
Matrix multiplication
I: first lower bounds

In this chapter I discuss lower complexity bounds for tensors in general and
matrix multiplication in particular. The two basic measures of complexity
are rank and border rank. I begin, in §2.1, by defining tensors and their rank.
I motivate the definition of border rank by the discovery by Bini et. al.
of approximate algorithms for a reduced matrix multiplication tensor and
then give its definition. Next, in §2.2 I give two derivations of Strassen’s
equations, the classical one due to Strassen, and a more recent one due
to Ottaviani that admits generalizations. These generalizations, to Koszul
flattenings, are described in §2.6 where they are used to show a 2n2 − n
lower bound for the border rank of M〈n〉. This border rank lower bound is

exploited to prove a 3n2 − o(n2) rank lower bound for M〈n〉 in §2.7. The

current state of the art is a 2n2 − dlog2(n)e − 1 lower bound for the border
rank of M〈n〉, which is presented in §5.4.3, as it requires more geometry and
representation theory than what is covered in this chapter.

2.1. Matrix multiplication and multi-linear algebra

To better understand matrix multiplication as a bilinear map, I first review
basic facts from multi-linear algebra. For more details on this topic, see
[Lan12, Chap. 2].

17
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2.1.1. Linear algebra without coordinates. In what follows it will be
essential to work without bases, so instead of writing Cv, I use V to denote
a complex vector space of dimension v.

The dual space V ∗ to a vector space V , is the vector space whose
elements are linear maps from V to C:

V ∗ := {α : V → C | α is linear}

If one is working in bases and represents elements of V by column vectors,
then elements of V ∗ are naturally represented by row vectors and the map
v 7→ α(v) is just row-column matrix multiplication. Given a basis v1, . . . , vv
of V , it determines a basis α1, . . . , αv of V ∗ by αi(vj) = δij , called the dual
basis.

Exercise 2.1.1.1: (1) Assuming V is finite dimensional, write down a canon-
ical isomorphism V → (V ∗)∗. }

Let V ∗⊗W denote the vector space of all linear maps V → W . Given
α ∈ V ∗ and w ∈W define a linear map α⊗w : V →W by α⊗w(v) := α(v)w.
In bases, if α is represented by a row vector and w by a column vector, α⊗w
will be represented by the matrix wα. Such a linear map is said to have
rank one. Define the rank of an element f ∈ V ∗⊗W to be the smallest r
such f may be expressed as a sum of r rank one linear maps.

Definition 2.1.1.2. A property of points in a variety Z ⊂ V containing an
infinite number of points is general or holds generally if the property holds
on the complement of a proper subvariety of Z. In particular, a property
that is general holds for a randomly chosen point in Z.

A general point of a variety Z ⊂ V is a point not lying on some explicit
Zariski closed subset of Z. This subset is often understood from the context
and so not mentioned.

Theorem 2.1.1.3 (Fundamental theorem of linear algebra). Let V,W be
finite dimensional vector spaces, let f : V →W be a linear map, and let Af
be a matrix representing f . Then

(1)

rank(f) = dim f(V )

= dim(span{columns of Af})
= dim(span{rows of Af})
= dimV − dim ker f.

In particular rank(f) ≤ min{dimV,dimW}.
(2) For general f ∈ V ∗⊗W , rank(f) = min{dimV,dimW}.
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(3) If a sequence of linear maps ft of rank r has a limit f0, then
rank(f0) ≤ r.

(4) rank(f) ≤ r if and only if, in any choice of bases, the determinants
of all size r + 1 submatrices of the matrix representing f are zero.

Note that assertion 4) shows that the set linear maps of rank at most
r forms an algebraic variety. Although we take it for granted, it is really
miraculous that the fundamental theorem of linear algebra is true. I explain
why in §3.1.3.

Exercise 2.1.1.4: (1!) Prove the theorem. }

Many standard notions from linear algebra have coordinate free defini-
tions. For example: A linear map f : V → W determines a linear map
fT : W ∗ → V ∗ defined by fT (β)(v) := β(f(v)) for all v ∈ V and β ∈ W ∗.
Note that this is consistent with the notation V ∗⊗W ' W⊗V ∗, being in-
terpreted as the space of all linear maps (W ∗)∗ → V ∗, that is, the order
we write the factors does not matter. If we work in bases and insist that
all vectors are column vectors, the matrix of fT is just the transpose of the
matrix of f .

Exercise 2.1.1.5: (1) Show that we may also consider an element f ∈
V ∗⊗W as a bilinear map bf : V ×W ∗ → C defined by bf (β, v) := β(f(v)).

In the vector space V ∗⊗V there is a unique line such that every vector
on the line has the same matrix representative for any choice of basis (and
corresponding choice of dual basis). This line is of course C{IdV }, the scalar
multiples of the identity map. Letting GL(V ) denote the group of changes
of basis in V , we say C{IdV } is the unique line in V ∗⊗V invariant under
the action of GL(V ).

Exercise 2.1.1.6: (1) If v1, . . . , vv is a basis of V and α1, . . . , αv is the dual
basis of V ∗, show that the identity map on V is IdV =

∑
j α

j⊗vj .

Exercise 2.1.1.7: (1) Show that there is a canonical isomorphism (V ∗⊗W )∗ →
V⊗W ∗ where α⊗w(v⊗β) := α(w)β(v). Now let V = W and let IdV ∈
V ∗⊗V ' (V ∗⊗V )∗ denote the identity map. What is IdV (f) for f ∈ V ∗⊗V ?
}

2.1.2. Multi-linear maps and tensors. We say V⊗W defined in §2.1.1 is
the tensor product of V with W . More generally, for vector spaces A1, . . . , An
define their tensor product A1⊗ · · ·⊗ An to be the space of n-linear maps
A∗1× · · · ×A∗n → C, equivalently the space of (n− 1)-linear maps A∗1× · · · ×
A∗n−1 → An etc.. When A1 = · · · = An = V , write V ⊗n = V⊗ · · ·⊗ V .
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Let aj ∈ Aj and define an element a1⊗ · · ·⊗ an ∈ A1⊗ · · ·⊗ An to be
the n-linear map

a1⊗ · · ·⊗ an(α1, . . . , αn) := α1(a1) · · ·αn(an).

Exercise 2.1.2.1: Show that if {asjj }, 1 ≤ sj ≤ aj , is a basis of Aj , then

as11 ⊗ · · ·⊗ asnn is a basis of A1⊗ · · ·⊗ An. In particular dim(A1⊗ · · ·⊗ An) =
a1 · · ·an. }

Remark 2.1.2.2. One may identify A1⊗ · · ·⊗ An with any re-ordering of
the factors. When I need to be explicit about this, I will call this identifica-
tion the re-ordering isomorphism.

Example 2.1.2.3 (Matrix multiplication). Let xiα, yαu , zui respectively be
bases of A = Cnm, B = Cml, C = Cln, then the standard expression of
matrix multiplication as a tensor is

(2.1.1) M〈l,m,n〉 =

n∑
i=1

m∑
α=1

l∑
u=1

xiα⊗yαu⊗zui

Exercise 2.1.2.4: (2) Write Strassen’s algorithm out as a tensor. }

2.1.3. Tensor rank. An element T ∈ A1⊗ · · ·⊗ An is said to have rank
one if there exist aj ∈ Aj such that T = a1⊗ · · ·⊗ an.

We will use the following measure of complexity:

Definition 2.1.3.1. Let T ∈ A1⊗ · · ·⊗ An. Define the rank (or tensor
rank) of T to be the smallest r such that T may be written as the sum of r
rank one tensors. We write R(T ) = r. Let σ̂0

r ⊂ A1⊗ · · ·⊗ An denote the
set of tensors of rank at most r.

The rank of T ∈ A⊗B⊗C is comparable to all other standard measures
of complexity on the space of bilinear maps, see, e.g., [BCS97, §14.1].

By (2.1.1) we conclude R(M〈n,m,l〉) ≤ nml. Strassen’s algorithm shows
R(M〈2,2,2〉) ≤ 7. Shortly afterwards, Winograd [Win71] showed R(M〈2,2,2〉) =
7.

Recall the notation M〈n〉 = M〈n,n,n〉.

2.1.4. Another spectacular failure. After Strassen’s failure to prove
the standard algorithm for matrix multiplication was optimal, Bini et. al.
[BLR80] considered the reduced matrix multiplication operator

M red
〈2〉 :=x1

1⊗(y1
1⊗z1

1 + y1
2⊗z2

1) + x1
2⊗(y2

1⊗z1
1 + y2

2⊗z2
1) + x2

1⊗(y1
1⊗z1

2 + y1
2⊗z2

2)

∈ C3⊗C4⊗C4.

obtained by setting the x2
2 entry for M〈2〉 to zero. The standard presentation

shows R(M red
〈2〉 ) ≤ 6. They attempted to find a rank five expression for M red

〈2〉 .
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They searched for such an expression by computer. Their method was
to minimize the norm of M red

〈2〉 minus a rank five tensor that varied, and

their computer kept on producing rank five tensors with the norm of the
difference getting smaller and smaller, but with larger and larger coefficients.
Bini (personal communication) told me about how he lost sleep trying to
understand what was wrong with his computer code. This went on for some
time, when finally he realized there was nothing wrong with the code: that
the output it produced was a manifestation of the phenomenon Bini named
border rank [Bin80], which was mentioned in the introduction in the context
of finding polynomials for upper rank bounds.

The expression for the tensor M red
〈2〉 that their computer search found

was essentially

M red
〈2〉 = lim

t→0

1

t
[(x1

2 + tx1
1)⊗(y1

2 + ty2
2)⊗z2

1(2.1.2)

+ (x2
1 + tx1

1)⊗y1
1⊗(z1

1 + tz1
2)

− x1
2⊗y1

2⊗((z1
1 + z2

1) + tz2
2)

− x2
1⊗((y1

1 + y1
2) + ty2

1)⊗z1
1

+ (x1
2 + x2

1)⊗(y1
2 + ty2

1)⊗(z1
1 + tz2

2)].

In what follows I first explain why border rank is needed in the study of
tensors and then properly define it.

2.1.5. The Fundamental theorem of linear algebra is false for ten-
sors. Recall the fundamental theorem of linear algebra from §2.1.1.3.

Theorem 2.1.5.1. If T ∈ Cm⊗Cm⊗Cm is outside the zero set of a certain
finite collection of polynomials (in particular outside a certain set of measure

zero), then R(T ) ≥ dm3−1
3m−2e.

Tensor rank can jump up (or down) under limits.

Remark 2.1.5.2. Strassen and Lickteig showed that equality holds in The-
orem ?? for all m 6= 3 (and when m = 3, for most T one has R(T ) = 5.

An analogous statement holds in any tensor space A1⊗ · · ·⊗ An with
n ≥ 3.

The first assertion is proved in §??. To see the second assertion, at least
when r = 2, consider

T (t) :=
1

t
[a1⊗b1⊗c1 − (a1 + ta2)⊗(b1 + tb2)⊗(c1 + tc2)]

and note that

lim
t→0

T (t) = a1⊗b1⊗c2 + a1⊗b2⊗c1 + a2⊗b1⊗c1
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which does not have rank two (exercise).

Remark 2.1.5.3. Physicists like to call the tensor a1⊗b1⊗c2 +a1⊗b2⊗c1 +
a2⊗b1⊗c1 the W-state so I will sometimes denote it TWState

To visualize why rank can jump up while taking limits, consider the
following picture, where the curve represents the points of σ̂0

1. Points of σ̂0
2

(e.g., the dots limiting to the dot labelled T ) are those on a secant line to
σ̂0

1, and the points where the rank jumps up, such at the dot labelled T ,
are those that lie on a tangent line to σ̂0

1. This phenomena fails to occur
for matrices because for matrices, every point on a tangent line is also on
an honest secant line. Thus in some sense it is a miracle that rank is semi-
continuous for matrices.

a1 c1b1

T

Our situation regarding tensor rank may be summarized as follows:

• The set σ̂0
r is not closed under taking limits. I will say a set that is

closed under taking limits is Euclidean closed.

• It is also not Zariski closed, i.e., the zero set of all polynomials
vanishing on σ̂0

r includes tensors that are of rank greater than r.

The tensors that are honestly “close” to tensors of rank r would be
the Euclidean closure, but to deal with polynomials as proposed in §1.1.12-
1.1.14, we need to work with the Zariski closure.

Often the Zariski closure is much larger than the Euclidean closure. For
example, the Zariski closure of Z ⊂ C is C, while Z is already closed in the
Euclidean topology.

However, for the purposes of proving lower bounds, none of this is an
issue, but when we discuss upper bounds, we will need to deal with these
problems. For now, I mention that with σ̂0

r we have good luck: the Zariski
and Euclidean closures of σ̂0

r coincide, so our apparently different informal
uses of the term border rank coincide. I present the proof in §3.1.6.
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Exercise 2.1.5.4: (2) Show that the Euclidean closure (i.e., closure under
taking limits) of a set is always contained in its Zariski closure. }

2.1.6. Border rank. Generalizing the discussion in §1.1.11, σ̂r = σ̂r,A1⊗···⊗ An
denotes the Zariski (and by the above discussion Euclidean) closure of σ̂0

r ,
and the border rank of T ∈ A1⊗ · · ·⊗ An, denoted R(T ), is the smallest r
such that T ∈ σ̂r. By the above discussion, border rank is semi-continuous.

Exercise 2.1.6.1: (1) Write down an explicit tensor of border rank r in
Cr⊗Cr⊗Cr with rank greater than r. }

Border rank is easier to work with than rank for several reasons. For
example, the maximal rank of a tensor in Cm⊗Cm⊗Cm is not known in

general. In contrast, the maximal border rank is known to be dm3−1
3m−2e for

all m 6= 3, and is 5 when m = 3 [Lic85]. In particular Strassen’s algorithm
could have been predicted in advance with this knowledge. The method of
proof is a differential-geometric calculation that dates back to Terracini in
the 1900’s [Ter11], see §?? for a discussion.

Exercise 2.1.6.2: (1) Prove that if T ∈ A⊗B⊗C and T ′ := T |A′×B′×C′ for
some A′ ⊆ A∗, B′ ⊆ B∗, C ′ ⊆ C∗, then R(T ) ≥ R(T ′) and R(T ) ≥ R(T ′).
}

Exercise 2.1.6.3: (1) Let Tj ∈ Aj⊗Bj⊗Cj , 1 ≤ j, k, l ≤ s. Consider
T1 ⊕ · · · ⊕ Ts ∈ (⊕jAj)⊗(⊕kBk)⊗(⊕lCl) Show that R(⊕jTj) ≤

∑s
i=1 R(Ti)

and that the statement also holds for border rank.

Exercise 2.1.6.4: (1) Let Tj ∈ Aj⊗Bj⊗Cj , 1 ≤ j, k, l ≤ s. Let A = ⊗jAj ,
B = ⊗kBk, and C = ⊗lCl, consider T1⊗ · · ·⊗ Ts ∈ A⊗B⊗C. Show that
R(⊗si=1Ti) ≤ Πs

i=1R(Ti), and that the statement also holds for border rank.

2.1.7. Our first lower bound. Given T ∈ A⊗B⊗C, write T ∈ A⊗(B⊗C)
and think of T as a linear map TA : A∗ → B⊗C.

Proposition 2.1.7.1. R(T ) ≥ rank(TA).

Exercise 2.1.7.2: (1!) Prove Proposition 2.1.7.1. }

Permuting the three factors, we have equations for σ̂r,A⊗B⊗C for r ≤
max{a − 1,b − 1, c − 1}, namely the size r + 1 minors of the linear maps
TA, TB, TC .

Definition 2.1.7.3. A tensor T ∈ A⊗B⊗C is concise if the maps TA, TB
and TC are all injective.
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Exercise 2.1.7.4: (1) Find a choice of bases such that

M〈n〉A(A∗) =

x . . .

x


where x = (xij) is n× n, i.e., the image in the space of n2 × n2 matrices is
block diagonal with all blocks the same.

Exercise 2.1.7.5: (1) Show that R(M〈n〉) ≥ n2.

Exercise 2.1.7.6: (1) Show R(M〈m,n,1〉) = mn and R(M〈m,1,1〉) = m.

Exercise 2.1.7.7: (1!) Let b = c and assume TA is injective. Show that if
T (A∗) is simultaneously diagonalizable under the action of GL(B)×GL(C)
(i.e., if we take a basis α1, . . . , αa of A∗, there exists g ∈ GL(B)×GL(C) such
that the elements g · T (α1), . . . , g · T (αa) are all diagonal) then R(T ) ≤ b,
and therefore if T (A∗) is the limit of simultaneously diagonalizable subspaces
then R(T ) ≤ b.

2.2. Strassen’s equations

An extensive discussion of Strassen’s equations and generalizations appears
in [Lan12, §7.6].

2.2.1. Beyond the classical equations. The classical equations just used
that B⊗C is a vector space. To extract more information from TA, we
examine its image in B⊗C, which we will view as a space of linear maps
C∗ → B. If T is concise and has minimal border rank max{a,b, c}, the
image should be special in some way - how? Assume b = c so the image
is a space of linear maps Cb → Cb (more precisely a space of linear maps
C∗ → B). (If b < c, just restrict to some Cb ⊂ C.) If R(T ) = b, then
TA(A∗), which I write as T (A∗), will be spanned by b rank one linear maps.

Lemma 2.2.1.1. If a = b = c and TA is injective, then R(T ) = a if and
only if T (A∗) is spanned by a rank one linear maps.

Exercise 2.2.1.2: (2!) Prove Lemma 2.2.1.1. }

How can we test if the image is spanned by b rank one linear maps? If
T = a1⊗b1⊗c1 + · · ·+ aa⊗ba⊗ca with each set of vectors a basis, then

T (A∗) =



x1

x2

. . .

xa

 | xj ∈ C

 ,
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and this is the case for a general rank a tensor in Ca⊗Ca⊗Ca. That is,
T (A∗) ⊂ B⊗C, when T has border rank a lies in the Zariski closure of
the subspaces that, under the action of GL(B)×GL(C) are simultaneously
diagonalizable in the sense of Exercise 2.1.7.7. From this perspective our
problem becomes: determine polynomials on A⊗B⊗C that vanish of the set
of T such that T (A) is diagonalizable. (For those familiar with Grassmanni-
ans, it is better to say we should look for polynomials on the Grassmannian
G(a, B⊗C) vanishing on the simultaneously diagonlizable subspaces.)

A set of equations whose zero set is exactly the Zariski closure of the
diagonalizable matrices is not known! What follows are some equations.
(More are given in Chapter 5.) Recall that B⊗C = Hom(C∗, B), the space
of linear maps from C∗ to B. If instead we had Hom(B,B) = End(B), the
space of linear maps from B to itself, a necessary condition for endomor-
phisms to be simultaneously diagonalizable is that they must commute, and
the algebraic test for a subspace U ⊂ End(B) to be abelian is simple: the
commutators [Xi, Xj ] := XiXj−XjXi must vanish on a basis X1, . . . , Xu of
U . (Note that commutators only make sense for maps from a vector space to
itself.) These degree two equations exactly characterize abelian subspaces.
We do not have maps from a vector space to itself, but we can fix the situ-
ation if there exists α ∈ A∗ such that TA(α) : C∗ → B is invertible, as then
we could test if the commutators [TA(α1)TA(α)−1, TA(α2)TA(α)−1] are zero.
So we now have a test, but it is not expressed in terms of polynomials on
A⊗B⊗C, and we cannot apply it to all tensors. These problems are fixed
in §2.5. For now I record what we have so far:

Proposition 2.2.1.3. Let b = c and let T ∈ A⊗B⊗C be such that there
exists α ∈ A∗ with rank(T (α)) = b, so R(T ) ≥ b. Use T (α) to identify B⊗C
with End(B). If R(T ) = b, then for all X1, X2 ∈ T (A∗)T (α)−1 ⊂ End(B),
[X1, X2] = 0.

2.2.2. Strassen’s equations: original formulation. If T ∈ A⊗B⊗C is
“close to” having rank a = b = c, one expects, using α with T (α) invertible,
that T (A∗)T (α)−1 ⊂ End(B) will be “close to” being abelian. The following
theorem makes this precise:

Theorem 2.2.2.1 (Strassen). [Str83] Let T ∈ A⊗B⊗C and assume b = c.
Assume that there exists α ∈ A∗ such that rank(T (α)) = b. Use T (α) to
identify B⊗C with End(B). Then for all X1, X2 ∈ T (A∗)T (α)−1 ⊂ End(B),

R(T ) ≥ 1

2
rank([X1, X2]) + b.

I prove Theorem 2.2.2.1 for the case of the determinant of [X1, X2] in
§2.5 below and in general in §5.2.2.
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We now have potential tests for border rank for tensors in Cm⊗Cm⊗Cm

up to r = 3
2m, in fact tests for border rank for tensors in C3⊗Cm⊗Cm up to

r = 3
2m, since our test only used three vectors from A∗. (I write “potential

tests” rather than “polynomial tests” because to write down the commutator
we must be able to find an invertible element in T (A∗).)

Strassen uses Theorem 2.2.2.1 to show that R(M〈n〉) ≥ 3
2n2:

Exercise 2.2.2.2: (2!) Prove R(M〈n〉) ≥ 3
2n2. }

Exercise 2.2.2.3: (2) Show that R(M red
〈2〉 ) = 5 and for m > 2 that R(M red

〈m,2,2〉 ≥
3m− 1, where M red

〈m,2,2〉 is M〈m,2,2〉 with x1
1 set to zero.

A natural question arises: exchanging the roles of A,B,C we obtain
three sets of such equations - are the three sets of equations the same
or different? We should have already asked this question for the three
types of usual flattenings: are the equations coming from the minors of
TA, TB, TC the same or different? It is easy to write down tensors where
rank(TA), rank(TB), rank(TC) are distinct, however for 2 × 2 minors, two
sets of them vanishing implies the third does as well, see, §8.3.1, where the
question regarding Strassen’s equations is answered as well with the help of
representation theory.

One can generalize Strassen’s equations by taking higher order commu-
tators, see [LM08]. These generalizations do give new equations, but they
do not give equations for border rank beyond the 3

2b of Strassen’s equations.

2.2.3. Coming attractions: border rank bounds beyond Strassen’s
equations. The following more complicated expression gives equations for
σ̂r for r > 3

2b:

Let T ∈ C5⊗Cb⊗Cb, write T = a0⊗X0 + · · · a4⊗X4 with Xj ∈ B⊗C.
Assume that rank(X0) = b and choose bases such that X0 = Id. Consider
the following 5b× 5b matrix:

(2.2.1) T∧2
A =


0 [X1, X2] [X1, X3] [X1, X4]

[X2, X1] 0 [X2, X3] [X2, X4]
[X3, X1] [X3, X2] 0 [X3, X4]
[X4, X1] [X4, X2] [X4, X3] 0

 .

The name T∧2
A is explained in §2.6.1 where the proof of the following propo-

sition also appears.

Proposition 2.2.3.1. [LO15] Let T ∈ C5⊗Cb⊗Cb be as above. Then

R(T ) ≥ rankT∧2
A

3 . If T ∈ A⊗Cb⊗Cb with a > 5, one obtains the same result

for all restrictions of T to C5⊗Cb⊗Cb for any C5 ⊂ A∗.
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Exercise 2.2.3.2: (2) Show that for n ≥ 5, R(M〈n〉) ≥ 5
3n2.

The matrices [X1, X2] and T∧2
A are part of a sequence of constructions

giving better lower bounds for border rank for tensors. The limits of this
method are lower bounds of 2b − 3. How can one find such sequences and
prove that they give lower bounds for border rank? To do this we will need
more language from multi-linear algebra. Our first task will be to generalize
the space of skew-symmetric matrices. It will be convienient to generalize
symmetric matrices at the same time.

2.3. Symmetric and skew-symmetric tensors

Exercise 2.3.0.1: (1) Let X be a matrix representing a bilinear form on
Cm, by X(v, w) = vTXw. Show that if X is a symmetric matrix, then
X(v, w) = X(w, v) and if X is a skew-symmetric matrix, then X(v, w) =
−X(w, v).

Definition 2.3.0.2. A tensor T ∈ V ⊗d is said to be symmetric if T (α1, . . . , αd) =
T (ασ(1), . . . , ασ(d)) for all α1, . . . , αd ∈ V ∗ and all permutations σ ∈ Sd, and
skew-symmetric if T (α1, . . . , αd) = sgn(σ)T (ασ(1), . . . , ασ(d)) for all α1, . . . , αd ∈
V ∗ and all σ ∈ Sd. Let SdV ⊂ V ⊗d (resp. ΛdV ⊂ V ⊗d) denote the space of
symmetric (resp. skew-symmetric) tensors.

The spaces ΛdV and SdV are independent of a choice of basis in V . In
particular, the splitting

(2.3.1) V ⊗2 = S2V ⊕ Λ2V

of the space of matrices into the direct sum of symmetric and skew symmetric
matrices is invariant under the action of GL(V ) given by: for g ∈ GL(V )
and v⊗w ∈ V⊗V , v⊗w 7→ gv⊗gw.

Introduce the notations:

x1x2 · · ·xk :=
1

k!

∑
σ∈Sk

xσ(1)⊗xσ(2)⊗ · · ·⊗xσ(k) ∈ SkV,

and

x1 ∧ x2 ∧ · · · ∧ xk :=
1

k!

∑
σ∈Sk

sgn(σ)xσ(1)⊗xσ(2)⊗ · · ·⊗xσ(k) ∈ ΛkV,

respectively called the symmetric product (or simply product) of x1, . . . , xk
and the wedge product of x1, . . . , xk.

If v1, . . . , vv is a basis of V , then vi1⊗ · · ·⊗ vid with ij ∈ [v] := {1, . . . ,v}
is a basis of V ⊗d, vi1 · · · vid with 1 ≤ i1 ≤ · · · ≤ id ≤ v is a basis of SdV
and vi1 ∧ · · · ∧ vid with 1 ≤ i1 < · · · < id ≤ v is a basis of ΛdV . Call these
bases induced bases. If xj = (x1

j , . . . , x
v
j )T in the basis v1, . . . , vv, then the
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expression of x1 ∧ · · · ∧xk in the induced basis is such that the coefficient of
vi1 ∧ · · · ∧ vik is

det

x
i1
1 · · · xik1

...

xi1k · · · xikk

 .

For example, if V = C4 with basis e1, . . . , e4, then Λ2V inherits a basis
e1 ∧ e2, . . . , e3 ∧ e4. If

v =


v1

v2

v3

v4

 , w =


w1

w2

w3

w4

 , then v ∧ w =



v1w2 − v2w1

v1w3 − v3w1

v1w4 − v4w1

v2w3 − v3w2

v2w4 − v4w2

v3w4 − v4w3

 .

Exercise 2.3.0.3: (1) Show that there is a natural map ΛkV⊗V → Λk+1V
that commutes with the action of GL(V ), and more generally there is a
natural map ΛkV⊗ΛtV → Λk+tV .

Exercise 2.3.0.4: (1) Let k ≥ t and show that there is a natural map
SkV ∗⊗StV → Sk−tV ∗ that commutes with the action of GL(V ). This map
has the following interpretation: SkV ∗ may be thought of as the space of ho-
mogeneous polynomials of degree k on V (to a symmetric tensor T associate
the polynomial PT where PT (v) := T (v, . . . , v)), and StV the homogeneous
linear differential operators of order t on the space of polynomials. The
map is then P⊗D 7→ D(P ) where P is a polynomial and D is a differential
operator. Sometimes D(P ) is denoted D P .

Exercise 2.3.0.5: (1) Show that for k < l there is a natural map, ΛkV ∗⊗ΛlV →
Λl−kV that commutes with the action of GL(V ). This map is often denoted
β⊗Y 7→ β Y

Exercise 2.3.0.6: (1) Let Sym(V ) = ⊕∞j=0S
jV , Λ•V = ⊕v

j=0ΛjV and

V ⊗• = ⊕∞j=0V
⊗j . Show that these spaces are all naturally algebras with

the above defined products, respectively called the symmetric, exterior and
tensor algebras. .

2.4. Schur’s lemma

I take a short detour into elementary representation theory to prove a lemma
everyone should know.

Definition 2.4.0.1. Let W1,W2 be vector spaces, let G be a group, and let
ρj : G→ GL(Wj), j = 1, 2 be representations. A G-module homomorphism,
or G-module map, is a linear map f : W1 → W2 such that f(ρ1(g) · v) =
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ρ2(g) · f(v) for all v ∈W1 and g ∈ G. One also says that f is G-equivariant.

One says W1 and W2 are isomorphic G-modules if there exists a G-
module homomorphism W1 →W2 that is a linear isomorphism.

For a group G and G-modules V and W , let HomG(V,W ) ⊂ V ∗⊗W
denote the vector space of G-module homomorphisms V →W .

Exercise 2.4.0.2: (1!!) Show that the image and kernel of a G-module
homomorphism are G-modules.

The following easy lemma is central to representation theory:

Lemma 2.4.0.3 (Schur’s Lemma). Let G be a group, let V and W be
irreducible G-modules and let f : V → W be a G-module homomorphism.
Then either f = 0 or f is an isomorphism. If further V = W , then f = λ IdV
for some constant λ.

Exercise 2.4.0.4: (1!!) Prove Schur’s Lemma.

We will see numerous examples illustrating the utility of Schur’s Lemma.
I cannot over-emphasize the importance of this simple Lemma. I use it every
day of my mathematical life.

For any group G, G-module M , and irreducible G-module V , the isotypic
component of V in M is the largest subspace of M isomorphic to V ⊕mV for
some mV . The integer mV is called the multiplicity of V in M .

2.5. Reformulation and proof of Strassen’s equations

We augment the linear map TB : B∗ → A⊗C by tensoring it with IdA, to
get a linear map

IdA⊗TB : A⊗B∗ → A⊗A⊗C.
So far we have done nothing interesting, but by (2.3.1) the target of this map
decomposes under the action of GL(A)×GL(C) as (Λ2A⊗C)⊕ (S2A⊗C),
and we may project onto these factors. Write the projections as:

(2.5.1) T∧BA = T∧A : A⊗B∗ → Λ2A⊗C and T ◦BA : A⊗B∗ → S2A⊗C.

Exercise 2.5.0.1: (1) Show that if T = a⊗b⊗c is a rank one tensor, then
rank(T∧A ) = a− 1 and rank(T ◦BA) = a.

Exercise 2.5.0.1 implies:

Proposition 2.5.0.2. If R(T ) ≤ r, than rank(T∧A ) ≤ r(a−1) and rank(T ◦BA) ≤
ra.

The second map will not do any better than the classical equations, but
the first, e.g., when a = 3, is a map from a 2b dimensional vector space to
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a 2c dimensional vector space, so if b ≤ c we can get border rank bounds
up to 3

2b.

The first set is Strassen’s equations, as I now show. If a > 3, one can
choose a three dimensional subspace A′ ⊂ A∗ and consider T restricted to
A′ × B∗ × C∗ to obtain equations. (This is what we did in the case of
Strassen’s equations where A′ was spanned by α, α′, α′′.)

Remark 2.5.0.3. We see that both the classical equations and Strassen’s
equations are obtained by taking minors of a matrix whose entries are linear
combinations of the coefficients of our tensor. Such constructions are part
of a long tradition of finding determinantal equations for algebraic varieties
that is out of the scope of this book. For the experts, given a variety X
and a subvariety Y ⊂ X, one way to find defining equations for Y is to find
vector bundles E,F over X and a vector bundle map φ : E → F such that
Y is realized as the degeneracy locus of φ, that is, the set of points x ∈ X
such that φx drops rank. Strassen’s equations in the partially symmetric
case had been discovered by Barth [Bar77] in this context. Variants of
Strassen’s equations date back to Frahm-Toeplitz [Toe77] and Aronhold
[Aro58]. See [Lan12, §3.8.5] for a discussion. We will also see in §8.2 and
§8.3.1 two different ways of deriving Strassen’s equations via representation
theory.

Let a1, a2, a3 be a basis of A, with dual basis α1, α2, α3 of A∗ so T ∈
A⊗B⊗C may be written as T = a1⊗X1 + a2⊗X2 + a3⊗X3, where Xj =
T (αj). Then T∧A will be expressed by a 3b× 3b matrix. Ordering the basis

of A⊗B∗ by a3⊗β1, . . . , a3⊗βb, a2⊗β1, . . . , a2⊗βb, a1⊗β1, . . . , a1⊗βb, and
that of Λ2A⊗C by (a1 ∧ a2)⊗c1, . . . , (a1 ∧ a2)⊗cb, (a1 ∧ a3)⊗c1, . . . , (a1 ∧
a3)⊗cb, (a2 ∧ a3)⊗c1, . . . , (a2 ∧ a3)⊗cb, we obtain the block matrix

(2.5.2) T∧A =

 0 X1 −X2

X2 X3 0
X1 0 X3

 .

Recall the following basic identity about determinants of blocked matri-
ces (see, e.g., [Pra94, Thm. 3.1.1]), assuming the block W is invertible:

(2.5.3) det

(
X Y
Z W

)
= det(W ) det(X − YW−1Z).

Block (2.5.2) X = 0, Y = (X1,−X2), Z =

(
X2

X1

)
, W =

(
X3 0
0 X3

)
.

Assume X3 = T (α3) is invertible to obtain

(2.5.4) detT∧A = det(X3)2 det(X1X3
−1X2 −X2X3

−1X1)
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Equation (2.5.4) shows the new formulation is equivalent to the old, at least
in the case of maximal rank. (We are only interested in the non-vanishing
of the polynomial, not its values, so we can multply the inner matrix on the
right by X3

−1.) Equation (2.5.4) combined with Proposition 2.5.0.2 proves
Theorem 2.2.2.1 in this case.

Note that here we have actual polynomials on A⊗B⊗C (the minors of
(2.5.2)), whereas in our original formulation of Strassen’s equations we did
not. To obtain polynomials in the original formulation one uses the adjugate
matrix instead of the inverse, see [Lan12, §3.8].

2.6. Koszul flattenings

2.6.1. Their definition. The reformulation of Strassen’s equations sug-
gests the following generalization: let dimA = 2p+ 1 and consider

(2.6.1) T∧pA : B∗⊗ΛpA→ Λp+1A⊗C

obtained by first taking TB⊗ IdΛp A : B∗⊗ΛpA → ΛpA⊗A⊗C, and then
projecting to Λp+1A⊗C as in Exercise 2.3.0.3.

If {ai}, {bj}, {ck} are bases of A,B,C and T =
∑

i,j,k t
ijkai⊗bj⊗ck, then

(2.6.2) T∧pA (β⊗f1 ∧ · · · ∧ fp) =
∑
i,j,k

tijkβ(bj)ai ∧ f1 ∧ · · · ∧ fp⊗ck.

The map T∧pA is called a Koszul flattening. Note that if T = a⊗b⊗c has

rank one, then rank(T∧pA ) =
(

2p
p

)
as the image is a∧ΛpA⊗c. By linearity of

the map T 7→ T∧pA we conclude:

Proposition 2.6.1.1. [LO15] Let T ∈ A⊗B⊗C with dimA = 2p+1. Then

R(T ) ≥
rank(T∧pA )(

2p
p

) .

Since the source (resp. target) has dimension
(

2p+1
p

)
b (resp.

(
2p+1
p+1

)
c),

assuming b ≤ c, we potentially obtain equations for σ̂r up to

r =

(
2p+1
p

)
b(

2p
p

) − 1 =
2p+ 1

p+ 1
b− 1.

Just as with Strassen’s equations (case p = 1), if dimA > 2p + 1, one
obtains the best bound for these equations by restricting to subspaces of A∗

of dimension 2p+ 1.

Exercise 2.6.1.2: (2) Show that if T∧pA : ΛpA⊗B∗ → Λp+1A⊗C is injective,

then T∧qA : ΛqA⊗B∗ → Λq+1A⊗C is injective for all q < c. }
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Next we would like to apply our new equations to matrix multiplication.
In order to do so, we pause to better understand the matrix multiplication
tensor.

2.6.2. The matrix multiplication tensor from an invariant perspec-
tive. We have

M〈U,V,W 〉 ∈ (U∗⊗V )⊗(V ∗⊗W )⊗(W ∗⊗U).

If we think of matrix multiplication as a bilinear map, the input is a linear
map from W to V and a linear map from V to U and the output is their
composition, a linear map from W to U , i.e., an element of W ∗⊗U . If we
think of it as a trilinear map, the inputs are three linear maps and the output
a number.

Exercise 2.6.2.1: (2!) Show that matrix multiplication

M〈U,V,W 〉 : (U⊗V ∗)∗ × (V⊗W ∗)∗ →W⊗U∗,

when viewed as a trilinear map

M〈U,V,W 〉 : (U∗⊗V )∗ × (V ∗⊗W )∗ × (U⊗W ∗)∗ → C.

is (X,Y, Z) 7→ trace(XY Z). }

Inside the space V ∗⊗V of linear maps from V to itself, there is a canon-
ical linear map, namely the identity map IdV which just sends a vector
to itself. If v1, . . . , vv is a basis of V with dual basis v1, . . . , vv ∈ V ∗,
then IdV =

∑
j v

j⊗vj . One way to characterize the identity map up to
scale, is that the line it spans is the unique line in V ∗⊗V that is pre-
served by the action of GL(V ), where in matrices, g ·X = gXg−1, or more
invariantly, letting ρ : GL(V ) → GL(V ∗⊗V ) denote the inclusion map,
[ρ(g)(f)](v) := gf(g−1(v)).

Exercise 2.6.2.2: (1!) Show that as a tensor M〈U,V,W 〉 = IdU ⊗ IdV ⊗ IdW .
}

Exercise 2.6.2.3: (1) Show that IdV ⊗ IdW ∈ V⊗V ∗⊗W⊗W ∗ = (V⊗W )⊗(V⊗W )∗

equals IdV⊗W .

Exercise 2.6.2.4: (1!) Show that M〈n,m,l〉⊗M〈n′,m′,l′〉 = M〈nn′,mm′,ll′〉. }

A fancier proof that R(M〈n〉) ≥ n2, which will be useful for proving
further lower bounds, is as follows: Write A = U∗⊗V , B = V ∗⊗W , C =
W ∗⊗U , so (M〈n〉)A : A∗ → B⊗C is a map U⊗V ∗ → V ∗⊗W⊗W ∗⊗U . This
map is, for f ∈ A∗, f 7→ f⊗ IdW , and thus is clearly injective. In other
words, the map is u⊗ν 7→

∑
k(ν⊗wk)⊗(wk⊗u), where w1, . . . , ww is a basis

of W with dual basis w1, . . . , ww.
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2.6.3. Koszul flattenings and matrix multiplication. When I want to
emphasize the vector spaces involved, I write M〈U,V,W 〉 for M〈u,v,w〉. When
T = M〈U,V,W 〉, the Koszul flattening map is

(M〈U,V,W 〉)
∧p
A : V⊗W ∗⊗Λp(U∗⊗V )→ Λp+1(U∗⊗V )⊗(W ∗⊗U).

The presence of IdW = IdW ∗ implies the map factors as (M〈U,V,W 〉)
∧p
A =

(M〈u,v,1〉)
∧p
A ⊗ IdW ∗ , where

(M〈u,v,1〉)
∧p
A : V⊗Λp(U∗⊗V )→ Λp+1(U∗⊗V )⊗U.

(2.6.3)

v⊗(ξ1⊗e1) ∧ · · · ∧ (ξp⊗ep) 7→
u∑
s=1

us⊗(us⊗v) ∧ (ξ1⊗e1) ∧ · · · ∧ (ξp⊗ep).

where u1, . . . , uu is a basis of U with dual basis u1, . . . , uu of U∗, so IdU =∑u
s=1 u

s⊗us.

As discussed above, at first sight, Koszul flattenings could potentially
prove a border rank lower bound of 2n2 − 3 for M〈n〉. However this does

not happen, as there is a large kernal for the maps M∧p〈n〉 when p ≥ n. I first

explain why this is the case. Let u = v = n.

Let p = n. Then

v⊗(u1⊗v)⊗ · · ·⊗ (un⊗v) 7→
∑
j

(uj⊗v) ∧ (u1⊗v)⊗ · · ·⊗ (un⊗v)⊗uj = 0,

so M∧n〈n〉 is not injective. Since the map M〈u,v,1〉)
∧p
A commutes with the action

of GL(U)×GL(V ), by Schur’s lemma 2.4.0.3, ker(M∧n〈n〉) ⊂ V⊗Λn(U∗⊗V ) ⊂
V ⊗n+1⊗U∗⊗n must be a submodule. It is clearly symmetric in V and skew
in U∗, so the kernel must contain the irreducible submodule ΛnU∗⊗Sn+1V .

Exercise 2.6.3.1: (2) Show that ker(M〈n,n,1〉)
∧n
A = (ΛnU∗⊗Sn+1V ). }

Now consider the case p = n − 1. I claim (M〈n,n,1〉)
∧n−1
A is injective.

The following argument is due to L. Manivel. Say X1⊗v1 + · · ·Xn⊗vn ∈
ker(M〈n,n,1〉)

∧n−1
A , i.e.,∑
s

[X1 ∧ (us⊗v1) + · · ·+Xn ∧ (us⊗vn)]⊗us = 0.

Then for each s, each term in the brackets must be zero.

Lemma 2.6.3.2. Let A be a vector space, let X1, . . . , Xk ∈ ΛqA, and let
a1, . . . , ak ∈ A be linearly independent. Then if X1 ∧ a1 + · · ·+Xk ∧ ak = 0,

we may write each Xj =
∑k

i=1 Yij ∧ ai for some Yij ∈ Λq−1A.

Exercise 2.6.3.3: (2) Prove Lemma 2.6.3.2.}
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Remark 2.6.3.4. This is a special case of the generalized Cartan Lemma,
see [?, §A.1]. With the aid of representation theory one can more precisely
describe the Yji. (Use the sequence 0 → S2,1q−1A → ΛqA⊗A → Λq+1A →
0.)

In our case, taking s = 1, we have Xj =
∑
Yj,(1,i) ∧ (u1⊗ai), so each

term in Xj is divisible by (u1⊗ai) for some i, but then taking s = 2, we
would also have to have each term in Xj is divisible by (u2⊗al) for some l,
and continuing, if p < n we run out of factors, so there cannot be a kernel.
In summary:

Proposition 2.6.3.5. When p < n, the map (M〈n,n,1〉)
∧p
A is injective.

At this point one would like to say that if some T∧p is injective, then
restricting to a generic A′ ⊂ A∗, the map T∧p|ΛpA′⊗B∗ : ΛpA′⊗B∗ →
Λp+1A′⊗C would still be injective. Unfortunately I do not know how to
prove this, because a priori T∧p|ΛpA′⊗B∗ injects into [Λp+1A′⊗C]⊕[ΛpA′⊗(A/A′)⊗C],
and it is not clear to me whether for generic A′ it must remain injective when
one projects to the first factor. What follows are two proofs that this is
indeed the case for (M〈n,n,1〉)

∧n−1
A . The first is combinatorial. It has the ad-

vantages that it is elementary and will be used to prove the 2n2−dlog2 ne−1
lower bound of §5.4.3. The second is geometrical. It has the advantage of
being shorter and more elegant.

Theorem 2.6.3.6. [LO15] Let n ≤m. Then

R(M〈m,n,l〉) ≥
nl(n + m− 1)

m
.

In particular R(M〈n〉) ≥ 2n2 − n.

I prove the case n = m and leave the general case to the reader. We
need to find A′ ⊂ A∗ of dimension 2n − 1 such that, setting Ã = A/A′⊥,
(M〈n,n,1〉|A′⊗B∗⊗C∗)∧n−1

Ã
is injective.

First proof. Define the projection

φ : A→ C2n−1(2.6.4)

xij 7→ ei+j−1.(2.6.5)

Let eS := es1 ∧ · · · ∧ esn−1 , where S = {s1, . . . , sn−1} ⊂ [2n − 1] has

cardinality n− 1. The map (M〈n,n,1〉|A′⊗B∗⊗C∗)∧n−1
Ã

is

eS⊗vk 7→
∑
j

φ(uj⊗vk) ∧ eS⊗uj =
∑
j

ej+k−1 ∧ eS⊗uj .

Index a basis of the source by pairs (S, k), with k ∈ [n], and the target by
(P, l) where P ⊂ [2n− 1] has cardinality n and l ∈ [n].
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We will choose an ordering of the basis vectors such that the resulting
matrix is upper-triangular. Then we just need to show that each diagonal
element of the matrix is nonzero to conclude. Unfortunately the order on
(P, l) is a little complicated because e.g., if the l’s are ordered sequentially,
then to get a diagonal matrix, the P ’s must be given an order in the opposite
direction.

Define an order relation on the target basis vectors as follows: For (P1, l1)
and (P2, l2), set l = min{l1, l2}, and declare (P1, l1) < (P2, l2) if and only if

(1) In lexicographic order, the set of l minimal elements of P1 is strictly
after the set of l minimal elements of P2 (i.e. the smallest element
of P2 is smaller than the smallest of P1 or they are equal and the
second smallest of P2 is smaller or equal etc. up to l-th), or

(2) the l minimal elements in P1 and P2 are the same, and l1 < l2.

(3) the l minimal elements in P1 and P2 are the same, and l1 = l2, and
the set of n − l tail elements of P1 are after the set of n − l tail
elements of P2.

The third ordering is actually irrelevant - any breaking of a tie for the first
two will lead to an upper-triangular matrix. Note that ({n, . . . , 2n− 1}, 1)
is the unique minimal element for this relation and ([n],n) is the unique
maximal element. Note further that

en+1 ∧ · · · ∧ e2n−1⊗un 7→ en ∧ · · · ∧ e2n−1⊗v1

i.e., that

({n + 1, . . . , 2n− 1},n) 7→ ({n, . . . , 2n− 1}, 1),

so ({n + 1, . . . , 2n−1},n) will be our first basis element for the source. The
order for the source is implicitly described in the proof.

The claim will follow by showing that the image is the span of all basis
elements (P, l). Work by induction using the relation: the base case that
({n, . . . , 2n − 1}, 1) is in the image has been established. Let (P, l) be any
basis element, and assume all (P ′, l′) with (P ′, l′) < (P, l) have been shown
to be in the image. Write P = (p1, . . . , pn) with pi < pi+1. Consider the
image of (P\{pl}, 1 + pl − l) which is∑

j

φ(uj⊗v1+pl−l) ∧ eP\{pl}⊗uj =
∑

{j|j−l+pl /∈P\{pl}}

epl−l+j ∧ eP\{pl}⊗uj .

In particular, taking j = l we see (P, l) is among the summands. If j < l, the
contribution to the summand is a (P ′, j) where the first j terms of P ′ equal
the first of P , so by condition (2), (P ′, j) < (P, l). If j > l, the summand is
a (P ′′, j) where the first l − 1 terms of P and P ′′ agree, and the l-th terms
are respectively pl and pl − l + j so by condition (1) (P ′′, j) < (P, l). �
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To illustrate, consider the first seven terms when n = 3:

(345, 1), (345, 2), (345, 3), (245, 1), (235, 1), (234, 1), (245, 2),

where the order did not matter for the triple (245, 1), (235, 1), (234, 1). We
have

(45, 3) 7→ (345, 1)

(35, 2) 7→ (345, 2)

(34, 3) 7→ (345, 3)

(45, 2) 7→ (245, 1) + (345, 2)

(35, 2) 7→ (235, 2) + (345, 3)

(34, 2) 7→ (234, 1)

(25, 3) 7→ (245, 2)

Second proof. For this proof we take u = n ≤ v = m. Take a vector space
E of dimension 2, and fix isomorphisms U ' Sn−1E, V ' Sm−1E∗. Let
A′ = Sm+n−2E∗ ⊂ Sn−1E∗⊗Sm−1E∗ = U⊗V ∗, and set Ã = A/A′⊥. This
turns out to be the same projection operator as in the previous proof. Here
there is an SL(E)-module inclusion Ã = Sm+n−2E ⊂ A because SL(E) is
reductive.

Our map is

Λn−1(Sm+n−2E)⊗Sn−1Etrace Λn(Sm+n−2E)⊗Sm−1E∗

Q1 ∧ · · · ∧Qn−1⊗f 7→
m−1∑
j=0

(fhh) ∧Q1 ∧ · · · ∧Qn−1⊗hj

where hj = xjym−j−1 and hj is the dual basis vector.

Recall the contraction map from Exercise 2.3.0.4, for α ≥ β:

SαE × SβE∗ → Sα−βE

(f, g) 7→ g f.

In the case f = lα for some l ∈ E, then g lα = g(l)lα−β (here g(l)
denotes g, considered as a polynomial, evaluated at the point l), so that
g lα = 0 if and only if l is a root of g.

Consider the transposed map

((M〈1,m,n〉|A′⊗U∗⊗V ∗)
∧p
Ã

)T :

Sm−1E∗⊗ΛnSm+n−2E → Sn−1E⊗Λn−1Sm+n−2E

g⊗(f1 ∧ · · · ∧ fn) 7→
n∑
i=1

(−1)i−1(g fi)⊗f1 ∧ · · · f̂i · · · ∧ fn.
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The map ((M〈1,m,n〉|A′⊗U∗⊗V ∗)
∧p
Ã

)T is surjective: Let ln−1⊗(lm+n−2
1 ∧

· · · ∧ lm+n−2
n−1 ) ∈ Sn−1E⊗Λn−1Sm+n−2E with l, li ∈ E. Such elements span

the target so it will be sufficient to show any such element is in the image.
Assume first that l is distinct from the li. Since n ≤m, there is a polynomial
g ∈ Sm−1E∗ which vanishes on l1, . . . , ln−1 and is nonzero on l. Then, up to
a nonzero scalar, g⊗(lm+n−2

1 ∧ · · · ∧ lm+n−2
n−1 ∧ lm+n−2) maps to our element.

The condition that l is distinct from the li may be removed by taking
limits, as the image of a linear map is closed. �

The above result begs the question: did we fail to get a better bound be-
cause this is the best bound Koszul flattenings can give, or is there something
pathological about matrix multiplication that prevented the full power of
Koszul flattenings? That is, perhaps the Koszul flattenings for Cm⊗Cm⊗Cm
could be trivial beyond border rank 2m−

√
m. This is not the case:

Theorem 2.6.3.7. [Lan15] The maximal minors of the Koszul flattening
T∧pA : ΛpC2p+1⊗(C2p+2)∗ → Λp+1C2p+1⊗C2p+2 give nontrivial equations
for σ̂r ⊂ C2p+1⊗C2p+2⊗C2p+2, the tensors of border rank at most r in
C2p+1⊗C2p+2⊗C2p+2, up to r = 4p+ 1.

For Cm⊗Cm⊗Cm, this implies that when m is even (resp. odd), the
equations are nontrivial up to r = 2m− 3 (resp. r = 2m− 5).

Exercise 2.6.3.8: (1!!) Prove the theorem. }

2.6.4. Koszul flattenings in coordinates. To prove lower bounds on the
rank of matrix multiplication, and to facilitate a comparison with Griesser’s
equations discussed in §5.2.2, it will be useful to view T∧pA in coordinates.
Let dimA = 2p+ 1. Write T = a0⊗X0 + · · ·+ a2p⊗X2p where aj is a basis

of A with dual basis αj and Xj = T (αj). An expression of T∧pA in bases
is as follows: write aI := ai1 ∧ · · · ∧ aip for the induced basis elements of

ΛpA, require that the first
(

2p
p−1

)
basis vectors of ΛpA have i1 = 0, that

the second
(

2p
p

)
do not, and call these multi-indices 0J and K. Order the

bases of Λp+1A such that the first
(

2p
p+1

)
multi-indices do not have 0, and the

second
(

2p
p

)
do, and furthermore that the second set of indices is ordered the

same way as K is ordered, only we write 0K since a zero index is included.
The resulting matrix is of the form

(2.6.6)

(
0 Q

Q̃ R

)
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where this matrix is blocked (
(

2p
p+1

)
b,
(

2p
p

)
b)× (

(
2p
p+1

)
b,
(

2p
p

)
b),

R =

X0

. . .

X0

 ,

and Q, Q̃ have entries in blocks consisting of X1, . . . , X2p and zero. Thus
if X0 is of full rank and we change coordinates such that it is the identity
matrix, so is R and the determinant equals the determinant of QQ̃ by (2.5.3).
If we order the appearances of the K multi-indices such that the j-th K is
the complement of the j-th J in [2p], then QQ̃ will be skew-symmetric.

When p = 1, QQ̃ = [X1, X2], and when p = 2 we recover the matrix (2.2.1).

In general QQ̃ is a block skew-symmetric
(

2p
p−1

)
b×

(
2p
p−1

)
b matrix whose

block entries are either zero or commutators [Xi, Xj ]. Each [Xi, Xj ] appears

(up to sign)
(

2p−1
2

)
times, and each block row and column contain exactly(

2p−1
2

)
non-zero blocks, so the resulting matrix is very sparse.

2.7. Lower bounds for the rank of matrix multiplication

2.7.1. The results. Most tensors have rank equal to border rank, in the
sense that the set of tensors of rank greater than r in σ̂r is a proper sub-
variety. Matrix multiplication is expected to have larger rank than border
rank when n > 2 because of its enormous symmetry group, as explained in
Chapter 4.

The key to the rank lower bound is that our proof of the border rank
lower bound used equations of relatively low degree because of the factor-
ization (M〈n〉)

∧p
A = (M〈n,n,1〉)

∧p
A ⊗ IdW , so we were considering minors of a

size
(

2n−1
n

)
n matrix instead of a size

(
2n−1
n

)
n2 matrix. I will show that if a

low degree polynomial is nonzero on M〈n〉, and M〈n〉 has an optimal rank

decomposition M〈n〉 =
∑r

j=1 aj⊗bj⊗cj , then the polynomial is already zero
on a subset of the summands. This is a variant of the substitution method
discussed in §5.3.

Here is a 3n2 − o(n2) lower bound for R(M〈n〉) that follows from the
method:

Theorem 2.7.1.1. [Lan14b] Let p < n− 1. Then

R(M〈n,n,m〉) ≥
2p+ 1

p+ 1
nm + n2 − (2p+ 1)

(
2p+ 1

p

)
n.

This gives a bound of the form R(M〈n〉) ≥ 3n2 − o(n2) by taking, e.g.,
p = log(log(n)).
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2.7.2. Proof of Theorem 2.7.1.1. We will need a few facts from algebraic
geometry before the proof.

The following standard Lemma, also used in [Blä03], appears in this
form in [Lan12, Lemma 11.5.0.2]:

Lemma 2.7.2.1. Given a polynomial P of degree d on Ca, there exists a
subset of basis vectors {ei1 , . . . , eid} such that P |〈ei1 ,...,eid 〉 is not identically
zero.

In other words, there exists a coordinate subspace Cd ⊂ Ca such that
Cd 6⊂ Zeros(P ).

The lemma follows by simply choosing the basis vectors from a degree
d monomial that appears in P . For example, Lemma 2.7.2.1 implies that
a surface in P3 defined by a degree two equation cannot contain six lines
whose pairwise intersections span P3.

The proof of the theorem will use a famous algebraic variety, the Grass-
mannian:

G(k, V ) := P{T ∈ ΛkV | ∃v1, . . . , vk ∈ V such that T = v1∧· · ·∧vk} ⊂ PΛkV.

The Grassmannian admits the geometric interpretation as the space
parametrizing the k-planes through the origin in V via the correspondence
[v1 ∧ · · · ∧ vk]↔ span{v1, . . . , vk}.

The following exercise shows that the Grassmannian is indeed an alge-
braic variety. It can be safely skipped on a first reading.

Exercise 2.7.2.2: (3) The Grassmannian is the zero set of equations parametrized
by Λk−2jV ∗⊗Λk+2jV ∗ for 1 ≤ j ≤ min{bv−k2 c, b

k
2c} as follows: for µ ∈

Λk−2jV ∗ and ζ ∈ Λk+2jV ∗, recall Exercise 2.3.0.5, and consider T ζ ∈ Λ2jV ∗

and µ T ∈ Λ2jV . Define Pµ⊗ζ(T ) := 〈T ζ, µ T 〉, the evaluation of an element
of Λ2jV ∗ on an element of Λ2jV . Note that these are quadratic equations
in the coefficients of T . Show that the zero set of these equations is the
Grassmannian. }

Lemma 2.7.2.3. Let A be given a basis. Given a non-zero homogeneous
polynomial of degree d on ΛkA that is not in I(G(k,A)) and assume dk <
dimA, there exist dk basis vectors ofA such that, denoting their dk-dimensional
span by Ã, P restricted to G(k, Ã) is not identically zero.

Proof. Consider the map f : A×k → Ĝ(k,A) given by (a1, . . . , ak) 7→ a1 ∧
· · · ∧ ak. Then f is surjective. Take the polynomial P and pull it back by f .
Here the pullback f∗(P ) is defined by f∗(P )(a1, . . . , ak) := P (f(a1, . . . , ak)).
The pullback is of degree d in each copy of A. (I.e., fixing k − 1 of the aj ,
it becomes a degree d polynomial in the k-th.) Now apply Lemma 2.7.2.1 k
times to see that the pulled back polynomial is not identically zero restricted
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to the span of these vectors, denoted Ã, and thus P restricted to Ĝ(k, Ã) is
not identically zero. �

Remark 2.7.2.4. The bound in Lemma 2.7.2.3 is sharp, as give A a ba-
sis a1, . . . , aa and consider the polynomial on ΛkA with coordinates xI =
xi1 · · ·xik corresponding to the vector

∑
I x

Iai1 ∧ · · · ∧ aik :

P = x1,...,kxk+1,...,2k · · ·x(d−1)k+1,...,dk.

Then P restricted to G(k, 〈a1, . . . , adk〉) is non-vanishing but there is no
smaller subspace spanned by basis vectors on which it is non-vanishing.

Proof of Theorem 2.7.1.1. Say R(M〈n,n,m〉) = r and write an optimal
expression

(2.7.1) M〈n,n,m〉 =
r∑
j=1

aj⊗bj⊗cj .

We will show that the Koszul-flattening equation is already non-zero re-
stricted to a subset of this expression for a judicious choice of Ã ⊂ A of
dimension 2p+ 1 with p < n− 1. Then the rank will be at least the border
rank bound plus the number of terms not in the subset. Here are the details:

Write Ã = A/A′⊥. Define

P2p+1 : G(2p+ 1, A∗)→ C

A′ 7→ det((M〈n,n,m〉|A′⊗B∗⊗C∗)
∧p
Ã

: ΛpÃ⊗B∗ → Λp+1Ã⊗C).

I claim that P2p+1 is not identically zero for all p ≤ n − 1. ***This proof
still needs fixing*** To see this we work by downward induction. By the
proof of Theorem 2.6.3.6, the claim holds in the case p = n− 1. Assume we
have proved the claim down to p. Let Ã have dimension 2p+ 1 and assume
P2p+1(Ã) 6= 0. For each A′ ⊂ A∗, write Ã = Ã1⊕Ã2 where dim(Ã1) = 2p−1

and dim Ã2 = 2. By Exercise 2.6.1.2, Λp−1Ã⊗B∗ → ΛpÃ⊗C is injective.
We have

Λp−1(Ã1 ⊕ Ã2)⊗B∗ −→ Λp(Ã1 ⊕ Ã2)⊗C
‖ ‖

Λp−3Ã1⊗Λ2Ã2⊗B∗
⊕Λp−2Ã1⊗Ã2⊗B∗
⊕Λp−1Ã1⊗B∗

−→
Λp−2Ã1⊗Λ2Ã2⊗C
⊕Λp−1Ã1⊗Ã2⊗C
⊕ΛpÃ1⊗C

Since the top horizontal arrow is injective, the bottom must be as well. But
only Λp−1Ã1⊗B∗ maps to ΛpÃ1⊗C so the map must be an isomorphism.

Now P is a polynomial of degree
(

2p+1
p

)
nm > nm, so at first sight, e.g.,

when m ∼ n, Lemma 2.7.2.3 will be of no help because dk > dimA = n2,
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but since

(M〈n,n,m〉|A′⊗B∗⊗C∗)
∧p
Ã

= (M〈n,n,1〉|A′⊗V⊗U∗)
∧p
Ã
⊗ IdW ∗ ,

we actually have P = P̃m, where

P̃ : G(2p+ 1, A)→ C

Ã 7→ det((M〈n,n,1〉|A′⊗V⊗U∗)
∧p
Ã

: ΛpÃ⊗V → Λp+1Ã⊗U).

Hence we may work with P̃ which is of degree
(

2p+1
p

)
n which will be less

than n2 if p is sufficiently small. Since (M〈n,n,m〉)A : A∗ → B⊗C is injective,
some subset of the aj forms a basis of A. Lemma 2.7.2.3. implies that there

exists a subset of those basis vectors of size dk =
(

2p+1
p

)
n(2p + 1), such

that if we restrict to terms of the expression (2.7.1) that use only aj whose
expansion in the fixed basis has nonzero terms from that subset of dk basis
vectors, calling the sum of these terms M ′, we have R(M ′) ≥ 2p+1

p+1 nm. Let

M ′′ be the sum of the remaining terms in the expression. There are at
least a − dk = n2 −

(
2p+1
p

)
n(2p + 1) of the aj appearing in M ′′ (the terms

corresponding to the complementary basis vectors). Since we assumed we
had an optimal expression for M〈n,n,m〉, we have

R(M〈n,n,m〉) = R(M ′) + R(M ′′)

≥ 2p+ 1

p+ 1
nm + [n2 − (2p+ 1)

(
2p+ 1

p

)
n].

�

2.7.3. Improved lower bounds on the rank. Further lower bounds are
obtained by lowering the degree of the polynomial by localizing the equa-
tions. An easy such localization is to set X0 = Id which reduces the determi-
nant of (2.6.6) to that of (2.2.1) when p = 2 and yields a similar reduction
of degree in general. Further localizations both reduce the degree and the
size of the Grassmannian, both of which improve the error term. The state
of the art is:

Theorem 2.7.3.1. [MR13] Let p ≤ n be a natural number. Then

(2.7.2) R(Mn,n,m) ≥ (1 +
p

p+ 1
)nm + n2−

(
2

(
2p

p+ 1

)
−
(

2p− 2

p− 1

)
+ 2
)
n.

When n = m,

(2.7.3) R(M〈n〉) ≥ (3− 1

p+ 1
)n2 −

(
2

(
2p

p+ 1

)
−
(

2p− 2

p− 1

)
+ 2
)
n.

For example, when p = 1 one recovers Bläser’s bound of 5
2n2−3n. When

p = 3, the bound (2.7.3) becomes 11
4 n2 − 26n, which improves Bläser’s for
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n ≥ 132. A modification of the method also yields R(M〈n〉) ≥ 8
3n2 − 7n.

See [MR13, Lan14b] for proofs of the modifications of the error terms.



Chapter 3

The complexity of
matrix multiplication
II: asymptotic upper
bounds

This chapter discusses progress towards the astounding conjecture that asymp-
totically, the complexity of multiplying two n × n matrices is nearly the
same as the complexity of adding them. I cover the main advances in upper
bounds for the exponent of matrix multiplication beyond Strassen’s original
discovery in 1969: the 1979 upper bound ω < 2.79 of Bini et. al., the 1981
bound ω ≤ 2.55 of Schönhage, the 1987 bound ω < 2.48 of Strassen, and
the Coppersmith-Winograd 1990 bound ω < 2.38, emphasizing a geometric
perspective. I mention recent “explanations” as to why progress essentially
stopped in 1990 from [?] and in Chapter 4 I discuss other potential paths
for upper bounds.

The exponent ω of matrix multiplication is naturally defined in terms of
tensor rank:

ω := inf{τ ∈ R | R(M〈n〉) = O(nτ )}.

See [BCS97, §15.1] for a the proof that tensor rank yields the same exponent
as other complexity measures.

The above-mentioned conjecture is that ω = 2. The only general tool
for determining tensor rank that I am aware of is the substitution method
discussed in §5.3, which is too weak for the purposes of estimating ω. How-
ever, as I explain in §3.2, Bini et. al. showed that one may also define the

43
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exponent in terms of border rank, namely (see Proposition 3.2.1.11)

ω = inf{τ ∈ R | R(M〈n〉) = O(nτ )},

Unfortunately, the state of the art for border rank is also woefully short of
what would be needed to determine the exponent.

One bit of good news is that we do not need to work asymptotically to get
upper bounds on ω. Theorem 3.2.1.11 states that for all n, R(M〈n〉) ≥ nω.

Another small help is that we may also use rectangular matrix multipli-
cation to prove upper bounds on ω: part of Proposition 3.2.1.11, states that
for all l,m,n,

R(M〈m,n,l〉) ≥ (lmn)
ω
3 .

In order to make this transition from rank to border rank, we will need
a basic result in algebraic geometry. Because of this, I begin, in §3.1 with
some basic facts from the subject.

To really improve the situation, one needs further techniques that enable
one to avoid dealing with tensors beyond the range we understand. After
the work of Bini et. al., all upper bounds on ω are obtained via tensors other
than M〈l,m,n〉.

The next advance in upper bounds, due to Schönhage (Theorem 3.3.3.1)
and described in §3.3, is more involved: it says it is sufficient to prove upper
bounds on sums of disjoint matrix multiplications:

The inequalities regarding ω above are strict, e.g., there does not exist
n with R(M〈n〉) equal to nω. (This does not rule out R(M〈n〉) equal to
2nω for all n.) Thus one can only obtain upper bounds on ω when working
with a fixed n. One way to extend the above methods is to find sequences of

sums ⊕s(N)
i=1 M〈li(N),mi(N)ni(N)〉 with the border rank of the sums giving upper

bounds on ω. This is one aspect of Strassen’s “laser method” described in
§3.4. A second new ingredient of his method is that instead of dealing with
the sum of a collection of disjoint rectangular matrix multiplications, one
looks for a tensor T ∈ A⊗B⊗C, that has special combinatorial structure
rendering it easy to study, that can be degenerated into a collection of
disjoint matrix multiplications. More precisely, to obtain a sequence of
disjoint matrix multiplication tensors, one degenerates the tensor powers
T⊗N ∈ (A⊗N )⊗(B⊗N )⊗(C⊗N ). Strassen’s degeneration is in the sense of
the GL(A)×GL(B)×GL(C)-orbit closure of T⊗N .

After Strassen, all other subsequent upper bounds on ω use what I will
call combinatorial restrictions of T⊗N for some “simple” tensor T , where
entries of a coordinate presentation of T⊗N are simply set equal to zero.
The choice of entries to zero out is subtle. I describe these developments in
§3.4.
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In addition to combinatorial restrictions, Cohn et. al. exploit a geomet-
ric change of basis when a tensor is the multiplication tensor of an algebra
(or even more general structures). They use the discrete Fourier transform
for finite groups (and more general structures) to show that the multipli-
cation tensor in the Fourier basis (and thus in any basis) has “low” rank,
but nevertheless in the standard basis admits a combinatorial restriction to
a “large” sum of matrix multiplication tensors. I discuss this approach in
§3.5.

The proofs in this chapter make essential use of the property from Ex-
ercise 2.6.2.4:

(3.0.1) M〈l,m,n〉⊗M〈l′,m′,n′〉 = M〈ll′,mm′,nn′〉

where for tensors T ∈ A⊗B⊗C and T ′ ∈ A′⊗B′⊗C ′, T⊗T ′ is considered as
a tensor in the triple tensor product (A⊗A′)⊗(B⊗B′)⊗(C⊗C ′).

3.1. Facts and definitions from algebraic geometry

Standard references for this material are [Har95, Mum95, Sha94]. The
first is very good for examples, the second and third have clean proofs, with
the proofs in the second more concise and those in the third more elementary.

3.1.1. Projective varieties. Varieties in a vector space V defined by ho-
mogeneous polynomials are invariant under rescaling. For this, and other
reasons, it will be convenient to work in projective space PV := (V \0)/ ∼
where v ∼ w if and only if v = λw for some λ ∈ C\0. Write π : V \0→ PV
for the projection map. For X ⊂ PV , write π−1(X) ∪ {0} =: X̂ ⊂ V , and

π(y) = [y]. If X̂ ⊂ V is a variety, I will also refer to X ⊂ PV as a variety.
More precisely, the zero set in V of a collection of polynomials on V is called
an affine variety and the image in PV of the zero set of a collection of homo-
geneous polynomials on V is called a projective variety. For subsets Z ⊂ V ,
PZ ⊂ PV denotes its image under π. A variety X is said to be irreducible
if it is not possible to non-trivially write X = Y ∪ Z with Y,Z varieties.
If P ∈ SdV ∗ is an irreducible polynomial, then its zero set Zeros(P ) ⊂ PV
is an irreducible variety, called a hypersurface of degree d. For a variety
X ⊂ PV , Id(X) := {P ∈ SdV ∗ | X ⊂ Zeros(P )} denotes the ideal of X in
degree d, and I(X) = ⊕dId(X) ⊂ Sym(V ∗) is the ideal of X.

We will be mostly concerned with varieties in spaces of tensors (for the
study of matrix multiplication) and spaces of polynomials (for geometric
complexity theory).

3.1.2. Examples of varieties.

(1) Projective space PV ⊆ PV .
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(2) The Segre variety of rank one tensors

σ1 = Seg(PA1 × · · · × PAn)

:= P{T ∈ A1⊗ · · ·⊗ An | ∃aj ∈ Aj such that T = a1⊗ · · ·⊗ an} ⊂ P(A1⊗ · · ·⊗ An).

(3) The Veronese variety

vd(PV ) = P{P ∈ SdV | P = xd for some x ∈ V } ⊂ PSdV.

(4) The Grassmannian

G(k, V ) := P{T ∈ ΛkV | ∃v1, . . . , vk ∈ V such that T = v1∧· · ·∧vk} ⊂ PΛkV.

(5) The Chow variety

Chd(V ) := P{P ∈ SdV | ∃v1, . . . , vd ∈ V such that P = v1 · · · vd} ⊂ PSdV.

By definition, projective space is a variety (the zero set of no equations).

Exercise 3.1.2.1: (2) Show that Seg(PA1 × · · · × PAn) is the zero set of

the size two minors of the flattenings A∗j → A1⊗ · · ·⊗ Âj⊗ · · ·⊗ An, for
1 ≤ j ≤ n.

To get equations for vd(PV ), given P ∈ SdV , consider the flattening
P1,d−1 : V ∗ → Sd−1V defined by ∂

∂v 7→
∂P
∂v . For example when d = 4, v = 2

and P =
∑4

i=0 pix
iy4−i, the matrix representing P1,3 is

(3.1.1)

(
p4 p3 p2 p1

p3 p2 p1 p0

)
and v4(P1) is the zero set of the 6 size two minors of this matrix.

Exercise 3.1.2.2: (1) Show that vd(PV ) is the zero set of the size two
minors of the flattening V ∗ → Sd−1V .

We saw equations for the Grassmannian in §2.7.2.

Exercise 3.1.4.2 will show that it is not necessary to take the Zariski
closure when defining the Chow variety. Equations for the Chow variety are
known, see §9.1.6. However generators of the ideal of the Chow variety are
not known explicitly.

3.1.3. Dimension via tangent spaces. Informally, the dimension of a va-
riety is the number of parameters needed to describe it locally. For example,
the dimension of PV is v − 1 because in coordinates on the open neighbor-
hood where x1 6= 0, points of PV have a unique expression as [1, x2, . . . , xv],
where x2, . . . , xv are free parameters.

I first define dimension of a variety via dimensions of vector spaces.
Define the affine tangent space to X ⊂ PV at [x] ∈ X, T̂xX̂ = T̂[x]X ⊂ V ,

to be the span of the tangent vectors x′(0) to analytic curves x(t) on X̂ with
x(0) = x, and note that this is independent of the choice of x ∈ [x]. A point
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x ∈ X̂ is defined to be a smooth point if dim T̂yX̂ is constant for all y in
some neighborhood of x.

The dimension of an irreducible variety X̂ ⊂ V is the dimension of the
tangent space at a smooth point of X̂. If x is a smooth point, dimX =
dim X̂ − 1 = dim T̂xX̂ − 1. If x is not a smooth point, it is called a singular
point and we let Xsing ⊂ X denote the singular points of X.

Exercise 3.1.3.1: (2) Show that dim{detn = 0}sing = n2 − 4.

A variety of dimension one is called a curve.

If a Zariski open subset of a variety is given parametrically, then one
can calculate the tangent space to the variety via the parameter space. For
example Ŝeg(PA× PB × PC) may be thought of as the image of the map

A×B × C → A⊗B⊗C
(a, b, c) 7→ a⊗b⊗c,

so to compute T̂[a⊗b⊗c]Seg(PA × PB × PC), take curves a(t) ⊂ A with

a(0) = a and similarly for B,C, then d
dt |t=0a(t)⊗b(t)⊗c(t) = a′⊗b⊗c +

a⊗b′⊗c+ a⊗b⊗c′ by the Leibnitz rule. Since a′ can be any vector in A and
similarly for b′, c′ we conclude

T̂[a⊗b⊗c]Seg(PA× PB × PC) = A⊗b⊗c+ a⊗B⊗c+ a⊗b⊗C.

The right hand side spans a space of dimension a+b+c−2, so dim(Seg(PA×
PB × PC)) = a + b + c− 3.

I can now pay off two debts: in §2.1.1, I asserted that the fundamental
Theorem of linear algebra is something of a miracle, and in Theorem 2.1.5.1

I asserted that a general tensor in Cm⊗Cm⊗Cm has tensor rank around m2

3 .

It is straight-forward to compute

T̂[a1⊗b1⊗c1+a2⊗b2⊗c2]σ2 =

span{a1⊗b1⊗c′1 + a1⊗b′1⊗c1 + a′1⊗b1⊗c1 + a2⊗b2⊗c′2 + a2⊗b′2⊗c2 + a′2⊗b2⊗c2}

so that dimσ2 ≤ 2(dim(Seg(PA× PB × PC)) + 2− 1 (and equality clearly
holds if a,b, c ≥ 3) and similarly dimσr ≤ r(dim(Seg(PA×PB×PC))+r−1.
The first chance this has to be the entire ambient space is when this number

is abc− 1. When a = b = c = m, this means r ≥ m3

3m−1 , paying the second
debt.

For the first,

T̂[a1⊗b1+a2⊗b2]σ2,A⊗B = span{a1⊗b′1 + a′1⊗b1 + a2⊗b′2 + a′2⊗b2}
= A⊗span{b1, b2}+ span{a1, a2}⊗B

and this space has dimension 2 dimSeg(PA× PB), instead of the expected
2 dimSeg(PA × PB) + 1. This accounts for the semi-continuity of matrix
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rank which fails for tensor rank: any point on a tangent line, i.e., a point of
the form a′⊗b+ a⊗b′ is also transparently on a secant line, i.e., the sum of
two rank one matrices.

Exercise 3.1.3.2: (1) Compute T̂[x
d]vd(PV ).

3.1.4. Noether normalization. Consider the curve {xy = 1} ⊂ C2:

**picture here***

If we project the curve onto the x-axis, we get the set {x ∈ C | x 6= 0},
which, as was discussed in §1.1.14, is not Zariski closed.

One of the many wonderful things about projective space is that the
projection of an algebraic variety to a hyperplane is still an algebraic variety:

Theorem 3.1.4.1. If X ⊂ PW is a variety, L ⊂ W is a subspace with
PL ∩ X = ∅, and one considers the projection map p : W → W/L, then

Pp(X̂) ⊂ P(W/L) is also a variety.

Theorem 3.1.4.1 is part of the Noether normalization theorem (see, e.g.,
[Sha94, §5.4] or [Mum95, §2C]). It is proved via elimination theory. In
addition to failing in affine space, this projection property fails over R: the
surface in RP3 given by x2 + z2− y2 = 0 when projected from [1, 0, 0] is not
a real algebraic variety.

Exercise 3.1.4.2: (1) Show that ifW = V ⊗d and L is theGL(V )-complement
to SdV in V ⊗d, taking p : V ⊗d → V ⊗d/L ' SdV , then p(Seg(PV × · · · ×
PV )) = Chd(V ). Conclude that the Chow variety is indeed a variety.

For those wishing to understand the projection algebraically, say one
projects from a point. Give PV linear coordinates such that the point is a
coordinate point. Then, from the ideal of X ⊂ PV , eliminate the coordinate
from equations to get a new ideal in v−1 variables. For example, give S4C2

coordinates (p4, p3, p2, p1, p0) as above and project from p2. Eliminating p2

from the equations

p4p2 − p2
3, p4p1 − p2p3, p4p0 − p1p3, p3p1 − p2

2, p2p0 − p2
1

gives the ideal generated by

p4p0 − p1p3, p
3
3 − p2

4p1, p
3
1 − p2

0p3.

Exercise 3.1.4.3: (2) What equations does one get when projecting from
p3? Give a geometric explanation why the answer is different. (A complete
answer to this question is beyond what we have covered, I am just asking
for some equations.) }
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Remark 3.1.4.4. Since the elimination theory doesn’t care which point one
projects from, one can even project from a point on a variety. The resulting
“map” is not defined at the point one projects from, but the Zariski closure
of the image of the points where it is defined at is well defined. This is an
example of what is called a rational map.

Exercise 3.1.4.5: (2) What ideal does one get when projecting v4(P1) from
p4? (A complete answer to this question is beyond what we have covered, I
am just asking for some equations.) }

As long as X does not surject onto PV/L, we can continue projecting it
to smaller and smaller projective spaces.

If X ⊂ PV is a projective variety and f : X → Y ⊂ PN is given by N+1
homogeneous polynomials on V , then f is an example of a regular map.
(Regular maps are defined in greater generality, essentially maps defined
locally by polynomials.)

Exercise 3.1.4.6: (1) Show that if X is irreducible and f : X → Y is
regular, then f(X) is irreducible.

Theorem 3.1.4.1 generalizes to:

Theorem 3.1.4.7. (see, e.g., [Sha13, §5.2, Thm. 1.10]) If X is a projective
variety and f : X → Y is a regular map, then f(X) is Zariski closed.

In particular, if X is irreducible, then f(X) is an irreducible variety.

3.1.5. Dimension via projection. The dimension of X ⊂ PV is also
the largest integer n such that there exists a surjective linear projection
onto a Pn. In this case the surjective projection X → P(V/Cc) is finite
to one. The integer c = v − 1 − n is called the codimension of X in PV .
Noether normalization implies that a general linear space PL will satisfy
dim(X ∩ PL) = v − 1 − n − dimPL. Similarly the intersection of X with
a general linear space of dimension c + 1 will be a finite number of points.
This number of points is called the degree of X.

A consequence of this more algebraic definition of dimension is the fol-
lowing result:

Theorem 3.1.5.1. Let X,Y ⊂ PN (resp. X,Y ⊂ CN ) be irreducible pro-
jective (resp. affine) varieties.

Then any non-empty component Z of X ∩ Y has dimZ ≥ dimX +
dimY −N .

Moreover, in the projective case, if dimX+dimY −N > 0, then X∩Y 6=
∅.

For the proof, see, e.g., [Sha94, I.6 Thm. 6].
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3.1.6. Zariski and Euclidean closure. Recall from §1.1.14.2 that the
Zariski closure of a set can be larger than the Euclidean closure. Neverthe-
less, the following theorem, proved using Noether normalization, shows that
in our situation, the competing definitions of closure agree:

Theorem 3.1.6.1. Let Z ⊂ PV be a subset. Then the Euclidean closure of
Z is contained in the Zariski closure of Z. If Z contains a Zariski open subset
of its Zariski closure, then the two closures coincide. The same assertions
hold for subsets Z ⊂ V .

A proof that uses nothing but Noether normalization is given in [Mum95,
Thm. 2.33]. I present a proof using the following basic fact: for every irre-

ducible algebraic curve C ⊂ PV there exists a smooth algebraic curve C̃ and
a surjective algebraic map π : C̃ → C that is one-to-one over the smooth
points of C. (More precisely, π is a finite map in the sense of algebraic
geometry.) See, e.g., [Sha94, §II.5, Thms. 3 and 6] for a proof. The curve

C̃ is called the normalization of C.

The theorem will follow immediately from the following Lemma:

Lemma 3.1.6.2. Let Z ⊂ PV be an irreducible variety and let Z0 ⊂ Z be
a Zariski open subset. Let p ∈ Z\Z0. Then there exists an analytic curve
C(t) such that C(t) ∈ Z0 for all t 6= 0 and limt→0C(t) = p.

Proof. Let c be the codimension of Z and take a general linear space PL ⊂
PV of dimension c + 1 that contains p. Then PL ∩ Z will be a possibly
reducible algebraic curve containing p. Take a component C of the curve
that contains p. If p is a smooth point of the curve we are done, as we
can expand a Taylor series about p. Otherwise take the the normalization
π : C̃ → C and a point of π−1(p), expand a Taylor series about that point
and compose with π to obtain the desired analytic curve. �
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3.2. The upper bounds of Bini, Capovani, Lotti, and Romani

3.2.1. Rank, border rank, and the exponent of matrix multiplica-
tion.

Proposition 3.2.1.1. [Bin80] For all n, R(M〈n〉) ≥ nω, i.e., ω ≤ logR(M〈n〉)

log(n) .

Proof. By the definitions of the exponent and O, there exists a constant
C, such that CR(M〈n〉) ≥ nω for all n. By (3.0.1) and Exercise 2.1.6.3,

R(M〈nk〉) ≤ R(M〈n〉)
k. Say R(M〈n〉) = r. Then Crk ≥ (nk)ω, i.e. C

1
k r ≥

nω. Now let k go to infinity, we get r ≥ nω. �

Remark 3.2.1.2. The calculation in the proof of Proposition 3.2.1.1 is
typical in the upper bound literature and will show up several times in this
chapter: one has an initially hazardous constant (in this case C) that gets
washed out asymptotically by taking high tensor powers of M〈n〉.

Proposition 3.2.1.3. For all l,m,n, (lmn)
ω
3 ≤ R(M〈m,n,l〉), i.e., ω ≤

3 logR(M〈m,n,l〉)

log(mnl) .

Exercise 3.2.1.4: (2) Prove Proposition 3.2.1.3. }

Remark 3.2.1.5. The inequalities in Propositions 3.2.1.1 and 3.2.1.3 are
strict, see Theorem 3.3.3.5.

To show that ω may also be defined in terms of border rank, introduce
a sequence of ranks that interpolate between rank and border rank.

We say Rh(T ) ≤ r if there exists an expression

(3.2.1) T = lim
ε→0

1

εh
(a1(ε)⊗b1(ε)⊗c1(ε) + · · ·+ ar(ε)⊗br(ε)⊗cr(ε))

where aj(ε), bj(ε), cj(ε) are analytic functions of ε.

Proposition 3.2.1.6. R(T ) ≤ r if and only if there exists an h such that
Rh(T ) ≤ r.

Proof. We need to show R(T ) ≤ r implies there exists an h with Rh(T ) ≤ r.
Since Seg(PA×PB×PC) is just the product of three projective spaces, every
curve in Seg(PA×PB×PC) is of the form [a(t)⊗b(t)⊗c(t)] for some curves
a(t) ⊂ A etc., and if the curve is analytic, the functions a(t), b(t), c(t) can
be taken to be analytic as well. Thus every analytic curve in σ0

r (Seg(PA×
PB × PC)) may be written as [

∑r
j=1 aj(t)⊗bj(t)⊗cj(t)] for some analytic

curves aj(t) ⊂ A etc. Since the Euclidean and Zariski closures of σ̂0
r agree,

we conclude that if T ∈ σ̂r, then Rh(T ) ≤ r for h equal to the order of first
nonzero term in the Taylor expansion of

∑r
j=1 aj(t)⊗bj(t)⊗cj(t). �
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Remark 3.2.1.7. In the matrix multiplication literature, e.g. [BCS97], σ̂r
is often defined to be the the set of T with Rh(T ) ≤ r for some h. One then
must show that this set is algebraically closed.

Proposition 3.2.1.8. If Rh(T ) ≤ r, then R(T ) ≤ r
(
h+2

2

)
< rh2.

Proof. Write T as in (3.2.1). Then T is the coefficient of the εh term of
the expression in parentheses. For each summand, there is a contribution of∑

α+β+γ=h(εαaα)⊗(εβbβ)⊗(εγcγ) which consists of
(
h+2

2

)
terms. �

Remark 3.2.1.9. In fact R(T ) ≤ rh, see Proposition 3.5.3.2.

Exercise 3.2.1.10: (1) Show that for T ∈ A⊗B⊗C, if Rh(T ) ≤ r, then
RNh(T⊗N ) ≤ rN where T⊗N is considered as an element of the triple tensor
product (A⊗N )⊗(B⊗N )⊗(C⊗N ).

Theorem 3.2.1.11. [Bini, [Bin80]] For all l,m,n, ω ≤ 3 logR(M〈m,n,l〉)

log(mnl) . In

particular, for all n, R(M〈n〉) ≥ nω.

Proof. Write r = R(M〈m,n,l〉). Set N = mnl. We have Rh(M〈N〉) ≤ r3 for

some h and thus R(M〈Nk〉) ≤ r3k(hk)2, which implies

(Nk)ω ≤ r3k(hk)2

so

Nω ≤ r3(hk)
2
k

and letting k →∞ gives the result. �

3.2.2. Bini et. al’s algorithm. Recall from §2.1.4 that R(M red
〈2〉 ) ≤ 5.

Exercise 3.2.2.1: (1) Use that R(M red
〈2〉 ) ≤ 5 to show R(M〈2,2,3〉) ≤ 10.

More generally, show that if R(M red
〈m,2,2〉) = r and R(M red

〈m′,2,2〉) = r′, then

setting n = m+m′ − 1, R(M〈n,2,2〉) ≤ r + r′.}

Using Proposition 3.2.1.11 we conclude:

Theorem 3.2.2.2. [BCRL79] ω < 2.78.

3.3. Schönhage’s upper bounds

The next contribution to upper bounds for the exponent of matrix multi-
plication was Schönhage’s discovery that the border rank of the sum of two
tensors in disjoint spaces can be smaller than the sum of the border ranks,
and that this failure could be exploited to prove further upper bounds on
the exponent. This result enables one to prove upper bounds with tensors
that are easier to analyze because of their low border rank. Before giving
Schönhage’s bounds, I begin with geometric preliminaries on orbit closures.
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3.3.1. Orbit closures. Orbit closures will play a central role in our study
of GCT. They also play a role in the work of Schönhage and Strassen on
matrix multiplication, so I make several remarks in this context here.

When r ≤ ai for 1 ≤ i ≤ n, σr(Seg(PA1×· · ·×PAn)) is an orbit closure:
Let a

αj
j , 1 ≤ αj ≤ aj , be a basis of Aj ,

σr(Seg(PA1 × · · · × PAn))

= GL(A1)× · · · ×GL(An) · [a1
1⊗ · · ·⊗ a1

n + · · ·+ ar1⊗ · · ·⊗ arn] ⊂ P(A1⊗ · · ·⊗ An).

In particular,

(3.3.1) σr(Seg(Pr−1 × Pr−1 × Pr−1)) = GLr ×GLr ×GLr · [M⊕r〈1〉 ].

Exercise 3.3.1.1: (2) Let V be a G-module and let v, w ∈ V . Show that
w ∈ G · v if and only if G · w ⊆ G · v.

Proposition 3.3.1.2. If T ′ ∈ GL(A)×GL(B)×GL(C) · T ⊂ A⊗B⊗C,
then R(T ′) ≤ R(T ).

Exercise 3.3.1.3: Prove Proposition 3.3.1.2. }

Definition 3.3.1.4. If T ′ ∈ GL(A)×GL(B)×GL(C) · T ⊂ A⊗B⊗C, we
say T ′ is a degeneration of T .

Consider the orbit closure of the matrix multiplication tensor

GL(A)×GL(B)×GL(C) · [M〈U,V,W 〉] ⊂ P(A⊗B⊗C).

Write M⊕r〈1〉 =
∑r

j=1 aj⊗bj⊗cj ∈ Cr⊗Cr⊗Cr where {aj}, {bj}, {cj} are

bases. This tensor is sometimes called the unit tensor.

By Exercise 3.3.1.1, we may rephrase our characterization of border rank
as, taking inclusions A,B,C ⊂ Cr,

R(M〈n〉) ≤ r ⇔ [M〈n〉] ∈ σr(Seg(PA× PB × PC))

⇔ GLr ×GLr ×GLr · [M〈n〉] ⊂ σr(Seg(Pr−1 × Pr−1 × Pr−1))

⇔ GLr ×GLr ×GLr · [M〈n〉] ⊂ GLr ×GLr ×GLr · [M⊕r〈1〉 ]

3.3.2. Schönhage’s example. Recall from Exercise 2.1.7.6 that R(M〈1,m,n〉) =
mn and R(M〈N,1,1〉) = N . Recall the notation from §2.1.6 that if T1 ∈
A1⊗B1⊗C1 and T2 ∈ A2⊗B2⊗C2, we define the tensor T1 ⊕ T2 ∈ (A1 ⊕
A2)⊗(B1⊕B2)⊗(C1⊕C2). (In Exercise 5.3.1.6 you will show that R(M〈1,m,n〉⊕
M〈N,1,1〉) = mn +N .)

Theorem 3.3.2.1 (Schönhage [Sch81]). Set N = (n− 1)(m− 1). Then

R(M〈1,m,n〉 ⊕M〈N,1,1〉) = mn + 1.
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Proof. By conciseness, we only need to show R(M〈1,m,n〉 ⊕ M〈N,1,1〉) ≤
mn + 1. Write

M〈1,m,n〉 =
m∑
i=1

n∑
j=1

xi⊗yj⊗zi,j ,

M〈N,1,1〉 =
m−1∑
u=1

n−1∑
v=1

xu,v⊗yu,v⊗z.

Then

M〈1,m,n〉 ⊕M〈N,1,1〉 = lim
t→0

1

t2
[

m−1∑
u=1

n−1∑
v=1

(xu + txuv)⊗(yv + tyuv)⊗(z + t2zuv)

+
m−1∑
u=1

xu⊗(yn + t(−
∑
v

yuv))⊗(z + t2zun)

+
n−1∑
v=1

(xm + t(−
∑
u

xuv))⊗yv⊗(z + t2zmv)

+ xm⊗yn⊗(z + t2zmn)− (
∑
i

xi)⊗(
∑
s

ys)⊗z].

�

Write M〈1,m,n〉 ∈ A1⊗B1⊗C1 and M〈N,1,1〉 ∈ A2⊗B2⊗C2. One way
to understand the proof is as follows: If one takes a curve in Seg(P(A1 ⊕
A2) × P(B1 ⊕ B2) × P(C1 ⊕ C2)) with zero-th order terms in A1⊗B1⊗C2,
and takes one derivative, one can have terms in A1⊗B1⊗C1 and after two
derivatives, one can have terms in both A1⊗B1⊗C1 and A2⊗B2⊗C2. The
zero-th order terms must be arranged to all cancel. Schönhage accomplishes
this in the simplest possible way: he takes dimensions sufficiently unbalanced
that there are more terms than the dimension of A1⊗B1⊗C2, so they are
linearly dependent and easily arranged to cancel. What is more subtle is the
cancellation of the first order terms, whose geometry I leave to the reader
to explore.

3.3.3. Schönhage’s asymptotic sum inequality. To develop intuition
how an upper bound on a sum of matrix multiplications could give an upper
bound on a single matrix multiplication, say we knew R(M⊕s〈n〉) ≤ r with

s ≤ n3. Then to compute M〈n2〉 we could write M〈n2〉 = M〈n〉⊗M〈n〉. At

worst this is evaluating n3 disjoint copies of M〈n〉. Now group these n3

disjoint copies in groups of s and apply the bound to obtain a savings.

Here is the precise statement:
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Theorem 3.3.3.1. [Sch81] [Schönhage’s asymptotic sum inequality] For
all li,mi,ni, with 1 ≤ i ≤ s:

s∑
i=1

(minili)
ω
3 ≤ R(

s⊕
i=1

M〈mi,ni,li〉).

The main step of the proof, and an outline of the rest of the argument
is given below.

Remark 3.3.3.2. A similar result (also proven in [Sch81]) holds for the
border rank of the multiplication of matrices with some entries equal to zero,
where the product minili is replaced by the number of multiplications in
the näıve algorithm for the matrices with zeros.

Here is a special case that isolates the new ingredient (following notes
of M. Bläser [Blä13]):

Lemma 3.3.3.3.

nω ≤ d
R(M⊕s〈n〉)

s
e.

In particular, snω ≤ R(M⊕s〈n〉).

Proof. Let r = R(M⊕s〈n〉). It is sufficient to show that for all N ,

(3.3.2) R(M⊕s〈nN 〉) ≤ d
r

s
eNs

as then, since trivially R(M⊕s〈nN 〉) ≥ R(M〈nN 〉) ≥ (nN )ω, we have

(nN )ω ≤ dr
s
eNs

i.e.,

nω ≤ dr
s
es

1
N

and the result follows letting N →∞.

We prove (3.3.2) by induction on N . The hypothesis is the case N = 1.
Assume (3.3.2) holds up to N and observe that

M⊕s〈nN+1〉 = M⊕s〈n〉⊗M〈nN 〉.

Now R(M⊕s〈n〉) ≤ r implies M⊕s〈n〉 ∈ GL×3
r ·M⊕r〈1〉 by Equation (3.3.1), so

M⊕s〈n〉⊗M〈nN 〉 ∈ GL
×3
r ·M⊕r〈1〉⊗M〈nN 〉. Thus R(M⊕s〈nN+1〉) ≤ R(M⊕r〈1〉⊗M〈nN 〉).
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Recall that M⊕t〈1〉⊗M〈nN 〉 = M⊕t〈nN 〉. Now

R(M⊕s〈nN+1〉) ≤ R(M⊕r〈nN 〉)

≤ R(M
⊕d r

s
es

〈nN 〉 )

≤ R(M
⊕d r

s
e

〈1〉 ⊗M
⊕s
〈nN 〉)

≤ R(M
⊕d r

s
e

〈1〉 )R(M⊕s〈nN 〉)

≤ dr
s
e(dr

s
eNs)

where the last inequality follows from the induction hypothesis. �

The general case of Theorem 3.3.3.1 essentially follows from the above
lemma and arguments used previously: one first takes a high tensor power
of the sum, then switches to rank at the price of introducing an h that
washes out in the end. The new tensor is a sum of products of matrix
multiplications that one converts to a sum of matrix multiplications. One
then takes the worst term in the summation and estimates with respect to
it (multiplying by the number of terms in the summation), and applies the
lemma to conclude.

Corollary 3.3.3.4. [Sch81] ω < 2.55.

Proof. Applying Theorem 3.3.3.1 to R(M〈1,m,n〉⊕M〈(m−1)(n−1),1,1〉) = mn+
1 gives

(mn)
ω
3 + ((m− 1)(n− 1))

ω
3 ≤mn + 1

and taking m = n = 4 gives the result. �

In [CW82] they prove that for any tensor T that is a direct sum of
disjoint matrix multiplications, if R(T ) ≤ r, then there exists N such that
R(T ⊕M〈N,1,1〉) ≤ r + 1. This, combined with our earlier arguments using
Rh to bridge the gap between rank and border rank asymptotically, implies
the inequality in Theorem 3.3.3.1 is strict:

Theorem 3.3.3.5. [CW82] For all li,mi,ni, with 1 ≤ i ≤ s:

s∑
i=1

(minili)
ω
3 < R(

s⊕
i=1

M〈mi,ni,li〉).

In particular, for all n, R(M〈n〉) > nω, so one cannot determine ω from
M〈n〉 for any fixed n.
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3.4. Strassen’s laser method

3.4.1. Introduction. Recall our situation: we don’t understand rank or
even border rank in the range we would need to prove upper bounds on ω via
M〈n〉, so we showed upper bounds on ω could be proved first with rectangu-
lar matrix multiplication, then with sums of disjoint matrix multiplications
which had the property that the border rank of the sum was less than the
sum of the border ranks, and the border rank in each case was determined
via an explicit algorithm.

We also saw that to determine the exponent by such methods, one
would need to deal with sequences of tensors. Strassen’s laser method is
based on taking high tensor powers of a fixed tensor, and then degenerat-
ing it to a disjoint sum of matrix multiplication tensors. Because it deals
with sequences, there is no known obstruction to determining ω exactly via
Strassen’s method.

Starting with Strassen’s method, all attempts to determine ω aim at best
for a Pyrrhic victory in the sense that even if ω were determined by these
methods, they would not give any indication as to what would be optimally
fast matrix multiplication for any given size matrix.

3.4.2. Strassen’s tensor. Consider the following tensor

(3.4.1) TSTR =

q∑
j=1

a0⊗bj⊗cj + aj⊗b0⊗cj ∈ Cq+1⊗Cq+1⊗Cq.

This is presented as a sum of 2q rank one tensors. (And we will see
R(TSTR) = 2q in §??.) Nevertheless, R(TSTR) = q + 1. To see why one
could expect this, consider the q points a0⊗b0⊗cj . The tensor TSTR is a
sum of tangent vectors to these q points:

TSTR =

q∑
j=1

lim
t→0

[(a0 + taj)⊗(b0 + tbj)⊗cj − a0⊗b0⊗cj ]

Note that the sum
∑

j a0⊗b0⊗cj is also a rank one tensor, which leads one
to the expression:

lim
t→0

q∑
j=1

(a0 + taj)⊗(b0 + tbj)⊗cj − a0⊗b0⊗(c1 + · · ·+ cq)

showing the border rank is at most q + 1, but since the tensor is concise,
we obtain equality. Geometrically, the original q points all lie on the linear
space [a0⊗b0⊗Cq] ⊂ Seg(PA× PB × PC).
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Now consider T̃ := TSTR⊗σ(TSTR)⊗σ2(TSTR) where σ is a cyclic per-
mutation of the three factors. Group triples of spaces together to consider

T̃ ∈ Cq(q+1)2⊗Cq(q+1)2⊗Cq(q+1)2
. We have the upper bound R(T̃ ) ≤ (q+1)3.

Write aαβγ := aα⊗aβ⊗aγ and similarly for b’s and c’s. Then, omitting
the ⊗’s:

T̃ =

q∑
i,j,k=1

(aij0b0jkci0k + aijkb0jkci00 + aij0b00kcijk + aijkb00kcij0

(3.4.2)

+ a0j0bijkci0k + a0jkbijkci00 + a0j0bi0kcijk + a0jkbi0kcij0)

We may think of T̃ as a sum of eight terms, each of which is a M〈l,m,n〉
with lmn = q3, e.g., the first is

∑q
i,j,k=1 aij0b0jkci0k = M〈q,q,q〉, the second

M〈q2,q,1〉 etc.. (I will say of volume q3.) Were they all disjoint expressions,

we could use the asymptotic sum inequality to conclude 8qω ≤ (q + 1)3 and
for small q we would see ω < 2. Of course this is not the case, but we can
try to zero out some of the variables to keep as many of these eight terms
as possible. For example if we set ci00, b00k, bijk, cijk all to zero, we are left
with two disjoint matrix multiplications and we conclude 2qω ≤ (q + 1)3.
This is best when q = 15, giving ω < 2.816, which is not so interesting.

At this point enters a new idea: since we are dealing with border rank,
we have greater flexibility in degeneration than simply zero-ing out terms.
By taking limits, we will be able to keep three terms! To explain this, I need
to take another detour regarding orbit closures.

3.4.3. All tensors are degenerations of matrix multiplication.

Theorem 3.4.3.1 (Strassen [Str87]). Set r = b3
4n2c and choose a linear

embedding Cr ⊂ Cn2
. Then

σr(Seg(Pr−1 × Pr−1 × Pr−1)) ⊂ GLn2 ×GLn2 ×GLn2 · [M〈n〉],

i.e.,

GLr ×GLr ×GLr · [M⊕r〈1〉 ] ⊂ GLn2 ×GLn2 ×GLn2 · [M〈n〉].

Proof. The proof will be by a very simple degeneration: let TA ⊂ GL(A) =
GLn2 denote the diagonal n2 × n2 matrices. I will show

M⊕r〈1〉 ⊂ TA × TB × TC ·M〈n〉.

Write xij for a basis of A etc. so M〈n〉 =
∑

i,j,k xij⊗yjk⊗zki. We want to
kill off as few terms as possible such that in the remaining terms, each basis
vector appears in at most one monomial. That is if we have xij appearing,
then there should be a unique k0 = k(i, j), such that the only term surviving
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in
∑

k xij⊗yjk⊗zki is xij⊗yjk0⊗zk0i. We should view this more symmetri-
cally, fixing some integer h and requiring that the only terms appearing are
of the form xij⊗yjk⊗zki where i+ j + k = h. To do this, we want curves

xij 7→ tα(i,j)xij

yjk 7→ tβ(j,k)yjk

zki 7→ tγ(k,i)zki

so that α+β+γ = 0 when i+j+k = h and α+β+γ > 0 when i+j+k 6= h,
as then

lim
t→0

n∑
i,j,k=1

tα(i,j)+β(j,k)+γ(k,i)xij⊗yjk⊗zki =
∑

i+j+k=h

xij⊗yjk⊗zki.

Set λ = i+ j + k. We want something like

α+ β + γ = (h− λ)2 = h2 − 2λh+ λ2.

Take

α =
1

2
(i2 + j2) + 2ij + (

h

3
− i− j)h

β =
1

2
(k2 + j2) + 2kj + (

h

3
− k − j)h

γ =
1

2
(i2 + k2) + 2ik + (

h

3
− i− k)h.

Exercise 3.4.3.2: (1) Verify that α+ β + γ = (h− λ)2.

Exercise 3.4.3.3: (2) Show that the best value of h is h = d3n
2 e+ 1 which

yields r = b3
4n2c to finish the proof.

�

Remark 3.4.3.4. Note that we really are doing a degeneration argument
here, in the sense that there are values of i, j, k where one of α, β, γ is
negative. To avoid negative terms for the curves in A,B,C, we could add r
to each of α, β, γ and then divide the entire entire expression by t3r.

I will call degenerations that only use the diagonal matrices toric degen-
erations.

Corollary 3.4.3.5. Every tensor in C
3
2
n⊗C

3
2
n⊗C

3
2
n arises as a degenera-

tion of M〈n〉.

Proof. As mentioned in §2.1.6, the maximum border rank of any tensor

in C
3
2
n⊗C

3
2
n⊗C

3
2
n is at most 3

4n2, and any tensor of border rank r is a

degeneration of a general element of σr(Seg(Pr−1 × Pr−1 × Pr−1)). �
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Remark 3.4.3.6. Theorem 3.4.3.1 may be interpreted as saying that one
can degenerate M〈n〉 to a tensor that computes b3

4n2c independent scalar
multiplications. If we have any tensor realized as M〈n〉⊗T , the same degen-

eration procedure works to degenerate it to M⊕r〈1〉⊗T .

3.4.4. A better bound using the toric degeneration. Now we return
to the expression (3.4.2). There are four kinds of A-indices, ij0, ijk, 0j0
and 0jk. To emphasize this, and to suggest what kind of degeneration to
perform, label these with superscripts [11], [21], [12] and [22]. Label each
of the B and C indices (which come in four types as well) similarly. We
obtain:

T̃ =

q∑
i,j,k=1

(a
[11]
ij0 b

[11]
0jkc

[11]
i0k + a

[21]
ijk b

[11]
0jkc

[12]
i00 + a

[11]
ij0 b

[12]
00kc

[21]
ijk + a

[21]
ijk b

[12]
00kc

[22]
ij0

+ a
[12]
0j0b

[21]
ijk c

[11]
i0k + a

[22]
0jkb

[21]
ijk c

[12]
i00 + a

[12]
0j0b

[22]
i0k c

[21]
ijk + a

[22]
0jkb

[22]
i0k c

[22]
ij0 ).

This expression has the structure of block 2×2 matrix multiplication. Think
of it as a sum of q3 2× 2 matrix multiplications. Now use Theorem 3.4.3.1
to degenerate each 2× 2 matrix multiplication to a sum of 3 disjoint terms.
Namely, following the recipe that the three indices must add to 4, we keep
all terms a[s,t]b[t,u]c[u,s] where s+ t+ u = 4, namely we degenerate T̃ to

q∑
i,j,k=1

a
[21]
ijk b

[11]
0jkc

[12]
i00 + a

[11]
ij0 b

[12]
00kc

[21]
ijk + a

[12]
0j0b

[21]
ijk c

[11]
i0k

and apply the asymptotic sum inequality. We obtain 3qω ≤ (q + 1)3 which
gives the best bound on ω when q = 7, namely ω < 2.642, which is still not
as good as Schönhage’s bound.

3.4.5. Strassen’s bound. We do better by using the standard trick of this
chapter: taking a high tensor power of T̃ , as T̃⊗N contains (2N )2 matrix
multiplications M〈l,m,n〉, all with lmn = q3N , and again by Theorem 3.4.3.1

we may keep 3
422N of them. The asymptotic sum inequality applied to the

degenerated tensor gives

3

4
22NqNω ≤ (q + 1)3N .

Taking N -th roots and letting N tend to infinity, the 3
4 goes away and we

obtain

22qω ≤ (q + 1)3.

Finally, the case q = 5 implies:

Theorem 3.4.5.1. [Str87] ω < 2.48 .
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3.4.6. Asymptotic rank. The above discussion suggests the introduction
of yet another complexity measure for tensors: given T ∈ A⊗B⊗C, we can
consider T⊗N ∈ A⊗N⊗B⊗N⊗C⊗N and this construction played a central
role in Strassen’s laser method to prove upper bounds for the complexity of
matrix multiplication via auxiliary tensors.

Definition 3.4.6.1. The asymptotic rank R̃(T ) of a tensor T ∈ A⊗B⊗C,
is

R̃(T ) := infN [R(T⊗N )]
1
N .

Exercise 3.4.6.2: (1) Show that in the definition, one can replace the infi-
mum by limN→∞ by using Lemma 3.4.7.2 below.

Exercise 3.4.6.3: (2) Show that R̃(T ) ≤ R(T ). }

Since M⊗k〈2〉 = M〈2k〉, we have R̃(M〈2〉) = 2ω.

Conjecture 3.4.6.4. [Str91] Let T ∈ A⊗B⊗C be concise with a = b = c.

Then R̃(T ) = a.

Note that, taking T = M〈2〉, this would imply ω = 2.

3.4.7. Degeneracy value. I now formalize what we did to get Strassen’s
bound. The starting point is if a tensor T degenerates to

⊕s
i=1M〈li,mi,ni〉,

then
∑s

i=1(limini)
ω
3 ≤ R(T ), and more generally we worked with degener-

ations of T⊗N as well. Informally define the degeneracy value of T to be the
best upper bound on ω we can get in this manner. More precisely:

Definition 3.4.7.1. Let T ∈ A⊗B⊗C. Fix N ≥ 1 and ρ ∈ [2, 3]. Define

V degen
ρ,N (T ) to be the maximum of

∑s
i=1(limini)

ρ
3 over all degenerations of

T⊗N to ⊕si=1M〈li,mi,ni〉 over all choices of s, li,mi,ni and define the degen-

eracy value of T to be V degen
ρ (T ) := supN V

degen
ρ,N (T )

1
N .

The asymptotic sum inequality implies V degen
ω (T ) ≤ R(T ), or in other

words, if V degen
ρ (T ) ≥ R(T ), then ω ≤ ρ.

The supremum in the definition can be replaced by a limit, thanks to

Fekete’s lemma, since the sequence log(V degen
ρ,N (T )) is super-additive:

Lemma 3.4.7.2 (Fekete’s Lemma). For every super-additive sequence {an}∞n=1

(i.e. an+m ≥ an + am), the limit limn→∞
an
n exists (possibly +∞) and is

equal to sup an
n .

Exercise 3.4.7.3: (3) Prove Fekete’s Lemma.

Fekete’s lemma implies 1
N log V degen

ρ,N (T ) tends to a limit. See [?] for
details.
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There is also an analogue of the asymptotic sum inequality for degener-
acy value:

Theorem 3.4.7.4.
∑s

i=1 V
degen
ω (Ti) ≤ R(⊕si=1Ti).

The proof is similar to the proof of the asymptotic sum inequality. It is

clear that V degen
ω (T1⊗T2) ≥ V degen

ω (T1)⊗V degen
ω (T2). To show V degen

ω (T1 ⊕
T2) ≥ V degen

ω (T1) + V degen
ω (T2) one expands out V degen

ω,N (T1 ⊕ T2), the result
is a sum of products with coefficients, but as with the asymptotic sum
inequality, one can essentially just look at the largest term, and as N tends
to infinity, the coefficient becomes irrelevant after taking N -th roots.

Thus tensors of low border rank with high degeneracy value give upper
bounds on ω. The problem is that we have no systematic way of estimating
degeneracy value. For an extreme example, for a given r the tensor of border
rank r with the highest degeneracy value is M⊕r〈1〉 as all border rank r tensors

are degenerations of it.

In subsequent work, researchers restrict to a special type of value that
is possible to estimate.

3.4.8. The value of a tensor. Let End(A) × End(B) × End(C) act on
A⊗B⊗C by the action inherited from the GL(A)×GL(B)×GL(C) action
(not the Lie algebra action). Then for all X ∈ End(A)× End(B)× End(C)
and T ∈ A⊗B⊗C, we have R(X · T ) ≤ R(T ) and R(X · T ) ≤ R(T ) by
Exercise 2.1.6.2.

Definition 3.4.8.1. One says T restricts to T ′ if T ′ ∈ End(A)×End(B)×
End(C) · T .

Definition 3.4.8.2. For T ∈ A⊗B⊗C, N ≥ 1 and ρ ∈ [2, 3] define V restr
ρ,N (T )

to be the maximum of
∑s

i=1(limini)
ρ
3 over all restrictions of T⊗N to⊕si=1M〈li,mi,ni〉

and define the restriction value of T to be V restr
ρ (T ) := supN V

restr
ρ,N (T )

1
N .

I emphasize that the degeneration used by Strassen is more general than
restriction.

Coppersmith-Winograd and all subsequent work, use only the following
type of restriction:

Definition 3.4.8.3. Let A,B,C be given bases, so write them as Ca,Cb,Cc.
We say T ∈ Ca⊗Cb⊗Cc combinatorially restricts to T ′ if T restricts to T ′

by setting some of the coordinates of T to zero.

The condition that T ∈ Ca⊗Cb⊗Cc admits a combinatorial restriction
to the matrix multiplication tensor M〈l,m,n〉 may be phrased as follows (fol-
lowing [CU03]): write aα, bβ, cγ for the given bases of A,B,C and write
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T =
∑a

α=1

∑b
β=1

∑c
γ=1 t

α,β,γaα⊗bβ⊗cγ . Then T ∈ Ca⊗Cb⊗Cc combinato-
rially restricts to M〈l,m,n〉 means that there exist injections

α : [l]× [m]→ [a]

β : [m]× [n]→ [b]

γ : [n]× [l]→ [c]

such that

(3.4.3) tα(i,j′),β(j,k′),γ(k,i′) =

{
1 if i = i′, j = j′, k = k′

0 otherwise

}
.

One can similarly phrase combinatorial restriction to a sum of disjoint
matrix multiplication tensors.

Definition 3.4.8.4. For T ∈ Ca⊗Cb⊗Cc, N ≥ 1 and ρ ∈ [2, 3] define

Vρ,N (T ) to be the maximum of
∑s

i=1(limini)
ρ
3 over all combinatorial re-

strictions of T⊗N to ⊕si=1M〈li,mi,ni〉 and define the combinatorial value
(or value for short, since it is the value used in the literature) of T to be

Vρ(T ) := limN→∞ Vρ,N (T )
1
N . (The limit is shown to exist in [DS13].)

Note that the values satisfy V degen
ρ ≥ V restr

ρ ≥ Vρ. As with all the values
we have

• Vρ(T ) is a non-decreasing function of ρ,

• Vω(T ) ≤ R(T ).

Thus if Vρ(T ) ≥ R(T ), then ω ≤ ρ.

Combinatorial value can be estimated in principle, as for each N , there
are only a finite number of combinatorial restrictions. In practice, the tensor
is presented in such a way that there are “obvious” combinatorial degener-
ations to disjoint matrix multiplication tensors and at first, one optimizes
just among these obvious combinatorial degenerations. However, it may be
that there are matrix multiplication tensors of the form

∑
j a0⊗bj⊗cj as

well as tensors of the form a0⊗bk⊗ck where k is not in the range of j. Then
one can merge these tensors to a0⊗(

∑
j bj⊗cj + bk⊗ck) to increase value

because although formally speaking they were not disjoint, they do not in-
terfere with each other. (The value increases as e.g., qω + rω < (q+ r)ω.) So
the actual procedure is to optimize among combinatorial restrictions with
merged tensors.

3.4.9. The Coppersmith-Winograd tensors. Coppersmith and Wino-
grad apply Strassen’s laser method, enhanced with merging, but only using
combinatorial restrictions to the following two tensors:
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The “easy Coppersmith-Winograd tensor”:

(3.4.4) Tcw :=

q∑
j=1

a0⊗bj⊗cj + aj⊗b0⊗cj + aj⊗bj⊗c0 ∈ Cq+1⊗Cq+1⊗Cq+1

This tensor has low border rank. To see why, consider the second deriva-
tives of a curve in the Segre: Let x(t) = a(t)⊗b(t)⊗c(t), write x′ for x′(0)
and similarly for all derivatives. Then

x′′ = (a′′⊗b⊗c+ a⊗b′′⊗c+ a⊗b⊗c′′) + 2(a′⊗b′⊗c+ a′⊗b⊗c′ + a⊗b′⊗c′)

so if we begin with the base point a0⊗b0⊗c0, each term in the summand for
Tcw is a term of the second kind. The terms in the first parenthesis are
ordinary tangent vectors. Thus take q curves beginning at a0⊗b0⊗c0, we
can cancel out all the terms of the first type with a single vector to obtain
the resulting border rank q + 2 expression:

Tcw = lim
t→0

1

t2

 q∑
j=1

(a0 + taj)⊗(b0 + tbj)⊗(c0 + tcj)


− (a0 + t

∑
j

aj)⊗(b0 + t
∑
j

bj)⊗(c0 + t
∑
j

cj)− (q − 1)a0⊗b0⊗c0.

Exercise 3.4.9.1: (2) Show that R(Tcw) ≥ q + 2 so that equality holds.

A slightly more complicated tensor yields even better results: Let

TCW :=

q∑
j=1

(a0⊗bj⊗cj + aj⊗b0⊗cj + aj⊗bj⊗c0)

(3.4.5)

+ a0⊗b0⊗cq+1 + a0⊗bq+1⊗c0 + aq+1⊗b0⊗c0 ∈ Cq+2⊗Cq+2⊗Cq+2

and call TCW the Coppersmith-Winograd tensor

Exercise 3.4.9.2: (2) Show the Coppersmith-Winograd tensor also has bor-
der rank q + 2 by modifying the curves used to obtain Tcw. }

Now we suggestively re-label TCW as we did with Strassen’s tensor:

TCW :=

q∑
j=1

(a
[0]
0 ⊗b

[1]
j ⊗c

[1]
j + a

[1]
j ⊗b

[0]
0 ⊗c

[1]
j + a

[1]
j ⊗b

[1]
j ⊗c

[0]
0 )

(3.4.6)

+ a
[0]
0 ⊗b

[0]
0 ⊗c

[2]
q+1 + a

[0]
0 ⊗b

[2]
q+1⊗c

[0]
0 + a

[2]
q+1⊗b

[0]
0 ⊗c

[0]
0 ∈ Cq+2⊗Cq+2⊗Cq+2
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to see that TCW is the sum of 3 matrix multiplications of volume q2, and 3 of
volume 1, all non-disjoint. To get more interesting matrix multiplications,
consider T⊗2

CW , but this time, instead of double superscripts, simply add the
superscripts.

T⊗2
CW =

q∑
i,j=1

[a
[0]
00⊗b

[2]
ij ⊗c

[2]
ij + a

[1]
0j⊗b

[1]
i0⊗c

[2]
ij + a

[1]
0j⊗b

[2]
ij ⊗c

[1]
i0 + a

[1]
i0⊗b

[1]
0j⊗c

[2]
ij + a

[1]
i0⊗b

[2]
ij ⊗c

[1]
0j

+ a
[2]
ij ⊗b

[1]
i0⊗c

[1]
0j + a

[2]
ij ⊗b

[0]
00⊗c

[2]
ij + a

[2]
ij ⊗b

[2]
ij ⊗c

[1]
00 + a

[2]
ij ⊗b

[1]
0j⊗c

[1]
i0 ]

+

q∑
j=1

[a
[2]
0,q+1⊗b

[1]
j0⊗c

[1]
j0 + a

[2]
q+1,0⊗b

[1]
0j⊗c

[1]
0j + a

[3]
q+1,j⊗b

[1]
0j⊗c

[0]
00 + a

[3]
j,q+1⊗b

[1]
j0⊗c

[0]
00

+ a
[3]
q+1,j⊗b

[0]
00⊗c

[1]
0j + a

[3]
j,q+1⊗b

[0]
00⊗c

[1]
j0 ]

+a
[4]
q+1,q+1⊗b

[0]
00⊗c

[0]
00 + a

[0]
00⊗b

[3]
q+1,j⊗c

[1]
0j + a

[0]
00⊗b

[1]
0j⊗c

[3]
q+1,j

+a
[0]
00⊗b

[4]
q+1,q+1⊗c

[0]
00 + a

[0]
00⊗b

[0]
00⊗c

[4]
q+1,q+1.

Now we have non-disjoint matrix multiplications of volumes q2, q and 1.
Thus when we zero-out terms to get disjoint matrix multiplications in (T⊗2

CW )⊗N ,
in order to optimize value, we need to weight the q2 terms more than the q
terms etc.

As mentioned above, we can obtain better upper bounds with merging.
One needs to make a choice how to merge. Coppersmith and Winogrand

group the Ca2
-variables

A[0] = {a[0]
00}

A[1] = {a[1]
i0 , a

[1]
0j }

A[2] = {a[2]
q+1,0, a

[2]
ij , a

[2]
0,q+1}

A[3] = {a[3]
q+1,j , a

[3]
i,q+1}

A[4] = {a[4]
q+1,q+1}

and similarly for b’s and c’s. Then

T⊗2
CW =

∑
I+J+K=4

∑
a∈I,b∈J,c∈K

A[a]⊗B[b]⊗C[c].
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Most of these terms are just matrix multiplications, however terms with
1 + 1 + 2 are not:

A[1]⊗B[1]⊗C[2] =

q∑
i=1

a
[1]
i0⊗b

[1]
i0⊗c

[2]
0,q+1 +

q∑
j=1

a
[1]
0j⊗b

[1]
0j⊗c

[2]
q+1,0

+

q∑
i,j=1

[a
[1]
i0⊗b

[1]
0j⊗c

[2]
ij + a

[1]
0j⊗b

[1]
i0⊗c

[2]
ij ].

To this term we estimate value using the laser method, i.e., we degenerate
tensor powers of A[1]⊗B[1]⊗C[2] to disjoint matrix multiplication tensors.

Coppersmith and Winograd show that has value at least 2
2
3 qω(q3ω + 2)

1
3 .

Now there is an optimization problem to solve, that I briefly discuss
below.

Coppersmith and Winograd get their best result of ω < 2.3755 by merg-
ing T⊗2

CW and then optimizing over the various combinatorial restrictions. In
subsequent work Stothers [Sto], resp. Williams [Wil], resp. LeGall [Gal]
used merging with T⊗4

CW resp. T⊗8
CW , resp. T⊗16

CW and T⊗32
CW leading to the

current “world record”:

Theorem 3.4.9.3. [Gal] ω < 2.3728639.

Ambainis, Filmus and LeGall [?] showed that taking higher powers of
TCW when q ≥ 5 cannot be used to prove ω < 2.30 by this method alone.
Their argument avoids higher powers by more sophisticated methods to
account for when potential merging in higher tensor powers can occur.

Thus one either needs to develop new methods, or find better base ten-
sors.

I discuss the search for better base tensors in §??.

3.4.10. How one optimizes in practice. To get an idea of how the
optimization procedure works, start with some base tensor T that contains
a collection of matrix multiplication tensors M〈li,mi,ni〉, 1 ≤ i ≤ x that

are not disjoint. Then T⊗N will contain matrix multiplication tensors of
the form M〈lµ,mµ,nµ〉 where lµ = lµ1 · · · lµN and similarly for mµ,nµ, where
µj ∈ [x].

Each matrix multiplication tensor will occur with a certain multiplicity
and certain variables. The problem becomes to zero out variables in a way
that maximizes the value of what remains. More precisely, for large N ,

one wants to maximize the sum
∑

jKj(lµjmµjnµj )
ρ
3 where the surviving

matrix multiplication tensors are M
⊕Kj
〈lµjmµjnµj 〉

and disjoint. One then takes

the smallest ρ such that
∑

jKj(lµjmµjnµj )
ρ
3 ≥ R(T ) and concludes ω ≤ ρ.

One ingredient is the Salem-Spencer Theorem:
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Theorem 3.4.10.1 (Salem and Spencer [SS42]). Given ε > 0, there exists

Mε ' 2
c
ε2 such that for all M > Mε, there is a set B of M ′ > M1−ε distinct

integers 0 < b1 < b2 < · · · < bM ′ <
M
2 with no three terms in an arithmetic

progression, i.e., for bi, bj , bk ∈ B, bi + bj = 2bk if and only if bi = bj = bk.
In fact no three terms form an arithmetic progression modM .

This theorem assures one can get away with only zero-ing out a rela-
tively small number of terms, so in some sense it plays the role of Strassen’s
degeneration theorem. I state explicitly to emphasize that it is an existence
result, not an algorithm. In the general case one assigns probability distri-
butions and optimizes using techniques from probability to determine what
percentage of each type gets zero-ed out. I suggest [CW82] for the basic
idea and [?] for the state of the art regarding this optimization.

3.5. The Cohn-Umans program

A conceptually appealing approach to proving upper bounds on ω was ini-
tiated by H. Cohn and C. Umans.

Imagine a tensor that comes presented in two different bases. In one,
the cost of the tensor is clear: it may be written as a sum of small disjoint
matrix multiplication tensors. On the other hand, in the other its value (in
the sense discussed above) is high, because it may be seen to degenerate to
good matrix multiplication tensors. Such a situation does arise in practice!
It occurs for structure tensors for the group algebra of a finite group, as
defined below. In one (the “matrix coefficient basis”), one gets an upper
bound on the rank of the tensor, and in the other (the “standard basis”)
there are many potential combinatorial degenerations and one gets a lower
bound on the value.

I state the needed representation theory now, and defer proofs of the
statements to §8.6. I then present their method.

3.5.1. Structure tensor of an algebra. Let A be a finite dimensional
algebra, i.e. a vector space with a multiplication operation, with basis
a1, . . . , aa and dual basis α1, . . . , αa. Write aiaj =

∑
Akijak for the multipli-

cation in A, where the Akij are constants. The multiplication A×A → A is
bilinear and one defines the corresponding structure tensor of A

(3.5.1) MA :=
∑
i,j,k

Akijα
i⊗αj⊗ak ∈ A∗⊗A∗⊗A.

For example, M〈n〉 is the structure tensor for the algebra of n×n-matrices
with operation matrix multiplication.
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The group algebra of a finite group. Let G be a finite group and let C[G]
denote the vector space of complex-valued functions on G, called the group
algebra of G. The following exercise justifies the name:

Exercise 3.5.1.1: (1) Show that if the elements of G are g1, . . . , gr, then
C[G] has a basis indexed δg1 , . . . , δgr , where δgi(gj) = δij . Show that C[G]
may be given the structure of an algebra by defining δgiδgj := δgigj and
extending linearly.

Thus if G is a finite group, then MC[G] =
∑

g,h∈G δ
∗
g⊗δ∗h⊗δgh.

Example 3.5.1.2.

MC[Zm] =
∑

0≤i,j<m
δ∗i⊗δ∗j⊗δi+jmodm.

Notice that, introducing coordinates x0, . . . , xm−1 on C[Zm], one obtains a
circulant matrix for MC[Zm](C[Zm]∗) ⊂ C[Zm]∗⊗C[Zm]∗:

MC[Zm](C[Zm]∗) =


x0 x1 · · · xm−1

xm−1 x0 x1 · · ·
...

. . .

x1 x2 · · · x0

 .

Note that all entries of the matrix are non-zero and filled with basis vectors.
This holds in general for the presentation of C[G] in the standard basis,
which makes it useful for combinatorial restrictions.

What are R(MC[Zm]) and R(MC[Zm])? The space of circulant matrices
forms an abelian subspace, which indicates the rank and border rank might
be minimal or nearly minimal among concise tensors. We will determine
the rank and border rank of MC[Zm] momentarily via the discrete Fourier
transform.

3.5.2. The structure theorem of C[G]. I give a proof of the following
theorem in §8.6.5:

Theorem 3.5.2.1. Let G be a finite group, then as an algebra,

(3.5.2) C[G] =
⊕
i

V ∗i ⊗Vi

where the sum is over all the distinct irreducible representations of G. In
particular, if dimVi = di, then

C[G] '
⊕
i

Matdi×di(C).
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3.5.3. The (generalized) discrete Fourier transform. We have two
natural expressions for MC[G], the original presentation in terms of the al-
gebra multiplication in terms of delta functions, the standard basis, and the
matrix coefficient basis in terms of Theorem 3.5.2.1. The change of basis
matrix from the standard basis to the matrix coefficient basis is called the
(generalized) Discrete Fourier Transform (DFT).

Example 3.5.3.1. The classical DFT is the case G = Zm. The irreducible
representations of Zm are all one dimensional: ρk : Zm → GL1. Let σ ∈ Zm
be a generator, then ρk(σ)v = e

2πik
m v for 0 ≤ k ≤ m. The DFT matrix is

(e
2πi(j+k)

m )0≤j,k≤m−1.

Proposition 3.5.3.2. R(MC[Zm]) = R(MC[Zm]) = m.

Proof. Theorem 3.5.2.1 implies MC[Zm] = M⊕m〈1〉 . �

In the matrix coefficient basis the image is:

MC[Zm](C[Zm]∗) =


y0

y1

. . .

ym−1

 .

Exercise 3.5.3.3: (2) Show that if T ∈ σ̂0,h
r , then R(T ) ≤ r(h+ 1). }

Exercise 3.5.3.4: (2) Obtain a fast algorithm for multiplying two polyno-
mials in one variable by the method you used to solve the previous exercise.
}

Example 3.5.3.5. Consider S3. In the standard basis,

MC[S3](C[S3]∗) =



x0 x1 x2 x3 x4 x5

x1 x0 x4 x5 x2 x3

x2 x5 x0 x4 x3 x1

x3 x4 x5 x0 x1 x2

x4 x3 x1 x2 x5 x0

x5 x2 x3 x1 x0 x4

 .

Here I have written an element of C[S3] as x0 Id +x1(12)+x2(13)+x3(23)+
x4(123) + x5(132). The irreducible representations of S3 are the trivial, de-
noted [3], the sign, denoted [1, 1, 1] and the two-dimensional standard repre-
sentation (the complement of the trivial in C3), which is denoted [2, 1]. (See
§8.6.5 for an explanation of the notation.) Since dim[3] = 1, dim[1, 1, 1] = 1
and dim[2, 1] = 2, by Theorem 3.5.2.1 MC[S3] = M⊕2

〈1〉 ⊕M〈2〉, and in the
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matrix coefficient basis:

MC[S3](C[S3]∗) =



y0

y1

y2 y3

y4 y5

y2 y3

y4 y5


where the blank entries are zero. We conclude R(MC[S3]) ≤ 1 + 1 + 7 = 9.

3.5.4. Upper bounds via finite groups. Here is the main idea:

Use the standard basis to get a lower bound on the value of MC[G] and
the matrix coefficient basis to get an upper bound on its cost.

Say MC[G] expressed in its standard basis combinatorially restricts to
a sum of matrix multiplications, say ⊕sj=1M〈lj ,mj ,nj〉. The standard ba-
sis is particularly well suited to combinatorial restrictions because all the
coefficients of the tensor in this basis are zero or one, and all the entries
of the matrix MC[G](C[G]∗) are nonzero and coordinate elements. (Re-
call that all the entries of the matrix M〈l,m,n〉(A

∗) are either zero or co-
ordinate elements.) Using the matrix coefficient basis, we see MC[G] =

⊕qu=1M〈du〉, where du is the dimension of the u-th irreducible representation

of G. Thus R(⊕sj=1M〈lj ,mj ,nj〉) ≤ R(⊕qu=1M〈du〉) and R(⊕sj=1M〈lj ,mj ,nj〉) ≤
R(⊕qu=1M〈du〉).

The asymptotic sum inequality implies:

Proposition 3.5.4.1. [CU03, CU13] IfMC[G] degenerates to⊕sj=1M〈lj ,mj ,nj〉
and du are the dimensions of the irreducible representations of G, then∑s

j=1(ljmjnj)
ω
3 ≤ R(⊕qu=1M〈du〉) ≤

∑
d3
u. In fact,

∑s
j=1(ljmjnj)

ω
3 ≤∑

dωu .

In this section I will denote the standard basis for C[G] given by the
group elements (which I have been denoting δgi) simply by gi.

Basis elements of C[G] are indexed by elements of G, so our sought-after
combinatorial restriction is of the form:

α : [l]× [m]→ G

β : [m]× [n]→ G

γ : [n]× [l]→ G.

Recall the requirement that tα(i,j′),β(j,k′),γ(k,i′) is one if and only if i = i′,
j = j′, k = k′, and is otherwise zero. Here, when considering MC[G] as a
trilinear map, we have

tα,β,γ =

{
1 αβγ = Id
0 otherwise
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We want that α(i, j′)β(j, k′)γ(k, i′) = Id if and only if i = i′, j = j′, k =
k′. To simplify the requirement, assume the maps factor to s1 : [l] → G,
s2 : [m] → G, s3 : [n] → G, and that α(i, j′) = s1

−1(i)s2(j′), β(j, k′) =
s2
−1(j)s3(k′) and γ(k, i′) = s3

−1(k)s1(i′). Our requirement becomes

s1
−1(i)s2(j′)s2

−1(j)s3(k′)s3
−1(k)s1(i′) = Id⇔ i = i′, j = j′, k = k′.

Let Sj denote the image of sj . Our requirement is summarized in the fol-
lowing definition:

Definition 3.5.4.2. [CU03] A triple of subsets S1, S2, S3 ⊂ G satisfy the
triple product property if for any sj , s

′
j ∈ Sj , s′1s1

−1s′2s2
−1s′3s3

−1 = Id implies

s′1 = s1, s′2 = s2, s′3 = s3.

There is a corresponding simultaneous triple product property when
there is a combinatorial restriction to a collection of disjoint matrix multi-
plication tensors.

Example 3.5.4.3. [CKSU05] Let G = (Z×3
N × Z×3

N ) o Z2 where Z2 acts
by switching the two factors, so |G| = 2N6. Write elements of G as
[(ωi, ωj , ωk)(ωl, ωs, ωt)τ ε] where 0 ≤ i, j, k, s, t, u ≤ N − 1, ω is a prim-
itive N -th root of unity, τ is a generator of Z2, and ε ∈ {0, 1}. Set
l = m = n = 2N(N − 1). Label the elements of [n] = [2N(N − 1)] by
a triple (a, b, ε) where 1 ≤ a ≤ N − 1, 0 ≤ b ≤ N − 1 and ε ∈ {0, 1}, and
define

s1 : [l]→ G

(a, b, ε) 7→ [(ωa, 1, 1)(1, ωb, 1)τ ε]

s2 : [m]→ G

(a, b, ε) 7→ [(1, ωa, 1)(1, 1, ωb)τ ε]

s3 : [n]→ G

(a, b, ε) 7→ [(1, 1, ωa)(ωb, 1, 1)τ ε].

As explained in [CKSU05], the triple product property indeed holds
(there are several cases), so MC[G] combinatorially restricts to M〈2N(N−1)〉.

Now G has 2N3 irreducible one dimensional representations and
(
N3

2

)
irre-

ducible two dimensional representations (see [CKSU05]). Thus R(M〈2N(N−1)〉) ≤
2N3 + 8

(
N3

2

)
, which is less than n3 = [2N(N − 1)]3 for all N ≥ 5. Asymp-

totically this is about 7
16n3. If one applies Proposition 3.5.4.1 with N = 17

(which is optimal), one obtains ω < 2.9088. Note that this does not even

exploit Strassen’s algorithm, so one actually has R(M〈n〉) ≤ 2N3 + 7
(
N3

2

)
,
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however this does not effect the asymptotics. If one could use the failure of
additivity for border rank one potentially could do better.

While this is worse than what one would obtain just using Strassen’s
algorithm (writing 40 = 32 + 8 and using Strassen in blocks), the algorithm
is different. In [CKSU05] they obtain a bound of ω < 2.41 by such methods,
but key lemmas in their proof are almost the same as the key lemmas used
by Coopersmith-Winograd in their optimizations.

3.5.5. Further ideas towards upper bounds. The structure tensor of
C[G] had the convenient property that in the standard basis all the coeffi-
cients of the tensor are zero or one, and all entries of the matrixMC[G](C[G]∗)
are basis vectors. In [CU13] they propose looking at combinatorial restric-
tions of more general structure tensors, where the coefficients can be more
general, but vestiges of these properties are preserved. They make the fol-
lowing definition, which is very particular to matrix multiplication:

Definition 3.5.5.1. We say T ∈ A⊗B⊗C, given in bases aα, bβ, cγ of

A,B,C, combinatorially supportsM〈l,m,n〉, if such that, writing T =
∑
tα,β,γaα⊗bβ⊗cγ ,

there exist injections

α : [l]× [m]→ [a]

β : [m]× [n]→ [b]

γ : [n]× [l]→ [c]

such that tα(i,j′),β(j,k′)γ(k,i′) 6= 0 if and only if i = i′, j = j′ and k = k′. (Re-

call that T combinatorially restricts toM〈l,m,n〉 if moreover tα(i,j),β(j,k)γ(k,i) =
1 for all i, j, k.)

T combinatorially supports M〈m,n,l〉 if there exists a coordinate expres-
sion of T such that, upon setting some of the coefficients in the multi-
dimensional matrix representing T to zero, one obtains mnl nonzero en-
tries such that in that coordinate system, matrix multiplication is sup-
ported on exactly those mnl entries. They then proceed to define the
s-rank of a tensor T ′, which is the lowest rank of a tensor T that com-
binatorially supports it. This is a strange concept because the s-rank of
a generic tensor is one: a generic tensor is combinatorially supported by
T = (

∑
j aj)⊗(

∑
k bk)⊗(

∑
l cl) where {aj} is a basis of A etc..

Despite this, they show that ω ≤ 3
2ωs − 1 where ωs is the analog of the

exponent of matrix multiplication for s-rank. In particular, ωs = 2 would
imply ω = 2. The idea of the proof is that if T combinatorially supports
M〈n〉, then T⊗3 combinatorially degenerates to M⊕t〈n〉 with t = O(n2−o(1)).

Compare this with the situation when T combinatorially restricts to M〈n〉,
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then T⊗3 combinatorially restricts toM〈n〉⊗M〈n2〉 and thus toric degenerates

to M
⊕b 3

4
n2c

〈n〉 by Theorem 3.4.3.1.





Chapter 4

The complexity of
Matrix multiplication
III: explicit
decompositions via
geometry

One might argue that the exponent of matrix multiplication is unimportant
for the world we live in, since ω might not be relevant until the sizes of the
matrices are on the order of number of atoms in the known universe. For im-
plementation, it is more important to develop explicit decompositions that
provide a savings for matrices of sizes that need to be multiplied in practice.
One purpose of this chapter is to construct such decompositions. Another
is to gain insight into the asymptotic situation by exploring what symmetry
groups occur in decompositions of M〈n〉. I begin in §4.1 by discussing gen-
eralities about decompositions: the generalized Comon conjecture posting
that optimal decompositions with symmetry exist, a review of Strassen’s
original decomposition of M〈2〉 that hints that this is indeed the case, and
defining symmetry groups of decompositions. In particular, I point out that
decompositions come in families essentially parametrized by GM〈n〉 , and one
gains insight studying the entire family rather than individual members. I
then, in §4.2, describe an example, the Waring decomposition of x1 · · ·xn,
where we understand everything, observing that the optimal decomposition

75
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has some symmetry and there are near optimal decompositions with “max-
imal” symmetry. If one could prove either of these properties hold in the
context of Valiant’s conjecture, it would prove the conjecture, see §7.4.7. If
this holds in the context of matrix multiplication, it would simplify the prob-
lem considerably. In §4.3 I revisit Strassen’s decomposition and give a proof
of Burichenko’s theorem [Bur14] that its symmetry group is as large as one
could expect. In §4.4 I briefly describe the alternating least squares method
that has been used to find decompositions numerically. In order to exploit
symmetry groups, one needs to understand the tensors that are invariant
under them. I describe the simple case of cyclic symmetry in §4.5. In order
to determine symmetry groups and determine if different decompositions are
in the same family, one needs invariants of decompositions. These are stud-
ied in §4.6. Two interesting examples of decompositions of M〈3〉 are given in
§4.7. Border rank decompositions also have geometry associated with them.
In order to describe the geometry, I give some geometric preliminaries, in-
cluding the definition of secant varieties in general in §4.8. I conclude with
two examples of border rank decompositions and their geometry in §4.9.

4.1. Symmetry and decompositions

4.1.1. The Comon conjecture and its generalization. In 2008 there
was an AIM workshop, Geometry and Representation theory of tensors for
computer science, statistics and other areas, that brought together a very
diverse group of researchers. Among them was Pierre Comon, an engineer
working in signal processing. In signal processing (at least practiced by
Comon), one wants to decompose tensors presumed to be of rank r explic-
itly into a sum of r rank one tensors. Sometimes the relevant tensors are
symmetric. At the workshop Comon presented the following conjecture:

Conjecture 4.1.1.1 (P. Comon [Com02]). If T ∈ SdCN ⊂ (CN )⊗d, then
there exists an optimal rank decomposition of T made from symmetric ten-
sors.

After being greeted with skepticism by algebraic geometers, the commu-
nity has now embraced this conjecture and generalized it. Recall that SdCN
admits the interpretation of the tensors in (CN )⊗d invariant under Sd, i.e.,
SdCn = ((CN )⊗d)Sd

Consider a rank decomposition of T , T =
∑r

j=1 tj with R(tj) = 1. The
order of the summands does not matter so it is more natural to consider the
set S = {t1, . . . , tr}, and call S the rank decomposition of T .

Conjecture 4.1.1.2. [Generalized Comon Conjecture] [BILR] Let T ∈
(CN )⊗d be invariant under some Γ ⊂ Sd. Then there exists an optimal
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rank decomposition S of T built from Γ-invariant tensors. I.e., for all g ∈ Γ,
gS = S.

Recall that matrix multiplication M〈n〉 ∈ (Cn2
)⊗3 is invariant under the

cyclic permutation of factors Z3 ⊂ S3 because trace(XY Z) = trace(Y ZX),
so Conjecture 4.1.1.2 predicts that there should be optimal rank decompo-
sitions M〈n〉 =

∑r
j=1 tj where the tj are permuted among themselves by the

Z3.

4.1.2. Strassen’s decomposition. Introduce the notation

〈x⊗y⊗z〉Z3 := x⊗y⊗z + y⊗z⊗x+ z⊗x⊗y.

With this notation, Strassen’s algorithm, written as a tensor, is

M〈2〉 =

(
1 0
0 1

)⊗3

(4.1.1)

+ 〈
(

1 0
0 0

)
⊗
(

0 0
1 −1

)
⊗
(

0 1
0 1

)
〉Z3

− 〈
(

0 0
0 1

)
⊗
(

1 −1
0 0

)
⊗
(

1 0
1 0

)
〉Z3 .

In particular, it is transparently built from cyclic Z3-invariant tensors. It
also looks like it may have further symmetry. To discuss this, we need some
language.

4.1.3. Generalities on rank decompositions. Consider Seg(PA1×· · ·×
PAd) ⊂ P(A1⊗ · · ·⊗ Ad). If all the vector spaces have different dimensions,
we consider the symmetry group of the cone over the Segre as a subgroup of
GL(A1)×· · ·×GL(Ad) (more precisely of GL(A1)×· · ·×GL(Ad)/(C∗)d−1,
because if λ1 · · ·λd = 1, then (λ1 IdA1 , . . . , λd IdAd) ∈ GL(A1)×· · ·×GL(Ad)
acts trivially). If all dimensions are the same, we consider the symmetry
group as a subgroup of GL(A1)× · · · ×GL(Ad)oSd, where the Sd acts by
permuting the factors after some isomorphism of the Aj has been chosen.

One can also consider intermediate cases. For T ∈ (CN )⊗d, let

GT := {g ∈ GL×dN oSd | gT = T},

and for T ∈ A1⊗ · · ·⊗ Ad with different dimensions, define

GT := {g ∈ GL(A1)× · · · ×GL(Ad) | gT = T}.

For a polynomials P ∈ SdV , the symmetry group of the cone over the
Veronese vd(PV ) ⊂ PSdV is GL(V ), and we write

GP := {g ∈ GL(V ) | gP = P}.
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If T ∈ A1⊗ · · ·⊗ Ad has a rank decomposition S and a nontrivial sym-
metry group GT , then given g ∈ GT , g · S := {gt1, . . . , gtr} is another rank
decomposition of T or S.

Definition 4.1.3.1. The symmetry group of the decomposition S is ΓS :=
{g ∈ GT | g · S = S}. Let Γ′S = ΓS ∩ (ΠjGL(Aj)).

If T is concise, then ΓS is a finite group because any decomposition of
it would have to include a basis of each of each Aj and the subgroup of
GL(Aj) preserving a basis is finite (and the scale ambiguity is gone when

one quotients by the (C∗)d−1. In particular, rank decompositions of T come
in dimGT -dimensional families It will be useful to study the whole family as
a geometric object, as well as looking for convenient members of the family
in the sense described below.

A guiding hypothesis of this chapter (for which there is no theoretical
justification, but has been true in several cases) is that if T has a large sym-
metry group, then there will exist optimal decompositions of T with some
symmetry and geometry. This even extends to border rank decompositions,
as we will see in §4.8.4.

Näıvely, one might think that some decompositions in a family have
better symmetry groups than others. Strictly speaking this is not correct:

Proposition 4.1.3.2. For g ∈ GT , Γg·S = gΓSg
−1.

Proof. Let h ∈ ΓS , then ghg−1(gtj) = g(htj) ∈ g · S so Γg·S ⊆ gΓStg
−1,

but the construction is symmetric in Γg·S and ΓS . �

For a polynomial P ∈ SdV and a decomposition P = `d1+· · ·+`dr for some
`j ∈ V (such is often called a Waring decomposition), and g ∈ GP ⊂ GL(V ),
the same result holds with S = {`1, . . . , `r}.

In summary, decompositions come in dim(GT )-dimensional families, and
each member of the family has the same abstract symmetry group.

4.2. Example: the polynomial x1 · · ·xn

Consider the polynomial en,n := x1 · · ·xn ∈ SnCn (the n-th elementary
symmetric function in n variables). We first determine Gen,n : It is clear

TSLn oSn ⊂ Gen,n , where TSLn denotes the diagonal matrices with determi-
nant one and Sn acts by permuting the basis vectors. We need to determine
if the stabilizer is larger. Let G ∈ GLn. Then

g · en,n =

n∑
j1,...,jn=1

(gj11 xj1) · · · (gjnn xjn).
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In order that this be equal to x1 · · ·xn, by unique factorization of polyno-
mials, there must be a permutation σ ∈ Sn such that for each k, we have∑

j g
j
kxj = λkxσ(k) for some λk ∈ C∗. Composing with the inverse of this

permutation we have gjk = δjkλj , and finally we see that we must further

have λ1 · · ·λn = 1, which means it is an element of TSLn , so the original g is
an element of TSLn oSn. Thus Gen,n = TSLn oSn.

Remark 4.2.0.1. The GL(V )-orbit closure of en,n is the Chow variety
Chn(V ) ⊂ PSnV of §3.1.2 that we will study in detail in Chapter 9.

The optimal Waring decomposition of x1 · · ·xn, dates back at least to
Bochnak and Siciak (1971) [BS71], although they say the proof comes from
the 1934 Mazur Orlicz paper [MO34]. It was proved to be optimal in
[RS11] (I give the proof in §??) is

(4.2.1) x1 · · ·xn =
1

2n−1n!

∑
ε∈{−1,1}n

ε1=1

( n∑
j=1

εjxj
)n

Πn
i=1εi,

a sum with 2n−1 terms. This decomposition has an Sn−1-symmetry but not
an Sn-symmetry, nor is it preserved by any element of TSLn . One can obtain
an Sn-invariant expression by doubling the size:

(4.2.2) x1 · · ·xn =
1

2nn!

∑
ε∈{−1,1}n

( n∑
j=1

εjxj
)n

Πn
i=1εi, ,

because

(−x1 + ε2x2 + · · ·+εnxn)n(−1)ε2 . . . εn

=(−1)n(x1 + (−ε2)x2 + · · ·+ (−εn)xn)n(−1)ε2 · · · εn
=(x1 + (−ε2)x2 + · · ·+ (−εn)xn)n(−ε2) · · · (−εn).

From this example we see:

• The optimal decomposition has some symmetry.

• A decomposition with “maximal” symmetry exists that is only
slightly larger (within a factor of two).

As we will see in §??, if one could prove either of these properties holds
in the situation of Valiant’s conjecture, then one could prove Valiant’s con-
jecture. In this chapter I will take these as working hypotheses in the search
for rank and border rank decompositions of the matrix multiplication tensor.

4.3. Strassen’s decomposition revisited

Let Str denote the Strassen decomposition of M〈2〉.
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4.3.1. Symmetries of M〈n〉. In order to discuss symmetries of decomposi-
tions, we need to determine the symmetry group of the matrix multiplication
tensor

GM〈n〉 := {g ∈ GL×3
n2 oS3 | g ·M〈n〉 = M〈n〉}.

One may also consider matrix multiplication as a polynomial that hap-
pens to be multi-linear, M〈n〉 ∈ S3(A⊕B ⊕ C), and consider

G̃M〈n〉 := {g ∈ GL(A⊕B ⊕ C) | g ·M〈n〉 = M〈n〉}.

Note that (GL(A) × GL(B) × GL(C)) o S3 ⊂ GL(A ⊕ B ⊕ C), so

GM〈n〉 ⊆ G̃M〈n〉 .
Let PGL(U) denote GL(U)/C∗, where C∗ = {λ IdU | λ ∈ C∗}. This

group acts on PU , as well as on U∗⊗U . The first action is clear, the second
because the action of GL(U) on α⊗u is αg−1⊗gu so the scalars times the
identity will act trivially.

It is clear that PGLn × PGLn × PGLn o Z3 ⊂ GM〈n〉 , the Z3 because

trace(XY Z) = trace(Y ZX). Moreover since trace(XY Z) = trace(Y TXTZT ),
we have PGL×3

n o (Z3 o Z2) ⊆ GM〈n〉 . We emphasize that this Z2 is

not contained in either the S3 permuting the factors or the PGL(A) ×
PGL(B)×PGL(C) acting on them. In G̃M〈n〉 we can also rescale the three
factors by non-zero complex numbers λ, µ, ν such that λµν = 1, so we have
(C∗)×2 × PGL×3

n o (Z3 o Z2) ⊆ GM〈n〉 .
We will be primarily interested in GM〈n〉 . The first equality in the fol-

lowing proposition appeared in [dG78, Thms. 3.3,3.4] and [Bur15, Prop.
4.7] with ad-hoc proofs. The second assertion appeared in [Ges16].

Proposition 4.3.1.1. GM〈n〉 = PGL×3
n o (Z3 oZ2) and G̃M〈n〉 = (C∗)×2 ×

PGL×3
n o (Z3 o Z2).

Remark 4.3.1.2. It would be more natural to write G̃M〈n〉 = (GL×3
n /C∗)o

(Z3oZ2), but we write it in the above manner to facilitate comparison with
GM〈n〉 .

A “hands on” elementary proof is possible, see, e.g. [Bur15, Prop. 4.7].
For those who know about Dynkin diagrams, here is an elegant proof from
[Ges16].

Proof. It will be sufficient to show the second equality because the (C∗)×2

acts trivially on A⊗B⊗C. For polynomials, we use the method of [BGL14,
Prop. 2.2] adapted to reducible representations. A straight-forward Lie al-

gebra calculation shows the connected component of the identity of G̃M〈n〉
is G̃0

M〈n〉
= (C∗)×2 × PGL×3

n . As was observed in [BGL14] the full stabi-

lizer group must be contained in its normalizer N(G̃0
M〈n〉

), see Proposition
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8.13.1.1. But the normalizer of G̃0
M〈n〉

quotiented by G̃0
M〈n〉

is the automor-

phism group of the marked Dynkin diagram for A ⊕ B ⊕ C, which in our
case is

1

1

1

1

1

1

There are three triples of marked diagrams. Call each column consisting
of 3 marked diagrams a group. The automorphism group of the picture is
Z3 o Z2, where the Z2 may be seen as flipping each diagram, exchanging
the first and third diagram in each group, and exchanging the first and
second group. The Z3 comes from cyclically permuting each group and the
diagrams within each group. �

4.3.2. The Strassen family. As discussed above, decompositions are best
studied in families.

Theorem 4.3.2.1. [dG78] The set of rank seven decompositions of M〈2〉 is
the orbit GM〈2〉 · Str.

The proof follows from a careful analysis of every possible decomposition,
taking into account that an element a⊗b⊗c is not just a triple of vectors,
but a triple of endomorphisms C2 → C2, and the analysis is via the possible
triples of ranks that can appear.

In preparation for studying the Strassen family of decompositions, write

(4.3.1) u1 =

(
1
0

)
, u2 =

(
0
1

)
, u1 = (1, 0) u2 = (0, 1)

and set vj = wj = uj and vj = wj = uj . Strassen’s decomposition becomes

M〈2〉 =(v1u
1 + v2u

2)⊗(w1v
1 + w2v

2)⊗(u1w
1 + u2w

2)(4.3.2)

+ 〈v1u
1⊗w2(v1 − v2)⊗(u1 + u2)w2〉Z3

+ 〈v2u
2⊗w1(v2 − v1)⊗(u1 + u2)w1〉Z3 .

From this presentation we recover much the entire Strassen family, namely
by letting u1, u2, v1, v2, and w1, w2 be arbitrary bases, with dual basis
vectors denoted with superscripts. We obtain a family parametrized by
PGL(U)×PGL(V )×PGL(W ), and since the decomposition (4.3.2) is man-
ifestly Z3-invariant, the only potential additional decompositions arise from
applying a convenient transpose symmetry such as x⊗y⊗z 7→ xT⊗zT⊗yT .
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Exercise 4.3.2.2: (2) Show that if we change bases by

gU =

(
1 −1
0 −1

)
∈ GL(U), gV =

(
−1 0
−1 1

)
∈ GL(V ), gW =

(
0 1
1 0

)
∈ GL(W ),

Then the new decomposition has four terms fixed by the standard cyclic Z3.
}

Exercise 4.3.2.3: (1) Note that if we set u3 =

(
−1
−1

)
then the matrices in

Exercise 4.3.2.2 respectively correspond to the permutations (2, 3), (1, 3) and
(1, 2). The matrix in the first term of the decomposition that one obtains
from Exercise 4.3.2.2 also corresponds to a permutation. Which one?

Exercise 4.3.2.4: (2) Find a change of basis such that the first term in the

decomposition of Exercise 4.3.2.2 becomes

(
ω 0
0 ω2

)⊗3

where ω = e
2πi
3 and

write out the decomposition in this basis.

Under x⊗y⊗z 7→ xT⊗zT⊗yT , Strassen’s decomposition is mapped to:

M〈2〉 =

(
1 0
0 1

)⊗3

(4.3.3)

+ 〈
(

1 0
0 0

)
⊗
(

0 0
1 1

)
⊗
(

0 1
0 −1

)
〉Z3

− 〈
(

0 0
0 1

)
⊗
(

1 1
0 0

)
⊗
(

1 0
−1 0

)
〉Z3 .

Notice that this is almost Strassen’s decomposition (4.1.1)- just some the
signs are wrong. We can “fix” the problem by conjugating all the matrices
with

g0 :=

(
0 −1
1 0

)
.

Exercise 4.3.2.5: (1) Verify that acting by g×3
0 ∈ PGL(U) × PGL(V ) ×

PGL(W ) takes (4.3.3) to Strassen’s decomposition, so acting on Strassen’s
decomposition by (g0

−1)×3 takes it to (4.3.3).

Exercise 4.3.2.5 shows that there is a non-standard Z2 ⊂ PGL×3
2 o(Z3o

Z2) contained in ΓStr, namely the convenient transpose symmetry composed
with g×3

0 . We also obtain a refinement of deGroote’s theorem:

Proposition 4.3.2.6. The set of rank seven decompositions of M〈2〉 is

PGL×3
2 · Str.

With the expression (4.3.2), notice that if we exchange u1 ↔ u2 and
u1 ↔ u2, the decomposition is also preserved by this Z2 ⊂ PGL×3

2 , with
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orbits (4.3.2) and the exchange of the triples. So we see ΓStr ⊇ Z2o(Z3oZ2),
where the first Z2 is diagonally embedded in PGL×3

2 .

Although the above description of the Strassen family of decompositions
for M〈2〉 is satisfying, it becomes even more transparent with a projective
perspective. With the projective perspective, we will see that ΓStr is even
larger.

4.3.3. M〈2〉 viewed projectively. That all rank 7 decompositions of M〈2〉
are obtained via PGL×3

2 suggests using a projective perspective. The group
PGL2 acts simply transitively on triples of distinct points of P1. So to fix a
decomposition in the family, select a triple of points in each space. I focus on
PU . Call the points [u1], [u2], [u3]. Then these determine three points in PU∗,
[u1⊥], [u2⊥], [u3⊥]. Choose representatives u1, u2, u3 satisfying u1 +u2 +u3 =
0. I could have taken any linear relation, it just would introduce coefficients
in the decomposition. I take the most symmetric relation to keep all three
points on an equal footing. Similarly, fix the scales on the uj⊥ by requiring
uj⊥(uj−1) = 1 and uj⊥(uj+1) = −1, where indices are considered mod Z3,
so u3+1 = u1 and u1−1 = u3.

In comparison with what we had before, letting the old vectors be hatted,
we have û1 = u1, û2 = u2, û1 = u2⊥, and û2 = −u1⊥. The effect is to make
the symmetries of the decomposition more transparent. Our identifications
of the ordered triples {u1, u2, u3} and {v1, v2, v3} exactly determine a linear
isomorphism a0 : U → V , and similarly for the other pairs of vector spaces.
Note that a0 = vj⊗uj+1⊥ + vj+1⊗uj+2⊥ for any j = 1, 2, 3.

Then

M〈2〉 = a0⊗b0⊗c0(4.3.4)

+ 〈(v1u
2⊥)⊗(w3v

1⊥)⊗(u2w
3⊥)〉Z3

+ 〈(v1u
3⊥)⊗(w2v

1⊥)⊗(u3w
2⊥)〉Z3 .

Here, to make the terms shifted by Z3 live in the proper space, one must
act by a0, b0, c0 appropriately, e.g., to shift v1u

2⊥ to the second slot, one
takes b0(v1)aT0 (u2⊥).

With this presentation, the diagonally embedded S3 ⊂ PGL×3
2 acting by

permuting the indices transparently preserves the decomposition, with two
orbits, the fixed point a0⊗b0⊗c0 and the orbit of (v1u

2⊥)⊗(w3v
1⊥)⊗(u2w

3⊥).
The action on each of U, V,W is the standard irreducible representation
[2, 1].

We now see ΓStr ⊇ S3 o (Z3 o Z2), with S3 ⊂ Γ′Str.

4.3.4. Symmetries of decompositions of M〈n〉. Let M〈n〉 =
∑r

j=1 tj
be a rank decomposition for M〈n〉 and write tj = aj⊗bj⊗cj . Let rj :=
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(rank(aj), rank(bj), rank(cj)), and let r̃j denote the unordered triple. The
following proposition is clear:

Proposition 4.3.4.1. Let S be a rank decomposition of M〈n〉. Partition S
by un-ordered rank triples into disjoint subsets: {S̃1,1,1, S̃1,1,2, . . . , S̃n,n,n}.
Then Γ′S preserves each S̃s,t,u. The same holds for order rank triples Ss,t,u.

We can say more about rank one elements: If a ∈ U∗⊗V and rank(a) =
1, then there are unique points [µ] ∈ PU∗ and [v] ∈ PV such that [a] = [µ⊗v].
So given a decomposition S of M〈n〉, define SU∗ ⊂ PU∗ and SU ⊂ PU to
correspond to the U∗ and U elements appearing in S1,1,1. Then Γ′S preserves
SU and SU∗ .

We will say a decomposition has a transpose-like Z2 invariance if it
is invariant under a Z2 such as x⊗y⊗z 7→ xT⊗zT⊗yT composed with an
element of PGL(U)× PGL(V )× PGL(W ).

Exercise 4.3.4.2: (1) Show that if a decomposition of M〈n〉 is cyclic Z3-
invariant and also has a transpose-like Z2-invariance, then SU and SU∗ have
the same cardinality.

4.3.5. Symmetries of Str. In the case of Strassen’s decomposition StrU is
a configuration of three points in P1, so a priori we must have the projection
of Γ′Str onto PGL(U) is contained in S3. If we restrict to the subfamily of
decompositions where there is a standard cyclic Z3-symmetry, there is just
one PGL2 and we have Γ′Str ⊆ S3. Recall that this is no loss of generality
as the full symmetry group is the same for all decompositions in the family.
We conclude ΓStr ⊆ S3 o (Z3 o Z2) and: ***previous paragraph may need
clarification***

Theorem 4.3.5.1. [Bur14] The symmetry group ΓStr of Strassen’s decom-
position of M〈2〉 is S3 × (Z3 o Z2) ⊂ PGL×3

2 o (Z3 o Z2) = GM〈2〉 .

Remark 4.3.5.2. One can prove Strassen’s decomposition is actually ma-
trix multiplication without checking directly simply by the group invariance,
see [CHI+].

4.4. Alternating least squares (ALS) approach to
decompositions

Let A,B,C respectively have bases {ei}, {fj}, {gk}. Given a tensor T =∑a
i=1

∑b
j=1

∑c
k=1 t

ijkei⊗fj⊗gk ∈ A⊗B⊗C, say we have reason to believe it
has rank at most r. To find a rank r expression we could work as follows: For

1 ≤ u ≤ r, write au =
∑

iX
i
uei, bu =

∑
j Y

j
u fj , and cu =

∑
k Z

k
ugk where the

Xi
u, Y

j
u , Zku are constants to be determined. We want

∑r
u=1 au⊗bu⊗cu = T ,
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i.e.,

(4.4.1)
r∑

u=1

Xi
uY

j
uZ

k
u = tijk

for all i, j, k. If we restrict ourselves to real coefficients, we want

(4.4.2) objfn1 :=
∑
i,j,k

(
r∑

u=1

Xi
uY

j
uZ

k
u − tijk)2,

called the objective function, to be zero. (One can obtain a similar equation
for complex coefficients by splitting all complex numbers into their real
and imaginary parts. I stick to the real presentation just for simplicity of
exposition.) Now (4.4.2) is a degree six polynomial, but it is quadratic in
each of the unknown quantities. To solve in practice, one begins with an

initial “guess” of the Xi
u, Y

j
u , Zku , e.g., chosen at random. Then one tries to

minimize (4.4.2) e.g., as a function of the Xi
u while holding the Y j

u , Zku fixed.
This is a linear **quadratic??** problem. Once one obtains a solution, one

starts again, holding the Xi
u and Zku fixed and solving for the Y j

u . Then one
repeats, minimizing for the Zku , and then cycling around again and again
until the result converges (or fails to, in which case one can start again with
different initial points). This algorithm was first written down in [Bre70].

Now if R(T ) < R(T ) (as is expected to be the case with matrix multipli-
cation), this procedure could “attempt” to find a border rank solution, that
is, the coefficients could go off to infinity. If one wants a rank decomposition,
one can add a penalty term to (4.4.2), instead minimizing

(4.4.3) objfn2 :=
∑
i,j,k

(

r∑
u=1

Xi
uY

j
uZ

k
u − tijk)2 + ε(

r∑
u,i,j,k

(Xi
u)2 + (Y j

u )2 + (Zku)2)

for some ε that in practice is found by trial and error.

In the literature (e.g. [Lad76, JM86, Smi13, ?]) they prefer coefficient
values to be from a small list of numbers, ideally confined to something like
0,±1 or 0,±1,±1

2 . If the tensor in question has a large symmetry group (as
does matrix multiplication), one can use the group action to fix some of the
coefficients to these desired values.

According to Smirnov, in [Smi13], for T = M〈n〉 (but not rectangular
matrix multiplication) the critical points of objfn1 are integers in practice,
although he does not give an explanation why one would expect this to be
the case. Thus, by these heuristics, if one can obtain a decomposition with
objfn1 < 1, then it will converge to zero by the ALS process, producing
either a decomposition or limiting to a border rank decomposition.
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Smirnov allows ε in (4.4.3) to gradually increase while imposing restric-
tions from the previous ALS round on the values the coefficients are allowed
to take.

4.5. Decomposition of A⊗3 under Z3

In order to search for cyclic Z3 decompositions of M〈n〉 we need to under-

stand the GL(A)-decomposition of A⊗3.

Exercise 4.5.0.1: (1!) Verify that the cyclic Z3 acts trivially on both S3A
and Λ3A.

We have seen that A⊗2 = S2A⊕Λ2A as a GL(A)-module and that this
decomposition is into irreducible submodules. If we consider A⊗3, we know
it contains the irreducible submodules S3A and Λ3A, but a simple dimension
count shows that these two modules do not span A⊗3.

We have also seen that symmetrization and skew-symmetrization com-
mute with the action of GL(A). So the following skew-symmetrization map
is a GL(A)-module map:

Λ2A⊗A→ Λ3A.

Thus its kernel (a linear subspace of A⊗3) is a GL(A)-submodule and it is
distinct from S3A and Λ3A (either by dimension counting or in the first case
observing the skew-symmetry in the first two factors and in the second, the
lack of skew symmetry between the second and third). Similarly, the kernel
of the symmetrization map

S2A⊗A→ S3A

is a GL(A)-submodule.

Call these kernels KΛ and KS . We have a decomposition

A⊗3 = S3A⊕ Λ3A⊕KΛ ⊕KS .

This decomposition is GL(A)-invariant by Schur’s lemma, since both KΛ,
KS are kernels of GL(A)-module maps, but it is not canonical. In fact,
KΛ and KS are isomorphic as GL(A)-modules. Their isomorphism class is
denoted S21A, and there is a canonical decomposition

(4.5.1) A⊗3 = SdA⊕ (S21A)⊕2 ⊕ Λ3A.

as a GL(A)-module. For the complete story see §8.7.1.

It is easy to see that the cyclic Z3 acts non-trivially on KΛ ⊕KS . It is
slightly harder to see that in fact there is no subspace of KΛ ⊕KS that is
acted on trivially, see Exercise 8.7.2.4.

In summary
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Proposition 4.5.0.2. Let Z3 ⊂ S3 act on A⊗3 by cyclically permuting
factors. Then

(A⊗3)Z3 = S3A⊕ Λ3A.

Thus if we are searching for cyclic Z3-invariant decompositions for M〈n〉,

the size of our search space is cut down from n6 dimensions to n6+2n2

3 di-
mensions.

It is easy to write down the decomposition of M〈n〉 ∈ S3A⊕Λ3A into its

symmetric and skew-symmetric components: trace(XY Z) = 1
2 [trace(XY Z)+

trace(Y XZ)] + 1
2 [trace(XY Z)− trace(Y XZ)].

Exercise 4.5.0.3: (1) Verify that the first term in brackets lives in S3A and
second lives in Λ3A.

4.6. Invariants associated to a decomposition of M〈n〉

Given two decompositions of M〈n〉, how can we determine if they are in the
same family? Given one, how can we determine its symmetry group? These
questions are related, as a necessary condition for two decompositions to be
in the same family is that they have isomorphic symmetry groups. We have
already seen the invariants Ss,t,u. I describe further invariants associated
to a decomposition via graphs. I then discuss the points of SU ,S∗U in more
detail: it turns out that the collection of points themselves has geometry that
is also useful for distinguishing decompositions and determining symmetry
groups.

4.6.1. Two graphs. Define a bipartite graph IGS , the incidence graph
where the top vertex set is given by elements in SU∗ and the bottom vertex
set by elements in SU . Draw an edge between elements [µ] and [v] if they
are incident, i.e. µ(v) = 0. Geometrically, [v] belongs to the hyperplane
determined by [µ] (and vice-versa). One can weight the vertices of this
graph in several ways, the simplest (and in practice this has been enough)
is just by the number of times the element appears in the decomposition.
Let ΓIGS denote the automorphism group of IGS . If ΓS is determined by
its action on S1,1,1, we have ΓS ⊆ ΓIGS .

If a decomposition is Z3 invariant, or more precisely, if the three spaces
have been identified by some automorphism of the decomposition, the in-
cidence graphs form V, V ∗ and from W,W ∗ are isomorphic, and otherwise
they give additional information.

Given a Z3-invariant decomposition, a necessary condition for it to also
have a transpose-like Z2 symmetry is that there is an isomorphism of the
bipartite graph swapping the sets of (weighted) vertices.
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In practice (see the examples below) the incidence graph has been enough
to determine the symmetry group ΓS , in the sense that it cuts the possi-
ble size of the group down and it becomes straight-forward to verify that
everything that can be in the group after this cut actually is there.

If we are only interested in automorphisms in Γ′S that come from a
diagonal PGLn ⊂ PGL(U)×PGL(V )×PGL(W ), we may define a second
bipartite graph PGS , the pairing graph, where the upper vertices are the
points of SU∗ and the lower the points of SV , and one draws an edge between
[µ] and [v] if µ⊗v appears in the decomposition. One can weight the edge
by the number of times it appears.

As is clear from this discussion, one can continue labeling and coloring
to get more and more refined information about the decomposition.

For Strassen’s decomposition, these graphs are not so interesting:

incidence pairing

4.6.2. Configurations of points in projective space. In practice, per-
haps because of the numerical methods used, the sets SU , and SU∗ have
been relatively small. It is not surprising that they each are spanning sets.
Usually they have come from configurations in a sense I now describe. For
P1, a configuration is simply a triple of points and the triple of points they
determine in the dual vector space. For example Strassen’s decomposition
is built from a configuration. The higher dimensional analog of such pairs
of triples is more complicated.

I emphasize that the decompositions of [BILR] were found by numerical
searches, without distinguishing any configurations. However in most cases,
we were able to give a simple description of the vectors appearing in the
decomposition in terms of a configuration. This bodes well for future work.

I restrict the discussion to P2. The group PGL3 acts simply transitively
on the set of 4-ples of points in general linear position (i.e. such that any
three of them span P2).

Start with any 4-ple of points in general linear position. In the decom-
position, actual vectors will appear. Even in the decomposition, since what
will appear are vectors tensored with each other, there is only a “global
scale” for each term. Take the simplest (to write down) 4-ple, choosing the
fourth vector in order to have the linear relation u1 + u1 + u3 + u4 = 0. I’ll
call this the default configuration. That is, the default configuration starts
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with

u1 =

1
0
0

 , u2 =

0
1
0

 , u3 =

0
0
1

 , u4 =

−1
−1
−1

 .

The {[uj ]} determine points in the dual space by taking pairwise inter-
sections of the lines (hyperplanes) that they determine in PU∗.

v12 = (0, 0, 1), v13 = (0, 1, 0), v14 = (0, 1,−1),

v23 = (−1, 0, 0), v24 = (−1, 0, 1), v34 = (1,−1, 0).

Here [vij ] is the line in P2 (considered as a point in the dual space P2∗)
through the points [ui] and [uj ] in P2 (or dually, the point of intersection of
the two lines [ui], [uj ] in P2∗). Note that here choices of representatives are
being made. I have made choices that will be useful for the decomposition
SBILR,Z4×Z3 of §4.7.1 below.

The vi,j in turn determine their new points of intersection:

u12,34 =

1
1
0

 , u13,24 =

1
0
1

 , u14,23 =

0
1
1

 .

which determine new points

v(12,34),(13,24) = (−1, 1, 1), v(12,34),(14,23) = (1,−1, 1), v(13,24),(14,23) = (1, 1,−1),

which determine

u34,(13,24|14,23) =

1
1
2

 , u24,(12,34|14,23) =

1
2
1

 , u23,(12,34|13,24) =

2
1
1

 ,

u12,(12,34|13,24) =

1
1
0

 , u13,(12,34|13,24) =

1
0
1

 , u14,(12,34|13,24) =

0
1
1

 .

This process continues, but in practice only vectors from the first few rounds
appeared in decompositions.

Of course any other choices of initial points leads to an equally good
configuration. The decompositions we found initially produced different
configurations and we converted them to the standard ones for convenience.

Sometimes there was more than one way to label the points in terms of
a configuration. I remark on this more below.

4.7. Cyclic Z3-invariant rank 23 decompositions of M〈3〉

The following examples are from [BILR].
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4.7.1. A rank 23 decomposition of M〈3〉 with Z4 × Z3 symmetry.
Take a configuration and let a0 : U → V send uj to vj+1. In the default
configuration

a0 =

0 0 −1
1 0 −1
0 1 −1



corresponds to the generator of Z4 that cyclically permutes indices.

a⊗3
0(4.7.1)

(u24v12|34)⊗3(4.7.2)

(u13v14|23)⊗3(4.7.3)

(u34v1)⊗3(4.7.4)

(u14v2)⊗3(4.7.5)

(u12v3)⊗3(4.7.6)

(u23v4)⊗3(4.7.7)

− [u24v4 + u12v3]⊗3(4.7.8)

− [u13v3 + u14v2]⊗3(4.7.9)

− [u24v2 + u34v1]⊗3(4.7.10)

− [u13v1 + u23v4]⊗3(4.7.11)

〈(u23v2)⊗(u34v4)⊗(u13v1)〉Z3(4.7.12)

〈(u34v3)⊗(u14v1)⊗(u24v2)〉Z3(4.7.13)

〈(u14v4)⊗(u12v2)⊗(u13v3)〉Z3(4.7.14)

〈(u12v1)⊗(u23v3)⊗(u24v4)〉Z3 .(4.7.15)

Exercise 4.7.1.1: (2) Verify that this is indeed a decomposition of M〈3〉.

The Z4-invariance of the decomposition may be seen as follows: Since
a0(a0)a0

−1 = a0, the first term is Z4-invariant. Then conjugation by a0

swaps (4.7.2) and (4.7.3), it cyclically permutes ((4.7.4), (4.7.7),(4.7.6),(4.7.5)),
as well as ((4.7.8), (4.7.11),(4.7.10),(4.7.9)) and ((4.7.12), (4.7.13),(4.7.14),(4.7.15)).
All this is transparent from the presentation.
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It is better to write the decomposition as

a⊗3
0(4.7.16)

〈(u24v12|34)⊗3〉Z2⊂Z4(4.7.17)

〈−[u24v4 + u12v3]⊗3〉Z4(4.7.18)

〈(u12v3)⊗3〉Z4(4.7.19)

〈(u12v1)⊗(u23v3)⊗(u24v4)〉Z4×Z3 .(4.7.20)

Note also that since the Z3 is purely external and the Z4 purely internal,
the symmetry group transparently contains Z4 × Z3.

Given the distribution of the frequencies of the points: (4, 4, 4, 4, 1, 1) in
V , (3, 3, 3, 3, 3, 3) in U∗, a transpose-like symmetry is not possible. Moreover,
it is clear one cannot upgrade the Z4 to S4 since only two of the three vij|kl
appear in the decomposition: v12|34, v14|23 (v13|24 is omitted). So, e.g. the
transposition (2, 3) takes SBILR,Z4×Z3 to a different decomposition in the
family.

Thus the symmetry group of SBILR,Z4×Z3 is indeed Z4 × Z3 **is this a
complete proof??**

This default configuration has the added benefit that when we have a Z4-
invariant decomposition, the realization of Z4 ⊂ GL3 will be the standard
one. The choice of scale was made so that vi,i+1(ui+2) = 1, vi,i+1(ui+3) = −1
(indices considered mod four). This has the advantage of vi,i+1 = τv12 where
τ ∈ Z4 is the generator of the standard Z4. For v13 there was no obvious
choice of sign, but then we chose v24 = τ(v13).

For standard Z4-invariant decompositions, notice that these vectors split
into two Z4-orbits: the vi,i+1’s which consist of four vectors, and the vi,i+2’s
of which there are two.

Let v1, . . . , v4 ∈ U be a configuration, determining uij ∈ U∗, determining

further vij|kl ∈ U where [uij ] = vi
⊥ ∩ vj⊥ and [vij|kl] = uij

⊥ ∩ ujl⊥. It turns
out only two of the vij|kl appear in the decomposition, say v12|34, v14|23,
so v13|24 is omitted. Each vi appears in exactly 4 rank one terms, each
uij appears in exactly three, and v12|34, v14|23 appear in one each. Because
the frequencies are different, we cannot have a transpose-like symmetry so
Γ ⊂ (GL(U)×GL(V )×GL(W )) oZ3 because we cannot swap the u’s and
v’s. Further, because of the incidence relations, letting Γ′ = Γ ∩ GL(U) ×
GL(V )×GL(W ), Γ′ is determined by its action on the points in PU , and in
fact on the points in the initial configuration, which says Γ′ ⊂ S4. But to
have the intersections preserved Γ′ must also preserve the pair {v12|34, v14|23},
i.e., Γ′ ⊆ Z4, generated by the cycle (1234). (Note that (1234) swaps v12|34

and v14|23, while (1234)2 = (12)(34) preserves each of them.)
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Thus Γ ⊆ Z4 o Z3.

Note that in the presentation, that (4.7.12)-(4.7.15) are nilpotent.

1 0 0

3

0 1 0

3

0 0 1

3

1 1 1

3

1 1 0

3

1 0 1

3

0 0 1

4

0 1 0

4

0 1 − 1

1

1 0 0

1

1 0 − 1

4

1 − 1 0

4

1 0 0

3

0 1 0

3

0 0 1

3

1 1 1

3

1 1 0

3

1 0 1

3

0 0 1

4

0 1 0

4

0 1 − 1

1

1 0 0

1

1 0 − 1

4

1 − 1 0

4

4.7.2. Laderman’s decomposition. I now discuss Laderman’s rank 23
decomposition ofM〈3〉, which I denote LadAccording to Burichenko [Bur15],
one has a Z2×Z2 ⊂ SL(U)×SL(V )×SL(W ) contained in ΓLad and the full
cyclic permutation and transpose Z3 o Z2 also in ΓLad, acting in a twisted
way. Thus in the family generated by the decomposition, there is a standard
Z3 invariant decomposition. Thanks to the transpose symmetry, it is better
to label points in the dual space by their image under transpose rather than
annihilators, to make the transpose-like symmetry more transparent. Here
it is:

Points:

u1 =

1
0
0

 , u2 =

0
1
0

 , u3 =

0
0
1

 , u12 =

 1
−1
0

 , u23 =

 0
1
−1

 .
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v1 = (1, 0, 0), v2 = (0, 1, 0), v3 = (0, 0, 1),

v12 = (1, 1, 0), v23 = (0, 1, 1).

(u2v2)⊗3(4.7.21)

(u3v3)⊗3(4.7.22)

(u12v1)⊗3(4.7.23)

(u1v12)⊗3(4.7.24)

(u2v1 − u1v12)⊗3(4.7.25)

〈(u1v3)⊗(u3v1)⊗(u1v1)〉Z3(4.7.26)

〈(u23v1)⊗(u12v3)⊗(u23v3)〉Z3(4.7.27)

〈(u3v12)⊗(u1v23)⊗(u3v23)〉Z3(4.7.28)

〈(u2v3 − u23v1)⊗(u1v2 − u12v3)⊗(u3v2 − u23v3)〉Z3(4.7.29)

〈(u23v12 + u2v3 − u1v23)⊗(u2v3)⊗(u3v2)〉Z3(4.7.30)

〈(u12v12 + u2v3 − u3v2)⊗(u2v1)⊗(u1v2)〉Z3(4.7.31)

Exercise 4.7.2.1: (2) Verify that this indeed is a decomposition of M〈3〉.

The transpose-like Z2 is x⊗y⊗z 7→ (ε2yε2)T⊗(ε2xε2)T⊗(ε2zε2)T , where

ε2 =

1
−1

1

. (Note the similarities with Strassen’s decomposition.)

In other words send u1 ↔ v1, u2 ↔ −v2, u3 ↔ v3 and then switch the first
two factors in A⊗B⊗C. This action fixes all terms except it performs the
exchanges (4.7.23) ↔ (4.7.24) and (4.7.27) ↔ (4.7.28).

Now the Z2 ×Z2 unfortunately is not in the diagonal GL9, as one must
act differently on each of A,B,C. I.e, instead of being inGL9 as I had hoped,
it is in GL9 × GL9 × GL9. In other words, it does not respect the above
structure: For example, his Φ1 converts (4.7.23) to the second summand in
(4.7.27), and that second summand becomes the Z3-invariant term (4.7.23).
Thus the decomposition as a whole is unchanged, but Z3-invariant and non-
Z3-invariant terms are mixed. This explains why Nick found more than one
solution: there are (at least) four distinct ways to convert Laderman to a
standard Z3-invariant decomposition, and each of the four leads to the same
standard Z3-invariant decomposition.

Exercise 4.7.2.2: (2) Verify the asserted automorphisms for Laderman’s
decomposition
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1 0 0

5

0 0 1

5

0 1 0

3

1 1 0

2

0 1 − 1

2

1 0 0

5

0 0 1

5

0 1 0

3

1 − 1 0

2

0 1 1

2

1 0 0

5

0 0 1

5

0 1 0

3

1 1 0

2

0 1 − 1

2

1 0 0

5

0 0 1

5

0 1 0

3

1 − 1 0

2

0 1 1

2

4.8. Secant varieties and additional geometric language

At this point, it will be useful to introduce the additional geometric language
of secant varieties that will enable us to discuss rank decompositions in a
larger context and analyze border rank decompositions.

Secant varieties will also arise naturally in the study of Valiant’s con-
jecture and its variants, so even as far as complexity theory it is worth
discussing border rank from the larger perspective of secant varieties.

4.8.1. Secant Varieties. In order to better study σr, which governs the
complexity of M〈n〉, it will be useful to place the study in the broader context
of secant varieties, an extensively studied class of varieties.

Given a variety X ⊂ PV , define the X-rank of [p] ∈ PV , RX([p]),

to be the smallest r such that there exist x1, . . . , xr ∈ X̂ such that p is
in the span of x1, . . . , xr, and the X-border rank RX([p]) is defined to

be the smallest r such that there exist curves x1(t), . . . , xr(t) ∈ X̂ such
that p is in the span of the limiting plane limt→0〈x1(t), . . . , xr(t)〉, where
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〈x1(t), . . . , xr(t)〉 ⊂ G(r, V ) is viewed as a curve the Grassmannian. Here
and in what follows, I am assuming that for t 6= 0, x1(t), . . . , xr(t) are lin-
early independent (otherwise we are really dealing with a decomposition of
lower border rank).

Let σr(X) ⊂ PV denote the set of points of X-border rank at most r,
called the r-th secant variety of X. (Theorem 3.1.6.1 assures us that σr(X)
is indeed a variety.) In other words

σr(X) =
⋃

x1,...,xr∈X
〈x1, . . . , xr〉

where 〈x1, . . . , xr〉 denotes the linear span in projective space. The notation
is such that σ1(X) = X. When X = Seg(PA1×· · ·×PAn) is the set of rank
one tensors, σr(X) = σr.

Let X ⊂ PV be a smooth variety, and let p ∈ σ2(X). If p is not a point
of X, nor a point on an honest secant line, then p must line on some tangent
line to X, where here I take the näıve definition of tangent line, namely a
point on a limit of secant lines.

Terracini’s lemma (see, e.g., [Lan12, §5.3]) generalizes our caculation

of T̂[a1⊗b1⊗c1+a2⊗b2⊗c2]Seg(PA × PB × PC) of §3.1.3: if z = [x1 + · · · + xr]

with [xj ] ∈ X general points, then T̂zσr(X) =
∑r

j=1 T̂[xj ]X. In particular

dimσr(X) ≤ r dimX + r − 1.

Thus dimσr(X) ≤ min{r dimX+ r−1,v−1}, and when equality holds
we will say σr(X) is of the expected dimension. The expected dimension is
indeed what occurs “most” of the time. For example, dimσr(PN×PN×PN )
is the expected dimension for all (r,N) except (r,N) = (4, 2) [Lic85].

4.8.2. Homogeneous varieties, orbit closures, and G-varieties. The
Segre, Veronese and Grassmannian are examples of homogeneous varieties:

Definition 4.8.2.1. A subvariety X ⊂ PV , is homogeneous if it is a closed
orbit of some point x ∈ PV under the action of some group G ⊂ GL(V ). If
P ⊂ G is the subgroup fixing x, we write X = G/P .

A variety X ⊂ PV is called a G-variety for a group G ⊂ GL(V ), if for
all g ∈ G and x ∈ X, g · x ∈ X.

Orbit closures (see §3.3.1) and homogeneous varieties are G-varieties.

Exercise 4.8.2.2: (1) What are the points in GLn · (x1 · · ·xn) that are not
in GLn · (x1 · · ·xn)?

4.8.3. The abstract secant variety. I now construct a variety that will
facilitate the study of decompositions of a tensor. I make the construction
in the more general context of secant varieties.
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Let X ⊂ PV be a variety. Consider the set

Sr(X)0 := {(x1, . . . , xr, z) ∈ X×r×PV | z ∈ span{x1, . . . , xr}} ⊂ Seg(X×r×PV ) ⊂ PV ⊗r+1

and let Sr(X) := Sr(X)0 denote its Zariski closure. (For those familiar with

quotients, it would be more convenient to deal with X(×r) := X×r/Sr.) We
have a map π0 : Sr(X)0 → PV , extending to a map π : Sr(X)→ PV , given
by projection onto the last factor and the image is σ0

r (X) (resp. σr(X)). We
will call Sr(X) the abstract r-th secant variety of X. As long as r < v and
X is not contained in a linear subspace of PV , dimSr(X) = r dimX + r− 1
because dimX×r = r dimX and a general set of r points on X will span a
Pr−1.

If σr(X) is of the expected dimension, so its dimension equals that of
Sr(X), then for general points z ∈ σr(X)0, (π0)−1(z) will consist of a finite
number of points and each point will correspond to a decomposition z =
x1 + · · ·+ xr for xj ∈ x̂j , z ∈ ẑ. In summary:

Proposition 4.8.3.1. If Xn ⊂ PN and σr(X) is of (the expected) dimension
rn+ r− 1 < N , then a Zariski open subset of points on σr(X) have a finite
number of decompositions into a sum of r elements of X.

If the fiber of π0 over z ∈ σ0
r (X) is k-dimensional, then there is a k-

parameter family of decompositions of z as a sum of r rank one tensors.
This occurs, for example if z ∈ σr−1(X), but it can also occur for points
in σr(X)\σr−1(X). We have seen that this is indeed the case for M〈2,2,2〉 ∈
σ7(Seg(P3 × P3 × P3)).

If X is a G-variety, then σr(X) is also a G-variety, and if z ∈ σ0
r (X)

is fixed by Gz ⊂ G, then Gz will act (possibly trivially) on (π0)−1(z), and

every distinct (up to re-ordering if one is not working with X(×r)) point in
its orbit will correspond to a distinct decomposition of z. Let q ∈ (π0)−1(x).
If dim(Gz · q) = dz, then there is at least a dz parameter family of decom-
positions of z as a sum of r elements of X. We have seen that in the case of
X = Seg(PA× PB × PC), if z is concise, then dz = dimGz.

Remark 4.8.3.2. Note that codim(Sr−1(X), Sr(X)) ≤ dimX − 1, where
the inclusion is just by adding a point to a border rank r−1 decomposition.
In particular, in the case of the Segre relevant for matrix multiplication, this
codimension is at most 3(n2− 1). On the other hand ImageGM〈n〉 = 3(n2−
1), so by a dimension count, one might “expect” π−1

r (M〈n〉) to intersect
Sr−1(X), meaning that we could keep reducing the border rank of M〈n〉
all the way down to one. Of course since Sr(Seg(PA × PB × PC) is not a
projective space, no intersection is implied, but this dimension count just
illustrates the pathology of the tensor M〈n〉.
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4.8.4. What is a border rank decomposition? Usually an X-border
rank decomposition of some v ∈ V is presented as v = limt→0(x1(t) +
· · · + xr(t)) where [xj(t)] are curves in X. In order to discuss border rank
decompositions geometrically, it will be useful to study the corresponding
curve in the Grassmannian 〈x1(t), . . . , xr(t)〉 ⊂ G(r, V ). The limiting r
plane that contains v will have several geometric aspects, in particular the
geometry of its intersection with X.

To better understand this geometry, consider

S̃0
r (X) := {([v], ([x1], . . . , [xr]), E) | v ∈ 〈x1, . . . , xr〉 ⊆ E} ⊂ PV×X×r×G(r, V )

and S̃r(X) := S̃0
r (X).

We can stratify σr(X) and S̃r(X) by the h’s of the intermediate ranks Rh

of §3.2.1. The case h = 0 is rank. The next case h = 1 has a straight-forward
geometry.

To understand the h = 1 case, first consider the case r = 2, so v =
limt→0

1
t (x1(t)+x2(t)) for curves [xj(t)] ⊂ X. Then we must have limt→0[x1(t)] =

limt→0[x2(t)] and if this limiting point is [x], we obtain an element of T̂xX.
In the case of σr(X), one needs r curves such that the points are linearly
independent for t 6= 0 and such that they become dependent when t = 0.
This is most interesting when no subset of r − 1 points becomes linearly
dependent. Then it is not hard to see (see [Lan12, §10.8.1], that one may

obtain an arbitrary point of T̂x1X + · · · + T̂xrX. For some varieties there
may not exist r distinct points on them that are linearly dependent (e.g.,
vd(P1) when d > r). An easy way for such sets of points to exist is if there
is a Pr−1 on the variety. The decompositions for M red

〈m,2,2〉 I discuss in the

next section are not quite from such simple configurations, but nearly are.
Because of this I next discuss the geometry of linear spaces on the Segre.

4.8.5. Lines on Segre varieties. There are three types of lines on Seg(PA×
PB × PC): α-lines, which are of the form P(〈a1, a2〉⊗b⊗c) for some aj ∈ A,
b ∈ B, c ∈ C, and the other two types are defined similarly and called β
and γ lines.

Exercise 4.8.5.1: (2) Show that all lines on Seg(PA × PB × PC) are one
of these types.

Given two lines Lβ, Lγ ⊂ Seg(PA× PB × PC) respectively of type β, γ,
if they do not intersect, then 〈Lβ, Lγ〉 = P3 and if the lines are general,
furthermore 〈Lβ, Lγ〉 ∩ Seg(PA× PB × PC) = Lβ t Lγ .

However if Lβ = P(a⊗〈b1, b2〉⊗c) and Lγ = P(a′⊗b⊗〈c1, c2〉) with b ∈
〈b1, b2〉 and c ∈ 〈c1, c2〉, then they still span a P3 but 〈Lβ, Lγ〉 ∩ Seg(PA ×
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PB × PC) = Lβ t Lγ t Lα, where Lα = P(〈a, a′〉⊗b⊗c), and Lα intersects
both Lβ and Lγ .

Let x, y, z ∈ Seg(PA× PB × PC) be distinct points that all lie on a line
L ⊂ Seg(PA× PB × PC). Then
(4.8.1)

T̂xSeg(PA× PB × PC) ⊂ 〈T̂ySeg(PA× PB × PC), T̂zSeg(PA× PB × PC)〉.

In fact, the analogous statement is true for lines on any cominuscule variety,
see [BL14, Lemma 3.3]. Because of this, it will be more geometrical to refer

to T̂LSeg(PA×PB×PC) := 〈T̂ySeg(PA×PB×PC), T̂zSeg(PA×PB×PC)〉,
as the choice of y, z ∈ L is irrelevant.

Exercise 4.8.5.2: (1) Verify (4.8.1).

The matrix multiplication tensor M〈U,V,W 〉 endows A,B,C with addi-
tional structure, e.g., B = V ∗⊗W , so there are two types of distinguished
β-lines (corresponding to lines of rank one matrices), call them (β, ν∗)-lines
and (β, ω)-lines, where, e.g., a ν∗-line is of the form P(a⊗(〈v1, v2〉⊗w)⊗c),
and among such lines there are further distinguished ones where moreover
both a and c also have rank one. Call such further distinguished lines special
(β, ν∗)-lines.

4.9. Border rank decompositions

4.9.1. M red
〈2〉 . Here A ⊂ U∗⊗V has dimension three.

What follows is a slight modification of the decomposition of M red
〈2〉 from

[BCRL79] that appeared in [LR0]. Call it the BCLR-decomposition. I
label the points such that x1

1 is set equal to zero. The main difference is
that in the original all five points moved, but here one is stationary.

p1(t) = x1
2 ⊗ (y2

2 + y2
1)⊗ (z2

2 + tz1
1)

p2(t) = −(x1
2 − tx2

2)⊗ y2
2 ⊗ (z2

2 + t(z1
1 + z2

1))

p3(t) = x2
1 ⊗ (y2

1 + ty1
2)⊗ (z2

2 + z1
2)

p4(t) = (x2
1 − tx2

2)⊗ (−y2
1 + t(y1

1 − y1
2))⊗ z1

2

p5(t) = −(x2
1 + x1

2)⊗ y2
1 ⊗ z2

2

and

(4.9.1) M red
〈2〉 = lim

t→0

1

t
[p1(t) + · · ·+ p5(t)].

Use the notation xij = ui⊗vj , yjk = vj⊗wk and zki = wk⊗ui.
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Theorem 4.9.1.1. [LR0] Let EBCLR = limt→0〈p1(t), . . . , p5(t)〉 ∈ G(5, A⊗B⊗C).
Then EBCLR ∩ Seg(PA× PB × PC) is the union of three lines:

L12,(β,ω) = x1
2 ⊗ (v2 ⊗W )⊗ z1

2

L21,(γ,ω∗) = x2
1 ⊗ y2

2 ⊗ (W ∗ ⊗ u2)

Lα = 〈x2
1, x

1
2〉 ⊗ y2

2 ⊗ z1
2 .

Here L12,(β,ω) is a special (β, ω)-line, L21,(γ,ω∗), is a special (γ, ω∗)-line, and
Lα, is an α-line with rank one B and C points. Moreover, the C-point of
L12,(β,ω) lies in the ω∗-line of L21,(γ,ω∗), the B-point of L21,(γ,ω∗) lies in the
ω-line of L12,(β,ω) and Lα is the unique line on the Segre intersecting L12,(β,ω)

and L21,(γ,ω∗) (and thus it is contained in their span).

Furthermore, EBCLR = 〈M red
〈2〉 , L12,(β,ω), L21,(γ,ω∗)〉 and

M red
〈2〉 ∈ 〈T̂L12,(β,ω)

Seg(PA× PB × PC), T̂L21,(γ,ω∗)Seg(PA× PB × PC)〉.

Proof. Write pj = pj(0). Then (up to sign, which is irrelevant for geometric
considerations)

p1 =x1
2⊗(y2

2 + y2
1)⊗z2

2

p2 =x1
2⊗y2

2⊗z2
2

p3 =x2
1⊗y2

1⊗(z2
2 + z1

2)

p4 =x2
1⊗y2

1⊗z1
2

p5 =(x2
1 + x1

2)⊗y2
1⊗z2

2

The configuration of lines is as follows:

L12,(β,ω) = 〈p1, p2〉 = x1
2 ⊗ (v2 ⊗W )⊗ z2

2

L21,(γ,ω∗) = 〈p3, p4〉 = x2
1 ⊗ y2

1 ⊗ (W ∗ ⊗ u2)

p5 ∈ Lα = 〈x1
2, x

2
1〉 ⊗ y2

1 ⊗ z2
2 .

To see there are no other points in EBCLR∩Seg(PA×PB×PC), first note
that any such point would have to lie on Seg(P〈x1

2, x
2
1〉×P〈y2

1, y
2
2〉×P〈z1

2 , z
2
2〉)

because there is no way to eliminate the rank two x2
2⊗(y2

1⊗z1
2 +y2

2⊗z2
2) term

in M red
〈2〉 with a linear combination of p1, . . . , p4. Let [(sx1

2 + tx2
1)⊗(uy2

2 +

vy2
1)⊗(pz2

2 + qz1
2)] be an arbitrary point on this variety. To have it be in the

span of p1, . . . , p4 it must satisfy the equations suq = 0, svq = 0, tuq = 0,
tup = 0. Keeping in mind that one cannot have (s, t) = (0, 0), (u, v) = (0, 0),
or (p, q) = (0, 0), we conclude the only solutions are the three lines already
exhibited.
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We have

p1(0)′ = x1
2 ⊗ (y2

2 + y2
1)⊗ z1

1

p2(0)′ = x2
2 ⊗ y2

2 ⊗ z2
2 − x1

2 ⊗ y2
2 ⊗ (−z2

1 + z1
1)

p3(0)′ = x2
1 ⊗ y1

2 ⊗ (z2
2 + z1

2)

p4(0)′ = x2
2 ⊗ y2

1 ⊗ z1
2 + x2

1 ⊗ (y1
1 − y1

2)⊗ z1
2

p5(0)′ = 0.

Then M red
〈2〉 = (p′1 + p′2) + (p′3 + p′4) where p′1 + p′2 ∈ TL12,(β,ω)

Seg(PA ×
PB × PC) and p′3 + p′4 ∈ TL21,(γ,ω∗)Seg(PA× PB × PC). �

Remark 4.9.1.2. By removing x1
1 from our tensor, we lose the cyclic Z3-

symmetry but retain a standard transpose action x⊗y⊗z 7→ xT⊗zT⊗yT .
Similarly we lose our GL(U) × GL(V ) symmetry but retain our GL(W )
action. By composing our standard transpose symmetry with another Z2

action which switches the basis vectors of W , the action swaps p1(t) + p2(t)
with p3(t) + p4(t) and L12,(β,ω) with L21,(γ,ω∗). This action fixes p5.

Remark 4.9.1.3. Note that it is important that p5 lies neither on L12,(β,ω)

nor on L21,(γ,ω∗), so that no subset of the five points lies in a linearly de-
generate position to enable us to have tangent vectors coming from all five
points, but I emphasize that any point on the line Lα not on the original lines
would have worked equally well, so the geometric object is this configuration
of lines.

4.9.2. M red
〈3,2,2〉. Here is the decomposition in [AS13, Thm. 2] due to Alex-

eev and Smirnov, only changing the element set to zero in their decompo-
sition to x1

1. Note that the decomposition is order two and the nonzero
coefficients appearing are ±1,±1

2 .
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p1(t) = (
−1

2
t2x3

2 −
1

2
tx2

1 + x2
1)⊗ (−y2

1 + y2
2 + ty1

1)⊗ (z1
3 + tz1

2)

p2(t) = (x2
1 +

1

2
x1

2)⊗ (y2
1 − y2

2)⊗ (z1
3 + z2

3 + tz1
2 + tz2

2)

p3(t) = (t2x3
2 + tx3

1 −
1

2
tx2

2 − x2
1)⊗ (y2

1 + y2
2 + ty1

2)⊗ z2
3

p4(t) = (
1

2
t2x3

2 − tx3
1 −

1

2
tx2

2 + x2
1)⊗ (y2

1 + y2
2 − ty1

1)⊗ z1
3

p5(t) = (−t2x3
2 + tx2

2 − x1
2)⊗ y2

1 ⊗ (z2
3 +

1

2
tz1

2 +
1

2
tz2

2 − t2z1
1)

p6(t) = (
1

2
tx2

2 + x2
1)⊗ (−y2

1 + y2
2 + ty1

2)⊗ (z2
3 + tz2

2)

p7(t) = (−tx3
1 + x2

1 +
1

2
x1

2)⊗ (y2
1 + y2

2)⊗ (−z1
3 + z2

3)

p8(t) = (tx2
2 + x1

2)⊗ y2
2 ⊗ (z1

3 +
1

2
tz1

2 +
1

2
tz2

2 + t2z2
1).

Then

M red
〈3,2,2〉 =

1

t2
[p1(t) + · · ·+ p8(t)].

Theorem 4.9.2.1. [LR0] Let EAS,3 = limt→0〈p1(t), . . . , p8(t)〉 ∈ G(8, A⊗B⊗C).
Then EAS,3 ∩ Seg(PA× PB × PC) is the union of two irreducible algebraic
surfaces, both abstractly isomorphic to P1 × P1: The first is a sub-Segre
variety:

Seg21,(β,ω),(γ,ω∗) := [x2
1]× P(v2⊗W )× P(W ∗⊗u3),

The second, Lα is a one-parameter family of lines passing through a parametrized
curve in Seg21,(β,ω),(γ,ω∗) and the plane conic curve (which has the same
parametrization):

C12,(β,ω),(γ,ω∗) := P(∪[s,t]∈P1x1
2⊗(sy2

1 − ty2
2)⊗(sz2

3 + tz1
3)).

The three varieties C12,(β,ω),(γ,ω∗), Seg21,(β,ω),(γ,ω∗), and Lα respectively play
roles analogous to the lines L12,(β,ω), L21,(γ,ω∗), and Lα, as described below.
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Figure 4.9.1. The curve C12,(β,ω),(γ,ω∗) with its four points, the
surface Seg21,(β,ω),(γ,ω∗), with its four points (only two of which
are visible), and the surface Lα with its two points which don’t lie
on either the curve or surface Seg21,(β,ω),(γ,ω∗).

Proof. The limit points are (up to sign):

p1 =x2
1⊗(y2

1 − y2
2)⊗z1

3

p3 =x2
1⊗(y2

1 + y2
2)⊗z2

3

p4 =x2
1⊗(y2

1 + y2
2)⊗z1

3

p6 =x2
1⊗(y2

1 − y2
2)⊗z2

3

p5 =x1
2⊗y2

1⊗z2
3

p8 =x1
2⊗y2

2⊗z1
3

p2 =(x2
1 +

1

2
x1

2)⊗(y2
1 − y2

2)⊗(z1
3 + z2

3)

p7 =(x2
1 +

1

2
x1

2)⊗(y2
1 + y2

2)⊗(z1
3 − z2

3)

Just as with M red
〈2〉 , the limit points all lie on a Seg(P1 × P1 × P1), in fact

the “same” Seg(P1 × P1 × P1). Pictorially the Segres are:(
0 ∗
∗

)
×
(
∗ ∗

)
×
(
∗
∗

)
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for M red
〈2,2,2〉 and 0 ∗

∗

× (∗ ∗
)
×
(

∗
∗

)
for M red

〈3,2,2〉. Here EAS,3 ∩ Seg(PA × PB × PC) is the union of a one-

parameter family of lines Lα passing through a plane conic and a special
P1 × P1: Seg21,(β,ω),(γ,ω∗) := [x2

1] × P(v2⊗W ) × P(W ∗⊗u3) (which contains
p1, p3, p4, p6). To define the family and make the similarity with the BCLR
case clearer, first define the plane conic curve

C12,(β,ω),(γ,ω∗) := P(∪[s,t]∈P1x1
2⊗(sy2

1 − ty2
2)⊗(sz2

3 + tz1
3)).

The points p5, p8 lie on this conic (respectively the values (s, t) = (1, 0) and
(s, t) = (0, 1)). Then define the variety

Lα := P(∪[σ,τ ]∈P1 ∪[s,t]∈P1 (σx1
2 + τx2

1)⊗(sy2
1 − ty2

2)⊗(sz2
3 + tz1

3)),

which is a one-parameter family of lines intersecting the conic and the special
P1×P1. The points p2, p7 lie on Lα but not on the conic. Explicitly p2 (resp.
p7) is the point corresponding to the values (σ, τ) = (1, 1

2) and (s, t) = (1, 1)
(resp. (s, t) = (1,−1)).

The analog of Lα in the M red
〈2〉 decomposition is Lα, and C12,(β,ω),(γ,ω∗)

and Seg21,(β,ω),(γ,ω∗) are the analogs of the lines L12,(β,ω), L21,(γ,ω∗). (A dif-
ference here is that C12,(β,ω),(γ,ω∗) ⊂ Lα.)

The span of the configuration is the span of a P2 (the span of the conic)
and a P3 (the span of the P1 × P1), i.e., a P6.

The proof that these are the only points in the intersection is similar to
the BCLR case. �

More decompositions are described geometrically in [LR0].

It would be reasonable to expect that the BCLR and Alekseev-Smirnov
decompositions generalize to all m, so that R(M red

〈m,2,2〉) ≤ 3m − 1, which

would imply that R(M〈n,2,2〉) ≤ 3n + 1 for all n.





Chapter 5

The complexity of
Matrix multiplication
IV: The complexity of
tensors and more lower
bounds

In Chapter 2 we developed equations to test the border rank of tensors. The
first non-classical such were Strassen’s equations for tensors T ∈ A⊗B⊗C.
Strassen’s equations, as originally presented, were via a study of the ge-
ometry of T (A∗) ⊂ B⊗C. In this chapter I explain further techniques for
proving lower bounds for border rank and rank of tensors, some of which
use Strassen’s original perspective. I also discuss geometric properties that
could be useful for future investigations.

I begin, in §5.1 by making explicit the dictionary between (1A-generic)
tensors in Ca⊗Cm⊗Cm and linear subspaces of End(Cm). This enables one
to both find further equations for tensors and to use knowledge of tensors
to make further progress on classical questions in linear algebra. Classical
linear algebra can also be used to show that in certain situations one can
conclude upper bounds on border rank that match the lower ones.

While up until now I have emphasized using explicit polynomials to test
membership in varieties, sometimes varieties satisfy Zariski closed conditions
that are easy to describe but difficult to write as polynomials. Some such
are already discussed in §5.1. Two more such conditions are discussed in
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§5.2. One particularly useful such technique, the border substitution method
is discussed in detail in §5.4. In particular, it enables the 2n2 − log2(2n)
lower bound for M〈n〉 presented in §5.4.3.

Regarding tensor rank, the only general method for proving tensor rank
lower bounds I am aware of is the substitution method discussed in §5.3.

The best upper bounds for ω were obtained with TSTR, Tcw,q, TCW,q.
What makes these tensors special? It is clear they have nice combinatorial
properties, but do they have distinguishing geometric features? I discuss
several such geometric properties in §5.5. If such features could be identified,
one could in principle look for other tensors with the same properties with
which to apply the laser method, as was proposed in [AFLG15].

Several tensors that have been studied arise naturally as structure ten-
sors of algebras. I discuss rank and border rank lower bounds for structure
tensors in §5.6. In particular, I present Zuiddam’s sequence of tensors with
rank to border rank ratio approaching three.

5.1. Tensors and classical linear algebra

5.1.1. 1-genericity. How good are Strassen’s equations? We have seen
that unless there exists α ∈ A∗ with T (α) ⊂ B⊗C of maximal rank (or
β ∈ B∗, resp. γ ∈ C∗ with T (β), resp. T (γ), of maximal rank), they are
essentially useless. The following definition names the class of tensors they
are useful for.

Definition 5.1.1.1. A tensor T ∈ A⊗B⊗C is 1A-generic if there exists
α ∈ A∗ with T (α) ⊂ B⊗C of maximal rank, and T is 1-generic if it is 1A, 1B
and 1C-generic.

Fortunately M〈n〉 and all tensors used to study the exponent of matrix
multiplication are 1-generic.

The 1-genericity of M〈n〉 has the consequence that for the purpose of
proving upper bounds on R(M〈n〉), one only needs set-theoretic equations
for σR union the set of non-1-generic tensors. In other words, it would be
sufficient to find a collection of polynomials such that their common zero
set simply contains σR as an irreducible component, as long as all other
components of the zero set are contained in the set of non-1-generic tensors.

Say a tensor T is 1A-generic, b = c and Strassen’s commutators are
identically zero– can we conclude R(T ) = b?

I address these questions in this section and the next. I first show that
the properties of tensor rank and border rank of tensors in A⊗B⊗C can be
studied as properties of a-dimensional linear subspaces of B⊗C.
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5.1.2. The dictionary. The following standard result shows that when
studying the rank and border rank of a tensor T ∈ A⊗B⊗C, there is no loss
of information in restricting attention to T (A∗) ⊂ B⊗C. I present a version
of it from [LM15].

Proposition 5.1.2.1. Let T ∈ A⊗B⊗C.

(1) R(T ) equals the minimal number of rank one elements of B⊗C
needed to span (a space containing) T (A∗), and similarly for the
permuted statements.

Say dimT (A∗) = k. Let Zr ⊂ G(k,B⊗C) denote the set of
k-planes in B⊗C that are contained in the span of r rank one
elements, so R(T ) ≤ r if and only if T (A∗) ∈ Zr.

(2) R(T ) ≤ r if and only if T (A∗) ∈ Zr.

Proof. Let T have rank r so there is an expression T =
∑r

i=1 ai⊗bi⊗ci.
(The vectors ai need not be linearly independent, and similarly for the bi
and ci.) Then T (A∗) ⊆ 〈b1⊗c1, . . . , br⊗cr〉 shows that the number of rank
one matrices needed to span T (A∗) ⊂ B⊗C is at most R(T ).

For the other inequality, say T (A∗) is contained in the span of rank one
elements b1⊗c1, . . . , br⊗cr. Let α1, . . . , αa be a basis of A∗, with dual basis
e1, . . . , ea of A. Then T (αi) =

∑r
s=1 x

i
sbs⊗cs for some constants xis. But

then T =
∑

s,i ei⊗(xisbs⊗cs) =
∑r

s=1(
∑

i x
i
sei)⊗bs⊗cs proving R(T ) is at

most the number of rank one matrices needed to span T (A∗) ⊂ B⊗C.

Exercise 5.1.2.2: (1) Prove the border rank assertion.

�

5.1.3. Equations via linear algebra. This section follows [LM15]. All
the equations we have seen so far arise as Koszul flattenings, which all vanish
if Strassen’s equations for minimal border rank are zero, as can be seen by
the coordinate expressions (2.2.1) and the discussion in §2.6.4. Thus we
have robust equations only if T is 1A, 1B or 1C-generic, because otherwise
the presence of T (α)∧a−1 in the expressions make them likely to vanish.
When T is 1A-generic, the Koszul flattenings T∧pA : ΛpA⊗B∗ → Λp+1A⊗C
provide measures of the failure of T (A∗)T (α)−1 ⊂ End(B) to be an abelian
subspace.

A first concern is that perhaps the choice of α ∈ A∗ effects this failure.
The following lemma addresses that concern, at least in the case of minimal
border rank:

Lemma 5.1.3.1. [LM15] Let T ∈ A⊗B⊗C = Ca⊗Ca⊗Ca be 1A-generic
and assume rank(T (α0)) = a. If T (A∗)T (α0)−1 is abelian then T (A∗)T (α′0)−1

is abelian for any α′0 ∈ A∗ such that rank(T (α′0)) = a.
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Proof. Say T (A∗)T (α0)−1 is abelian, and setXi = T (αi)T (α0)−1, so [X1, X2] =
0. Set X ′i = T (αi)T (α0)−1 and X ′ = T (α′0)T (α0)−1, so [Xi, X

′] = 0 as
well, which implies [Xi, (X

′)−1] = 0. We want to show [X ′1, X
′
2] = 0. But

X ′j = Xj(X
′)−1, so

X ′1X
′
2 −X ′2X ′1 = X1(X ′)−1X2(X ′)−1 −X2(X ′)−1X1(X ′)−1

= [X1, X2](X ′)−1(X ′)−1

= 0.

�

Definition 5.1.3.2. Let a = b = c and let AbelA ⊂ A⊗B⊗C denote the
set of concise, 1A-generic tensors such that for some (and hence any) α ∈ A∗
with T (α) of maximal rank, T (A∗)T (α)−1 ⊂ End(B) is abelian. Note that
AbelA is not Zariski closed in general.

Let Diag0
End(B) ⊂ G(b,End(B)) denote the set of b-dimensional sub-

spaces that are simultaneously diagonalizable under the action of GL(B)

and let DiagEnd(B) = Diag0
End(B) denote its Zariski closure. Let α ∈ A∗ be

such that T (α) is of maximal rank (by Lemma 5.1.3.1, it does not matter
which α we take), and let

DiagA := {T ∈ AbelA | T (A∗)T (α)−1 ∈ DiagEnd(B)} ∩AbelA .

By definition, DiagA ⊆ AbelA. We now study to what extent equality
holds. The following proposition gives a necessary algebraic condition to be
in DiagA:

Proposition 5.1.3.3. [Ger61] The set

{U ∈ G(a,End(B)) | U is closed under composition}

is Zariski closed.

In particular, if T ∈ A⊗B⊗C = Ca⊗Ca⊗Ca is 1A-generic with R(T ) =
a, then for all α ∈ A∗ with T (α) invertible, T (A∗)T (α)−1 is closed under
composition.

Proof. If u1, . . . , ua is a basis of U , then U is closed under composition if
and only if for all u ∈ U ,

(uuj) ∧ u1 ∧ · · · ∧ ua = 0 ∀1 ≤ j ≤ a.

Let (AbelA × A∗)0 = {(T, α) | rank(T (α)) = b}, and note that the map
(AbelA × A∗)0 → G(a,End(B)), given by (T, α) 7→ T (A∗)T (α)−1 is contin-
uous (it is a regular map of quasi-projective varieties). The “in particular”
assertion follows from this continuity because if U ∈ Diag0

End(B), then U is

closed under composition. �
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Exercise 5.1.3.4: (2) Show that if T (α), T (α′) are invertible and T (A∗)T (α)−1

is closed under composition, then T (A∗)T (α′)−1 is closed under composition.

Let End AbelA ⊆ AbelA denote the subset of tensors with T (A)T (α)−1

closed under composition for some (and hence all) α ∈ A∗ with T (α) invert-
ible. We have

(5.1.1) DiagA ⊆ End AbelA ⊆ AbelA,

where the first inclusion is Proposition 5.1.3.3 and the second is by definition.
Are these containments strict?

A classical theorem states that when a = 3 all three are equal. Moreover:

Theorem 5.1.3.5. [IM05] When a ≤ 4, DiagA = End AbelA = AbelA .

See [IM05] for the proof, which has numerous cases.

What happens when a = 5?

Proposition 5.1.3.6. [Lei16] Let TLeit,5 = a1⊗(b1⊗c1 + b2⊗c2 + b3⊗c3 +
b4⊗c4 + b5⊗c5) + a2⊗(b1⊗c3 + b3⊗c5) + a3⊗b1⊗c4 + a4⊗b2⊗c4 + a5⊗b2⊗c5,
which gives rise to the linear space

(5.1.2) TLeit,5(A∗) =


x1

x1

x2 x1

x3 x4 x1

x5 x2 x1

 .

Then TLeit,5(A∗)T (α1)−1 is an abelian Lie algebra, but not End-closed. I.e.,
TLeit,5 ∈ AbelA but TLeit,5 6∈ End AbelA.

Throughout this chapter, an expression of the form (5.1.2) is to be read
as T (x1α

1 + · · ·xaαa) where α1, . . . , αa is a basis of A∗.

Exercise 5.1.3.7: (1) Verify that TLeit,5(A∗)T (α1)−1 is not closed under
composition.

Thus when a ≥ 5, End AbelA ( AbelA. The following proposition shows
that the first containment in (5.1.1) is also strict when a ≥ 7:

Proposition 5.1.3.8. [LM15] The tensor corresponding to

Tend,7(A∗) =



x1

x1

x1

x1

x2 + x7 x3 x4 x1

x2 x3 x5 x6 x1

x4 x5 x6 x7 x1
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is in End AbelA, but has border rank at least 8.

The proof is given in §5.2.1.

We have seen that set-theoretic equations for End AbelA are easy, whereas
set-theoretic equations for DiagA are not known. One might hope that if
T ∈ End AbelA, that at least R(T ) should be close to a. This hope fails
miserably:

Proposition 5.1.3.9. [LM15] There exist 1A-generic tensors in Ca⊗Ca⊗Ca

in End AbelA of border rank Ω(a
2

8 ).

In particular, a 1A-generic tensor satisfying Strassen’s equations can
have very high border rank.

Proof. Consider T such that

(5.1.3) T (A∗) ⊂



x1

. . .

x1

∗ · · · ∗ x1
...

...
...

. . .

∗ · · · ∗ x1


.

and set x1 = 0. We obtain a generic tensor in Ca−1⊗Cb
a
2
c⊗Cd

a
2
e, which will

have border greater than a2

8 . Conclude by applying Exercise 2.1.6.2. �

Tensors of the form (5.1.3) expose a weakness of Strassen’s equations,
even under 1-genericity. (Variants of the tensors of the form (5.1.3) are
1-generic and still exhibit the same behavior.)

5.1.4. Sufficient conditions for a concise tensor to be of minimal
border rank. A classical result in linear algebra **ref??** says a subspace
U ⊂ End(B) is diagonalizable if and only if U is abelian and every x ∈ U (or
equivalently for each xj in a basis of U), x is diagonalizable. This implies:

Proposition 5.1.4.1. A necessary and sufficient condition for a concise
1A-generic tensor T ∈ A⊗B⊗C with a = b = c to be of minimal rank
a is that for some basis α1, . . . , aa of A∗ with rank(T (α1)) = b, the space
T (A)T (α1)−1 ⊂ End(B) is abelian and each T (αj)T (α1)−1 is diagonalizable.

Although we have seen several necessary conditions to be of minimal
border rank, a computable necessary and sufficient condition to be of min-
imal border rank is not known. Below is a sufficient condition to be of
minimal border rank.
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For x ∈ End(B), define the centralizer of x, denoted C(x), by

C(x) := {y ∈ End(B) | [y, x] = 0}.

Definition 5.1.4.2. An element x ∈ End(B) is regular if dimC(x) = b,
and it is regular semi-simple if x is diagonalizable with distinct eigenvalues.

Exercise 5.1.4.3: (2) An m × m matrix is regular nilpotent if it is zero
except for the super diagonal where the entries are all 1’s. Show that a
regular nilpotent element is indeed regular, in fact that its centralizer is
the space of upper-triangular matrices where the entries on each (upper)
diagonal are the same, e.g., when m = 3 the centralizer is

x y z
x y

x

 | x, y, z ∈ C

 .

Exercise 5.1.4.4: (2) Show that dimC(x) ≥ b, with equality if and only if
the minimal polynomial of x equals the characteristic polynomial. }

Note that x is regular semi-simple if and only if C(x) ⊂ End(B) is a
diagonalizable subspace. In this case the eigenvalues of x are distinct.

Proposition 5.1.4.5. (L. Manivel, [LM15]) Let U ⊂ End(B) be an abelian
subspace of dimension b such that there exists x ∈ U that is regular. Then
U ∈ DiagEnd(B) ⊂ G(b,End(B)).

Proof. Since the Zariski closure of the regular semi-simple elements is all
of End(B), for any x ∈ End(B), there exists a curve xt of regular semi-
simple elements with limt→0 xt = x. Consider the induced curve in the
Grassmannian C(xt) ⊂ G(b,End(B)). Then C0 := limt→0C(xt) exists and
is contained in C(x) ⊂ End(B) and since U is abelian, we also have U ⊆
C(x). But if x is regular, then dimC(x) = dim(U) = b, so limt→0C(xt), C0

and U must all be equal and thus U is a limit of diagonalizable subspaces. �

Proposition 5.1.4.5 applied to T (A)T (α)−1 provides a sufficient condi-
tion for a concise 1A-generic tensor T ∈ A⊗B⊗C to be of minimal border
rank. The condition is not necessary, even for 1-generic tensors, e.g., the
Coppersmith-Winograd tensor Tq,CW of (3.4.5), is 1-generic of minimal bor-
der rank but Tq,CW (A∗)Tq,CW (α)−1 does not contain a regular element for
any α ∈ A∗.
Exercise 5.1.4.6: (2) Show that the centralizer of MC[Zm](x1) from Exam-
ple 3.5.1.2 is MC[Zm](C[Zm]) to obtain a second proof that R(MC[Zm]) = m.

Problem 5.1.4.7. Determine a criterion for U ∈ G(b,End(B)) to be in the
closure of the diagonalizable b-planes, when U does not contain a regular
element.
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Proposition 5.1.4.8. [LM15] Let T ∈ A⊗B⊗C = Cm⊗Cm⊗Cm be 1A
and 1B generic and satisfy the A-Strassen equations. Then, after a suitable
choice of identification of A with B via bases, T is isomorphic to a tensor in
S2A⊗C.

In particular:

(1) After making choices of general α ∈ A∗ and β ∈ B∗, T (A∗) and
T (B∗) are GLm-isomorphic subspaces of End(Cm).

(2) If T is 1-generic, then T is isomorphic to a tensor in S3Cm.

Proof. Let {ai}, {bj}, {ck} respectively be bases of A,B,C, with dual bases

{αj}, {βj}, {γk}. Write T =
∑
tijkai⊗bj⊗ck. After a change of basis in A

so that rank(T (α1)) = m and in B,C, so that it is the identity matrix, we
may assume t1jk = δjk and after a change of basis B so that T (β1) is of

full rank and further changes of bases in A,B,C, we may assume ti1k = δik
as well. (To obtain ti1k = δik only requires changes of bases in A,C, but
a further change in B may be needed to preserve t1jk = δjk.) Take {αi}
the dual basis to {aj} and identify T (A∗) ⊂ End(Cm) via α1. Strassen’s
A-equations then say

0 = [T (αi1), T (αi2)](j,k) =
∑
l

ti1jlti2lk − ti2jlti1lk ∀i1, i2, j, k.

Consider when j = 1:

0 =
∑
l

ti11lti2lk − ti21lti1lk = ti2i1k − ti1i2k ∀i1, i2, k,

because ti11l = δi1,l and ti21l = δi2,l. But this says T ∈ S2Cm⊗Cm.

For the last assertion, say LB : B → A is such that IdA⊗LB⊗IdC(T ) ∈
S2A⊗C and LC : C → A is such that IdA⊗IdB⊗LC ∈ S2A⊗B. Then
IdA⊗LB⊗LC(T ) is in A⊗3, symmetric in the first and second factors as
well as the first and third. But S3 is generated by two transpositions, so
IdA⊗LB⊗LC(T ) ∈ S3A. �

Thus the A,B,C-Strassen’s equations, despite being very different mod-
ules, when restricted to 1-generic tensors, all have the same zero sets. Strassen’s
equations in the case of partially symmetric tensors were essentially known
to Emil Toeplitz [Toe77], and in the symmetric case to Aronhold [Aro58].

5.2. Indirectly defined equations

This section and §5.4.1 discuss Zariski closed conditions that in principle give
rise to equations, but they are difficult to write down explicitly- to do so
systematically one would need to use elimination theory which is impossible
to implement in practice other than in very small cases. Nonetheless, for
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certain tensors these conditions can be used to prove lower bounds on border
rank, e.g., the lower bound on R(M〈n〉) via Griesser’s equations in §5.2.2 and
the state of the art lower bound on R(M〈n〉) of Theorem 5.4.3.1.

5.2.1. Intersection properties.

Exercise 5.2.1.1: (2) [BCS97, Ex. 15.14] Given T ∈ Ca⊗Ca⊗Ca =
A⊗B⊗C that is concise, show that PT (A∗) ∩ Seg(PB × PC) = ∅ implies
R(T ) > a. }

Proof of Proposition 5.1.3.8. The fact that Tend,7(A∗) is End-closed fol-
lows by inspection. The tensor has border rank at least 8 by Exercise 5.2.1.1
as Tend,7(A∗) does not intersect the Segre. Indeed, if it intersected Segre,
the vanishing of size two minors implies x1 = x4 = 0, (x2 + x7)x2 = 0 and
(x2 + x7)x7 = 0. If x2 + x7 = 0 then x3 = 0, and x2

7 = (x2 + x7)x7 = 0
and hence x2 = 0 as well and we are done. If x2 = 0 analogously we obtain
x7 = 0 and x3 = x5 = x6 = 0. �

A complete flag in a vector space V is a sequence of subspaces 0 ⊂ V1 ⊂
V2 ⊂ · · · ⊂ Vv with dimVj = j.

Proposition 5.2.1.2. [Lei16, LM15] Let T ∈ Ca⊗Ca⊗Ca = A⊗B⊗C be
concise. If R(T ) = a, then there exists a complete flag A1 ⊂ · · · ⊂ Aa−1 ⊂
Aa = A∗, with dimAj = j, such that PT (Aj) ⊂ σj(Seg(PB × PC)).

Proof. Write T = limt→0
∑r

j=1 aj(t)⊗Xj(t) where Xj(t) ∈ B⊗C have rank

one. Since T is concise, we may assume (possibly after re-ordering) with-
out loss of generality that a1(t), . . . , aa(t) is a basis of A for t 6= 0. Let
α1(t), . . . , αa(t) ∈ A∗ be the dual basis. Then takeAk(t) = span{α1(t), . . . , αk(t)} ∈
G(k,A∗) and Ak = limt→0Ak(t). Since PT ∗(Ak(t)) ⊂ σk(Seg(PB × PC))
the same must be true in the limit. �

One can say even more. For example:

Proposition 5.2.1.3. [LM15] Let T ∈ Ca⊗Ca⊗Ca = A⊗B⊗C. If R(T ) =
a and T (A∗) ∩ Seg(PB × PC) = [X0] is a single point, then P(T (A∗) ∩
T̂[X0]Seg(PB × PC)) must contain a P1.

Proof. Say T (A∗) were the limit of span{X1(t), . . . , Xa(t)} with each Xj(t)
of rank one. Then since PT (A∗)∩Seg(PB×PC) = [X0], we must have each
Xj(t) limiting to X0. But then limt→0 span{X1(t), X2(t)}, which must be

two-dimensional, must be contained in T̂[X0]Seg(PB × PC) and T (A∗). �

5.2.2. Griesser’s equations. The following theorem describes potential
equations for σr(Seg(PA× PB × PC)) in the range b < r ≤ 2b− 1.
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Theorem 5.2.2.1. [Gri86] Let b = c. Given a 1A-generic tensor T ∈
A⊗B⊗C with R(T ) ≤ r, let α0 ∈ A∗ be such that T (α0) is invertible. For
α′ ∈ A∗, let X(α′) = T (α′)T (α0)−1 ∈ End(B). Fix α1 ∈ A∗. Consider the
space of endomorphisms U := {[X(α1), X(α′)] : B → B | α′ ∈ A∗} ⊂ sl(B).
Then there exists E ∈ G(2b− r,B) such that dim(U.E) ≤ r − b.

Remark 5.2.2.2. Compared with the minors of T∧pA , here one is just exam-

ining the first block column of the matrix appearing in the expression QQ̃
in (2.6.6), but one is apparently extracting more refined information from
it.

Proof. For the moment assume R(T ) = r and T =
∑r

j=1 aj⊗bj⊗cj . Let

B̂ = Cr be equipped with basis e1, . . . , er. Define π : B̂ → B by π(ej) = bj .

Let i : B → B̂ be such that π ◦ i = IdB. Choose B′ ⊂ B̂ of dimension
r − b such that B̂ = i(B) ⊕ B′, and denote the inclusion and projection

respectively i′ : B′ → B̂ and π′ : B̂ → B′. Pictorially:

B̂

i↗↙ π π′ ↘↖ i′

B B′

Let α0, α1, . . . , αa−1 be a basis of A∗. Let T̂ =
∑r

j=1 aj⊗ej⊗e∗j ∈ A⊗B̂⊗B̂∗

and let X̂j := T̂ (αj)T̂ (α0)∧r−1. (Recall that the matrix of T̂ (α0)∧r−1 is the

cofactor matrix of T̂ (α0).) Now in End(B̂) all the commutators [X̂i, X̂j ] are

zero because R(T̂ ) = r. For all 2 ≤ s ≤ a− 1, [X̂1, X̂s] = 0 implies

0 = π[X̂1, X̂s]i

= [X1, Xs] + (πX̂1i
′)(π′X̂si)− (πX̂si

′)(π′X̂1i)(5.2.1)

Now take E ⊆ kerπ′X̂1i ⊂ B of dimension 2b− r. Then for all s, [X1, Xs] ·
E ⊂ ImageπX̂1i

′, which has dimension at most r−b because πX̂1i
′ : B′ → B

and dimB′ = r − b. The general case follows by taking limits. �

Proof of Theorem 2.2.2.1. Here there is just one commutator [X1, X2]
and its rank is at most the sum of the ranks of the other two terms in
(5.2.1). But each of the other two terms is a composition of linear maps
including i′ which can have rank at most r− b, so their sum can have rank
at most 2(r − b). �

Remark 5.2.2.3. It is not known to what extent Griesser’s equations are
non-trivial. Proving non-triviality of equations, even when the equations can
be written down explicitly, is often more difficult than finding the equations!
For example, it took several years after Koszul-flattenings were discovered
to prove they were non-trivial to almost the full extent possible. Regarding
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Griesser’s equations, it is known they are non-trivial up to r ≤ 3
2m+

√
m
2 −2

when m is odd, and a similar, slightly smaller bound when m is even by
Proposition 5.2.2.5 below. On the other hand the equations are trivial when
r = 2b − 1 and all a, and when r = 2b − 2, and a ≤ b

2 + 2, in particular
a = b = 4 by [Lan15]. I do not know whether or not the equations are
trivial for r = 2b− 2, a = b and b > 4.

Griesser’s equations are most robust when T (α1)T (α0)−1 is a generic
endomorphism, which motivates the following definition:

Definition 5.2.2.4. For a 1A-generic tensor T ∈ A⊗B⊗C, define T to be
2A-generic if there exist α ∈ A∗ such that T (α) : C∗ → B is of maximal
rank and α′ ∈ A∗ such that T (α′)T (α)−1 : B → B is regular semi-simple.

Proposition 5.1.4.5 implies that when T ∈ Cm⊗Cm⊗Cm is concise, 2A-
generic and satisfies Strassen’s equations, then R(T ) = m.

Unfortunately for proving lower bounds, M〈n〉 is not 2A-generic. The
equations coming from Koszul flattenings, and even more so Griesser’s equa-
tions, are less robust for tensors that fail to be 2A-generic. This partially
explains why M〈n〉 satisfies some of the Koszul flattening equations and
Griesser’s equations below. Thus an important problem is to identify mod-
ules of equations for σr that are robust for non-2-generic tensors.

Proposition 5.2.2.5. [Lan15] Matrix multiplication M〈n〉 fails to satisfy

Griesser’s equations for r ≤ 3
2n2 − 1 when n is even and r ≤ 3

2n2 + n
2 − 2

when n is odd, and satisfies the equations for all larger r.

Proof. Consider matrix multiplication M〈n〉 ∈ Cn2⊗Cn2⊗Cn2
= A⊗B⊗C.

Recall from Exercise 2.1.7.4 that with a judicious ordering of bases, M〈n〉(A
∗)

is block diagonal

(5.2.2)

x . . .

x


where x = (xij) is n × n. In particular, the image is closed under brack-

ets. Choose X0 ∈ M〈n〉(A
∗) to be the identity. It is not possible to have

X1 ∈ M〈n〉(A
∗) diagonal with distinct entries on the diagonal, the most

generic choice for X1 is to be block diagonal with each block having the
same n distinct entries. For a subspace E of dimension 2b − r = dn + e
(recall b = n2) with 0 ≤ e ≤ n − 1, the image of a generic choice of
[X1, X2], . . . , [X1, Xn2−1] applied to E is of dimension at least (d + 1)n if
e ≥ 2, at least (d+ 1)n− 1 if e = 1 and dn if e = 0, and equality will hold
if we choose E to be, e.g., the span of the first 2b − r basis vectors of B.
(This is because the [X1, Xs] will span the entries of type (5.2.2) with zeros
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on the diagonal.) If n is even, taking 2b − r = n2

2 + 1, so r = 3n2

2 − 1, the

image occupies a space of dimension n2

2 + n − 1 > n2

2 − 1 = r − b. If one

takes 2b − r = n2

2 , so r = 3n2

2 , the image occupies a space of dimension
n2

2 = r − b, showing Griesser’s equations cannot do better for n even. If n

is odd, taking 2b− r = n2

2 −
n
2 + 2, so r = 3n2

2 + n
2 − 2, the image will have

dimension n2

2 + n
2 > r−b = n2

2 + n
2 − 1, and taking 2b− r = n2

2 −
n
2 + 1 the

image can have dimension n2

2 −
n
2 + (n− 1) = r−b, so the equations vanish

for this and all larger r. Thus Griesser’s equations for n odd give Lickteig’s

bound R(M〈n〉) ≥ 3n2

2 + n
2 − 1. �

5.3. The substitution method

The following method has a long history dating back to [Pan66], see [BCS97,
Chap. 6] and [Blä14, Chapter 6] for a history and many applications. It
is the only general technique available for proving lower bounds on tensor
rank that I am aware of. However, the method cannot be used to prove
tensor rank lower bounds of 3m in Cm⊗Cm⊗Cm. (In §?? I will describe a
powerful method for proving lower bounds on symmetric rank.)

5.3.1. Lower bounds on tensor rank via the substitution method.

Proposition 5.3.1.1. [AFT11, Appendix B] Let T ∈ A⊗B⊗C. Fix a
basis a1, . . . , aa of A, with dual basis α1, . . . , αa. Write T =

∑a
i=1 ai ⊗Mi,

where Mi ∈ B ⊗ C. Let R(T ) = r and M1 6= 0. Then there exist constants
λ2, . . . , λa, such that the tensor

T̃ :=

a∑
j=2

aj ⊗ (Mj − λjM1) ∈ span{a2, . . . , aa}⊗B⊗C,

has rank at most r − 1. Moreover, if rank(M1) = 1 then for any choice of

λj , R(T̃ ) is either r or r − 1.

The same assertions hold exchanging the role of A with that of B or C.

Proof. (Following [LM15].) By Proposition 5.1.2.1 there existX1, . . . , Xr ∈
Ŝeg(PB × PC) and scalars dij such that:

Mj =

r∑
i=1

dijXi.

Since M1 6= 0 we may assume d1
1 6= 0 and define λj =

d1
j

d1
1
. Then the

subspace T̃ (〈α2, . . . , αa〉) is spanned by X2, . . . , Xr so Proposition 5.1.2.1

implies R(T̃ ) ≤ r − 1. The last assertion holds because if rank(M1) = 1
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then we may assume X1 = M1, so we cannot lower the rank by more than
one. �

In practice, the method is used iteratively, to reduce T to a smaller and
smaller tensor, at each step gaining one in the lower bound for the rank of
T .

Example 5.3.1.2. [AFT11] Let Taft,3 ∈ A⊗B⊗C have an expression in
bases such that, letting the columns of the following matrix correspond to
B-basis vectors and the rows to C basis vectors,

Taft,3(A∗) =



x1

x1

x1

x1

x2 x1

x2 x1

x3 x2 x1

x4 x3 x2 x1


.

For the first iteration of the substitution method, start with b8 ∈ B in the
role of a1 in the Proposition, so write

Taft,3 =b1⊗(a1⊗c1 + a2⊗c5 + a3⊗c7 + a4⊗c8) + b2⊗(a1⊗c2 + a2⊗c6 + a3⊗c8)

+ b3⊗(a1⊗c3 + a2⊗c7) + b4⊗(a1⊗c4 + a2⊗c8)

+ b5⊗a1⊗c5 + b6⊗a1⊗c6 + b6⊗a1⊗c6 + b7⊗a1⊗c7 + b8⊗a1⊗c8.

Then there exist λ1, . . . , λ7 and a new tensor T ′ ∈ A⊗C7⊗C with R(T ) ≥
R(T ′) + 1 where

T ′(A∗) =



x1

x1

x1

x1

x2 x1

x2 x1

x3 x2 x1

x4 x3 x2


+


λ1x1 λ2x1 · · · λ7x1


.
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Continue removing the last three columns until we get a tensor T ′′ ∈ A⊗C4⊗C
with

T ′′(A∗) =



x1

x1

x1

x1

x2

x2

x3 x2

x4 x3 x2


+


µ1,1x1 µ2,1x1 µ3,1x1 µ4,1x1

µ1,2x1 µ2,2x1 µ3,2x1 µ4,2x1

µ1,3x1 µ2,3x1 µ3,3x1 µ4,3x1

µ1,4x1 µ2,4x1 µ3,4x1 µ4,4x1


.

Now apply the method successively to c1, . . . , c4 to obtain a tensor T ′′′

with T ′′′(A∗) ∈ C4⊗C4 such that R(Taft,3) ≥ 8 + R(T ′′′). Now project
T ′′′ to the space given by x1 = 0, so in particular all the unknown con-
stants disappear. The new tensor cannot have rank or border rank greater
than that of T ′′′. Iterate the method with the projection of T ′′′ (which is

isomorphic to Taft,2) until one arrives at T̃ (A∗) ∈ C1⊗C1 and the bound
R(Taft,3) ≥ 8 + 4 + 2 + 1 = 15. In fact R(Taft,3) = 15: observe that
Taft,3(A∗)Taft,3(α1)−1 is a projection of the centralizer of a regular nilpo-
tent element as in Exercise 5.3.1.8, which implies R(Taft,3) ≤ 15.

On the other hand R(Taft,3) = 8, again because Taft,3(A∗)Taft,3(α1)−1

is a projection of the centralizer of a regular nilpotent element so Proposition
5.1.4.5 applies.

This example generalizes to Taft,k ∈ Ck+1⊗C2k⊗C2k of rank 2 · 2k − 1

and border rank 2k.

Example 5.3.1.3. [AFT11] Let TAFT,3 = a1⊗(b1⊗c1 + · · · + b8⊗c8) +
a2⊗(b1⊗c5 + b2⊗c6 + b3⊗c7 + b4⊗c8) + a3⊗(b1⊗c7 + b2⊗c8) + a4⊗b1⊗c8 +
a5⊗b8⊗c1 + a6⊗b8⊗c2 + a7⊗b8⊗c3 + a8⊗b8⊗c4, so

TAFT,3(A∗) =



x1 x5

x1 x6

x1 x7

x1 x8

x2 x1

x2 x1

x3 x2 x1

x4 x3 x2 x1


.

Begin the substitution method by distinguishing the spaces A and B, pro-
jecting respectively to α8⊥, . . . , α5⊥ to obtain a tensor T̃ represented by the
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matrix 

x1

x1

x1

x1

x2 x1

x2 x1

x3 x2 x1

x4 x3 x2


,

and R(TAFT,3) ≥ 4+R(T̃ ). The substitution method then gives R(T̃ ) ≥ 14
by Example 5.3.1.2 and thus R(TAFT,3) ≥ 18. This example generalizes to

TAFT,k ∈ C2k+1⊗C2k⊗C2k+1 of rank at least 3(2k+1)−k−4. In fact, equality
holds: in the example above, it is enough to consider 17 matrices with just
one nonzero entry corresponding to all nonzero entries of TAFT,3(A∗), apart
from the top left and bottom right corner and one matrix with 1 at each
corner and all other entries equal to 0. Moreover, as observed in [Lan15],
for these tensors (2k + 1) + 1 ≤ R(TAFT,k) ≤ 2k+1 − k.

Exercise 5.3.1.4: (2) Prove (2k + 1) + 1 ≤ R(TAFT,k) ≤ 2k+1 − k. }

In summary:

Proposition 5.3.1.5. The tensors TAFT,k ∈ C2k+1⊗C2k⊗C2k+1 of [AFT11]

satisfy (2k + 1) + 1 ≤ R(TAFT,k) ≤ 2(2k + 1)− 2− k < 3(2k + 1)− k − 4 =
R(TAFT,k).

Exercise 5.3.1.6: (2) Show that for all m,n, N , R(M〈1,m,n〉 ⊕M〈N,1,1〉) =
mn +N .

Exercise 5.3.1.7: (2) Show that Strassen’s tensor from §5.6, TSTR,q =∑q
j=1(a0⊗bj⊗cj + aj⊗b0⊗cj) ∈ Cq+1⊗Cq+1⊗Cq satisfies R(TSTR,q) = 2q.

Exercise 5.3.1.8: (3) Show that a tensor T ∈ Cm⊗Cm⊗Cm corresponding
to the centralizer of a regular nilpotent element satisfies R(T ) = 2m− 1. }

The limit of this method would be to prove a 3m− 1 rank lower bound
for tensor in Cm⊗Cm⊗Cm.

To date, TAFT,k and its cousins are the only known examples of explicit
tensors T ∈ Cm⊗Cm⊗Cm satisfying R(T ) ≥ 3m − O(log(m)). There are
several known to satisfy R(T ) ≥ 3m − O(m), e.g., M〈n〉, as was shown in

§2.7, and T⊗nWState ∈ C2n⊗C2n⊗C2n discussed in §5.6.

Problem 5.3.1.9. [Blä14] Find an explicit tensor T ∈ Cm⊗Cm⊗Cm sat-
isfying R(T ) ≥ (3 + ε)m for any ε > 0.

Remark 5.3.1.10. Proposition 5.3.1.1 holds with any choice of basis, so
we get to pick [α1] ∈ PA∗, as long as M1 6= 0 (which is automatic if T is
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A-concise). On the other hand, there is no choice of the λj , so when dealing

with T̃ , one has to assume the λj are as bad as possible for proving lower
bounds. For this reason, it is easier to implement this method on tensors
with simple combinatorial structure or tensors that are sparse in some basis.

From a geometric perspective, we are restricting T , considered as a tri-
linear form A∗ × B∗ × C∗ → C, to the hyperplane A′ ⊂ A∗ defined by
α1 +

∑a
j=2 λjα

j = 0 and our condition is that R(T |A′⊗B∗⊗C∗) ≤ R(T )− 1.

Our freedom is the choice of 〈a2, . . . , aa〉 ⊂ A, and then A′ is any hyperplane
with A′ ∩ 〈a2, . . . , aa〉⊥ = 0.

5.3.2. Strassen’s additivity conjecture. Given T1 ∈ A1⊗B1⊗C1 and
T2 ∈ A2⊗B2⊗C2, if one considers T1+T2 ∈ (A1⊕A2)⊗(B1⊕B2)⊗(C1⊕C2),
where each Aj⊗Bj⊗Cj is naturally included in (A1⊕A2)⊗(B1⊕B2)⊗(C1⊕
C2), we saw that R(T1 + T2) ≤ R(T1) + R(T2). Also recall Schönhage’s
example §3.3.2 that R(M〈1,m,n〉 ⊕M〈(n−1)(m−1),1,1〉) = mn + 1 < 2mn −
m − n + 1 = R(M〈1,m,n〉) + R(M〈(n−1)(m−1),1,1〉). Before this example was
known, Strassen made the following conjecture:

Conjecture 5.3.2.1. [Str73] With the above notation, R(T1+T2) = R(T1)+
R(T2).

Exercise 5.3.1.6 shows that despite the failure of a border rank analog of
the conjecture for M〈1,m,n〉 ⊕M〈(n−1)(m−1),1,1〉, the rank version does hold
in this case.

While this conjecture has been studied from several different perspec-
tives, e.g. [FW84, JT86, Bsh98, CCC15b, BGL13], very little is known
about it, and experts are divided as to whether it should be true or false.

In many cases of low rank the substitution method provides the cor-
rect rank. In light of this, the following theorem indicates why providing a
counter-example to Strassen’s conjecture will need new techniques for prov-
ing rank lower bounds.

Theorem 5.3.2.2. [LM15] Let T1 ∈ A1⊗B1⊗C1 and T2 ∈ A2⊗B2⊗C2 be
such that that R(T1) can be determined by the substitution method applied
to two of A1, B1, C1. Then Strassen’s additivity conjecture holds for T1⊕T2,
i.e., R(T1 ⊕ T2) = R(T1) + R(T2).

Proof. With each application of the substitution method to elements of A1,
B1, and C1, T1 is modified to a tensor of lower rank living in a smaller space
and T2 is unchanged. After all applications, T1 has been modified to zero
and T2 is still unchanged. �

The rank of any tensor in C2⊗B⊗C can be computed using the sub-
stitution method as follows: by dimension count, we can always find either
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β ∈ B∗ or γ ∈ C∗, such that T (β) or T (γ) is a rank one matrix. In particular,
Theorem 5.3.2.2 provides an easy proof of Strassen’s additivity conjecture
if the dimension of any of A1, B1 or C1 equals 2. This was first shown in
[JT86] by other methods.

5.4. The border substitution method

What follows are indirectly defined equations for border rank, in other words,
algebraic varieties that contain σr(Seg(PA×PB×PC)). While we don’t have
equations for these varieties, sometimes one can prove membership or non-
membership by direct arguments. The method is primarily useful for tensors
with symmetry, as there border rank decompositions come in families, and
we can choose a convenient member of the family to work with.

5.4.1. The border substitution method. The substitution method may
be restated as follows:

Proposition 5.4.1.1. Let T ∈ A⊗B⊗C be A-concise. Fix a′ < a and
Ã ⊂ A of dimension a− a′. Then

R(T ) ≥ min{A′∈G(a′,A∗)|A′∩Ã⊥ 6=0}R(T |A′⊗B∗⊗C∗) + (a− a′).

Here Ã in the case a′ = a−1 plays the role of 〈a1〉 in Proposition 5.3.1.1.
Recall that T |A′⊗B∗⊗C∗ ∈ (A/(A′)⊥)⊗B⊗C.

More generally,

Proposition 5.4.1.2. Let T ∈ A⊗B⊗C be concise. Fix a′ < a, Ã ⊂ A,
B̃ ⊂ B and C̃ ⊂ C respectively of dimensions a − a′, b′ < b, and c − c′.
Then

R(T ) ≥(a− a′) + (b− b′) + (c− c′)

+ min
A′ ∈ G(a′, A∗) | A′ ∩ Ã⊥ 6= 0

B′ ∈ G(b′, B∗) | B′ ∩ B̃⊥ 6= 0

C ′ ∈ G(c′, C∗) | A′ ∩ C̃⊥ 6= 0


R(T |A′⊗B∗⊗C∗).

A border rank version is as follows:

Proposition 5.4.1.3. [BL16, LM16b] Let T ∈ A⊗B⊗C be A-concise.
Fix a′ < a. Then

R(T ) ≥ minA′∈G(a′,A∗) R(T |A′⊗B∗⊗C∗) + (a− a′).

Proof. Say R(T ) = r, so T = limt→0 Tt, for some tensors Tt =
∑r

j=1 aj(t)⊗bj(t)⊗cj(t).
Without loss of generality, we may assume a1(t), . . . , aa(t) form a basis
of A. Let A′t = 〈aa′+1, . . . , aa〉⊥ ⊂ A∗. Then R(Tt |A′t⊗B∗⊗C∗) ≤ r −
(a − a′) by Proposition 5.4.1.1. Let A′ = limt→0A

′
t ∈ G(a′, A∗). Then
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T |A′⊗B∗⊗C∗ = limt→0 Tt|A′t⊗B∗⊗C∗ so R(T |A′⊗B∗⊗C∗) ≤ r − (a − a′), i.e.,

r ≥ R(T |A′⊗B∗⊗C∗) + (a− a′). �

Although our freedom in the substitution method was minor (a restric-

tion to a Zariski open subset of the Grassmannian determined by Ã⊥), it is
still useful for tensors with simple combinatorial structure. With the border
substitution method we have no freedom at all, but nevertheless it will be
useful for tensors with symmetry, as the symmetry group will enable us to
restrict to special A′.

Corollary 5.4.1.4. [BL16] Let T ∈ A⊗B⊗C be A-concise. Then R(T ) ≥
a− 1 + minα∈A∗\{0} rank(T (α)).

The Corollary follows because for matrices, rank equals border rank, and
C1⊗B⊗C = B⊗C.

As was the case for the substitution method, this procedure can be
iterated: write T1 = T |A′⊗B∗⊗C∗ . If T1 is B-concise, apply the proposition
again with B, if not, let B1 ⊂ B be maximal such that T1 is B1-concise and
then apply the proposition. By successive iterations one finds:

Corollary 5.4.1.5. [LM16a] If for all A′ ⊂ A∗, B′ ⊂ B∗, C ′ ⊂ C∗ re-
spectively of dimensions a′,b′, c′ one has T |A′⊗B′⊗C′ 6= 0, then R(T ) >
a + b + c− (a′ + b′ + c′).

It is obvious this method cannot prove border rank bounds better than
a + b + c − 3. The actual limit of the method is even less than this as I
explain in §5.4.4.

5.4.2. How to exploit symmetry. As mentioned above, the border sub-
stitution method is particularly useful for tensors T with a large symmetry
group GT , as one can replace the unknown A′ by representatives of the
closed GT -orbits in the Grassmannian. I explain the theory in this section
and then illustrate it in the next with an improvement in the lower bound
for R(M〈n〉). One can also use these methods to limit one’s searches for de-
compositions to certain normal forms. In order to discuss these methods, I
first develop language to discuss the GT orbit closures in the Grassmannian.

To simplify notation for the border substitution method, for a tensor
T ∈ A1⊗ . . .⊗Ak, and Ã ⊂ A1, write

T/Ã := T |Ã⊥⊗A∗2⊗···⊗ A∗k∈ (A1/Ã)⊗A2⊗ . . .⊗Ak.

Define

Bρ,a′(T ) := {Ã ∈ G(a′, A1) | R(T/Ã) ≤ ρ}.
Proposition 5.4.2.1. [LM16a] The set Bρ,a′(T ) is Zariski closed.
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As preparation for the proof, I describe two tautological vector bundles
over the Grassmannian G(k, V ) that are ubiquitous. First the tautological
subspace bundle πS : S → G(k, V ) where πS

−1(E) = E. This is a vector
subbundle of the trivial bundle with fiber V , which I denote V . The tauto-
logical quotient bundle πQ : Q → G(k, V ) has fiber πQ

−1(E) = V/E, i.e.,
we have an exact sequence of vector bundles

0→ S → V → Q→ 0.

All three bundles are GL(V )-homogeneous. See ***refs here*** for more
details.

For any vector bundle over a projective variety, the corresponding bundle
of projective spaces is a projective variety, and a sub-fiber bundle defined
by homogeneous equations is also projective. **add ref***

Proof. Consider the bundle π : Q⊗A1⊗ · · ·⊗ Ak → G(a′, A1), where π−1(Ã) =

(A1/Ã)⊗A2⊗ · · ·⊗ Ak. Given T , define a natural section sT : G(a′, A1) →
Q⊗A1⊗ · · ·⊗ Ak by sT (Ã) := T/Ã. Let X ⊂ P(Q⊗A2⊗ · · ·⊗ Ak) denote

the subvariety (that is also a sub-fiber bundle) defined byX∩P((A1/Ã)⊗A2⊗ · · ·⊗ Ak) =

σρ(Seg(P((A1/Ã)×PA2×· · ·×PAk)). By the discussion above, X is realiz-
able as a projective variety. Let π̃ : X → G(a′, A1) denote the projectiviza-
tion of π restricted to X. Then Bρ,a′(T ) = π̃(X ∩ PsT (G(a′, A1))). Since
the intersection of two projective varieties is a projective variety, as is the
image of a projective variety under a regular map (see Theorem 3.1.4.7), we
conclude. �

Lemma 5.4.2.2. [LM16a] Let T ∈ A1⊗ . . .⊗Ak be a tensor, let GT ⊂
GL(A1) × · · · × GL(Ak) denote its stabilizer and let G1 ⊂ GL(A1) denote
its projection to GL(A1). Then Bρ,a′(T ) is a G1-variety.

Proof. Let g = (g1, . . . , gn) ∈ GT . Then R(T/Ã) = R(g · T/g · Ã) =

R(T/g1Ã). �

Recall the definition of a homogeneous variety X = G/P ⊂ PV from
Definition 4.8.2.1.

Lemma 5.4.2.3. [BL14, Lemma 2.1] Let X = G/P ⊂ PV be a homoge-

neous variety and let p ∈ σr(X). Then there exist a point x0 ∈ X̂ and r− 1

curves zj(t) ∈ X̂ such that p ∈ limt→0〈x0, z1(t), . . . , zr−1(t)〉.

Proof. Since p ∈ σr(X), there exist r curves x(t), y1(t), . . . , yr−1(t) ∈ X̂
such that

p ∈ lim
t→0

P〈x(t), y1(t), . . . , yr−1(t)〉.
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Choose a curve gt ∈ G, such that gt(x(t)) = x0 = x(0) for all t and g0 = Id.
We have

〈x(t), y1(t), . . . , yr−1(t)〉 = gt
−1 · 〈x0, gt · y1(t), . . . , gt · yr−1(t)〉 and

lim
t→0
〈x(t), y1(t), . . . , yr−1(t)〉 = lim

t→0

(
gt
−1 · 〈x0, gt · y1(t), . . . , gt · yr−1(t)〉

)
= lim
t→0
〈x0, gt · y1(t), . . . , gt · yr−1(t)〉.

Set zj(t) = gt · yj(t) to complete the proof. �

Exercise 5.4.2.4: (1) Show that if an algebraic group G acts algebraically
on a variety X, that any orbit of minimal dimension must be Zariski closed.

The following Lemma applies both to M〈n〉 and to the determinant poly-
nomial:

Lemma 5.4.2.5 (Normal form lemma). [LM16b] Let X = G/P ⊂ PV be
a homogeneous variety and let v ∈ V be such that Gv := {g ∈ G | g[v] = [v]}
has a single closed orbit Omin in X. Then any border rank r decomposition
of v may be modified using Gv to a a border rank r decomposition whose
limit plane is E = limt→0〈x1(t), . . . , xr(t)〉 where there is a stationary point
x1(t) ≡ x1 lying in Omin.

If moreover every orbit of Gv ∩ Gx1 contains x1 in its closure, we may
further assume that all other xj(t) limit to x1.

Proof. I prove the second statement. By Lemma 5.4.2.3, it is sufficient to
show that we can have all points limiting to the same point x1(0).

Work by induction. Say we have shown that x1(t), . . . , xq(t) all limit to
the same point x1 ∈ Omin. It remains to show that our curve can be modified
so that the same holds for x1(t), . . . , xq+1(t). Take a curve gε ∈ Gv ∩ Gx1

such that limε→0 gεxq+1(0) = x1. For each fixed ε, acting on the xj(t) by gε,
we obtain a border rank decomposition for which gεxi(t)→ gεx1(0) = x1(0)
for i ≤ q and gεxq+1(t) → gεxq+1(0). Fix a sequence εn → 0. Claim: we
may choose a sequence tn → 0 such that

• limn→∞ gεnxq+1(tn) = x1(0),

• limn→∞ < gεnx1(tn), . . . , gεnxr(tn) > contains v and

• limn→∞ gεnxj(tn) = x1(0) for j ≤ q.

The first point holds as limε→0 gεxq+1(0) = x1. The second follows as for
each fixed εn, taking tn sufficiently small we may assure that a ball of radius
1/n centered at v intersects < gεnx1(tn), . . . , gεnxr(tn) >. In the same way
we may assure that the third point is satisfied. Considering the sequence
x̃i(tn) := gεnxi(tn) we obtain the desired border rank decomposition. �
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Exercise 5.4.2.6: (1) Write out a proof of the first assertion in the normal
form lemma.

Applying the normal form lemma to matrix multiplication, in order to
prove [M〈n〉] 6∈ σr(Seg(PA × PB × PC)), it is sufficient to prove it is not
contained in a smaller variety. This variety, called the pointed greater areole
is discussed in §??.

5.4.3. The border rank bound R(M〈n〉) ≥ 2n2 − dlog2(n)e − 1.

Theorem 5.4.3.1. [LM16a] Let 0 < m < n. Then

R(M〈n,n,w〉) ≥ 2nw −w +m−

⌊
w
(
n−1+m
m−1

)(
2n−2
n−1

) ⌋
.

In particular, taking w = n and m = n− dlog2(n)e − 1,

R(M〈n〉) ≥ 2n2 − dlog2(n)e − 1.

Proof. First observe that the “In particular” assertion follows from the
main assertion because, taking m = n− c, we want c such that

n
(

2n−1−c
n

)(
2n−2
n−1

) < 1.

This ratio is

(n− 1) · · · (n− c)
(2n− 2)(2n− 3) · · · (2n− c)

=
n− c
2c−1

n− 1

n− 2
2

n− 2

n− 3
2

n− 3

n− 4
2

· · · n− c+ 1

n− c
2

so if c− 1 ≥ log2(n) it is less than one.

For the rest of the proof, introduce the following notation: a Young
diagram associated to a partition λ = (λ1, . . . , λ`) is a collection of left
aligned boxes, with λj boxes in the j-th row. Label it with the upside-
down convention as representing entries in the south-west corner of an n×n
matrix. More precisely for (i, j) ∈ λ we number the boxes of λ by pairs
(row,column) however we number the rows starting from n, i.e. i = n is the
first row. For example

(5.4.1)

x y
z
w

is labeled x = (n, 1), y = (n, 2), z = (n − 1, 1), w = (n − 2, 1). Let Ãλ :=

span{ui⊗vj | (i, j) ∈ λ} and write Mλ
〈n,n,w〉 := M〈n,n,w〉/Ãλ.

The proof consists of two parts. The first is to show that for any k < n
there exists a Young diagram λ with k boxes such that R(Mλ

〈n,n,w〉) ≤
R(M〈n,n,w〉)− k, and this is done by induction on k.
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The second is to use Koszul flattenings to obtain a lower bound on
R(Mλ

〈n,n,w〉) for any λ.

Part 1) First consider the case k = 1. By Proposition 5.4.1.3 there
exists [a] ∈ BR(M〈n,n,w〉)−1,n2−1(M〈n,n,w〉) such that the reduced tensor drops

border rank. The group GL(U)×GL(V )×GL(W ) stabilizes M〈n,n,w〉. By
Lemma 5.4.2.2 with G1 = GL(U)×GL(V ) ⊂ GL(A), we may act on [a] and
even take limits. Since the GL(U) × GL(V )-orbit closure of any [a] ∈ PA
contains [un⊗v1], we may replace [a] by [un⊗v1].

Now assume that R(Mλ′

〈n,n,w〉) ≤ R(M〈n,n,w〉)−k+1, where λ′ has k−1

boxes. Again by Proposition 5.4.1.3 there exists [a′] ∈ BR(M〈n,n,w〉)−k,n2−k(M
λ′

〈n,n,w〉)

such that when we reduce by [a′] the border rank of the reduced tensor
drops. We no longer have the full action of GL(U) × GL(V ). However,
the product of parabolic subgroups of GL(U) ×GL(V ), which by definition
are the subgroups that stabilize the flags in U∗ and V induced by λ′, sta-
bilizes Mλ′

〈n,n,w〉. In particular, all parabolic groups are contained in a Borel

subgroup of upper-triangular matrices. By the diagonal (torus) action and
Lemma 5.4.2.2 we may assume that a has just one nonzero entry outside of
λ. Further, using the upper-triangular (Borel) action we can move the entry
south-west to obtain the Young diagram λ.

For example, when the Young diagram is (5.4.1) with n = 4, and we
want to move x1

4 into the diagram, we may multiply it on the left and right
respectively by 

ε
1 1

1
1

 and


ε 1

ε
1

1


where blank entries are zero. Then x1

4 7→ ε2x1
4 + ε(x2

4 + x4
1) + x2

1 and we let
ε→ 0.

Part 2) Recall that for the matrix multiplication operator, the Koszul
flattening of §2.6 factors as M〈n,n,w〉 = M〈n,n,1〉⊗ IdW , so it will suffice

to apply the Koszul flattening to Mλ
〈n,n,1〉 ∈ [(U∗⊗V )/Aλ]⊗V ∗⊗U , where

u = v = n. We need to show that for all λ of size m,

R(Mλ
〈n,n,1〉) ≥ 2n− 1−

(
n−1+m
m−1

)(
2n−1
n−1

) .
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This will be accomplished by restricting to a suitable A′ ⊂ [(U∗⊗V )/Aλ]∗

of dimension 2n− 1, such that, setting Â = (A′)∗,

rank(Mλ
〈n,n,1〉|A′⊗V⊗U∗)

∧n−1

Â
) ≥

(
2n− 1

n− 1

)
n−

(
n− 1 +m

m− 1

)
,

i.e.,

dim ker(Mλ
〈n,n,1〉|A′⊗V⊗U∗)

∧n−1

Â
) ≤

(
n− 1 +m

m− 1

)
,

and applying Proposition 2.6.1.1. Since we are working in bases, we may
consider Mλ

〈n,n,1〉 ∈ (A/Aλ)⊗B⊗C in A⊗B⊗C, with specific coordinates

equal to 0.

Recall the map φ : A → C2n−1 = Â given by ui⊗vj 7→ ei+j−1 from
(2.6.4) and the other notations from the proof of Theorem 2.6.3.6. The
crucial part is to determine how many zeros are added to the diagonal when
the entries of λ are set to zero. The map (Mλ

〈n,n,1〉|A′⊗V⊗U∗)
∧n−1

Â
is

(S, j) = es1 ∧ · · · ∧ esn−1⊗vj 7→
∑

{k∈[n]|(i,j)6∈λ}

ej+i−1 ∧ es1 ∧ · · · ∧ esn−1⊗ui.

Recall that when working with M〈n,n,1〉, the diagonal terms in the matrix
were indexed by pairs [(S, j) = (P\pl, 1 + pl − l), (P, l)], in other words that
(P\pl, 1 + pl − l) mapped to (P, l) plus terms that are lower in the order.
So fix (i, j) ∈ λ, we need to count the number of terms (P, i) that will not
appear anymore as a result of (i, j) being in λ. That is, fixing (i, j), we need
to count the number of (p1, . . . , pi−1) with p1 < · · · < pi−1 < i + j − 1, of

which there are
(
i+j−2
i−1

)
, and multiply this by the number of (pi+1, . . . , pn)

with i+ j−1 < pi+1 < · · · < pn ≤ 2n−1, of which there are
(

2n−1−(i+j−1)
n−i

)
.

In summary, each (i, j) ∈ λ kills g(i, j) :=
(
i+j−1
i−1

)(
2n−i−j
n−i

)
terms on the

diagonal. Hence, it is enough to prove that
∑

(i,j)∈λ g(i, j) ≤
(
n−1+m
m−1

)
.

Exercise 5.4.3.2: (1) Show that
∑m

j=1

(
n+j−2
j−1

)
=
(
m+n−2
m−1

)
. }

By Exercise 5.4.3.2 and a similar calculation, we see
∑n−m+1

i=n g(i, 1) =∑m
j=1 g(n, j) =

(
n−2+m
m−1

)
. So it remains to prove that the Young diagram

that maximizes fλ :=
∑

(i,j)∈λ g(i, j) has one row or column. Use induction

on the size of λ, the case |λ| = 1 being trivial. Note that g(n − i, j) =
g(n− j, i). Moreover, g(i, j + 1) ≥ g(i, j).

Now say that λ = λ′∪{(i, j)}. By induction it is sufficient to show that:

(5.4.2) g(n, ij) =

(
n + ij − 1

n− 1

)
≥
(
i+ j − 1

i− 1

)(
2n− i− j

n− i

)
= g(i, j),

where n > (n− i)j.
Exercise 5.4.3.3: (3) Prove the estimate. }
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�

5.4.4. Limits of the border substitution method.

Definition 5.4.4.1. A tensor T ∈ A⊗B⊗C is (a′,b′, c′)-compressible if
there exist subspaces A′ ⊂ A∗, B′ ⊂ B∗, C ′ ⊂ C∗ of respective dimen-
sions a′,b′, c′ such that T |A′⊗B′⊗C′ = 0, i.e., there exists (A′, B′, C ′) ∈
G(a′, A∗)×G(b′, B∗)×G(c′, C∗), such that A′⊗B′⊗C ′ ⊂ T⊥, where T⊥ ⊂
(A⊗B⊗C)∗ is the hyperplane annihilating T . Otherwise one says T is
(a′,b′, c′)-compression generic.

Let X(a′,b′, c′) be the set of all tensors that are (a′,b′, c′)-compressible.

Proposition 5.4.1.3 may be rephrased as:

σa+b+c−(a′+b′+c′)Seg(PA× PB × PC) ⊂ X(a′,b′, c′).

Proposition 5.4.4.2. [LM16a] The setX(a′,b′, c′) ⊆ P(A⊗B⊗C) is Zariski
closed of dimension at most

min{abc− 1, (abc− a′b′c′ − 1) + (a− a′)a′ + (b− b′)b′ + (c− c′)c′}.

In particular, if

(5.4.3) aa′ + bb′ + cc′ < (a′)2 + (b′)2 + (c′)2 + a′b′c′

then X(a′,b′, c′) ( P(A⊗B⊗C), so in this range the substitution methods
may be used to prove nontrivial lower bounds for border rank.

The proof and examples show that beyond this bound one expects
X(a′,b′, c′) = P(A⊗B⊗C), so that the method cannot be used. Also note
that tensors could be quite compressible and still have near maximal bor-
der rank, a weakness we already saw with the tensor of (5.1.3) (which also
satisfies Strassen’s equations).

The inequality in Proposition 5.4.4.2 may be sharp or nearly so. For
tensors in Cm⊗Cm⊗Cm the limit of this method alone would be a border

rank lower bound of 3(m−
√

3m + 9
4 + 3

2). However, it is unlikely the method

alone could attain such a bound due to technical difficulties in proving an
explicit tensor does not belong to X(a′,b′, c′).

Proof of Proposition 5.4.4.2. The following is a standard construction
in algebraic geometry called an incidence correspondence (see, e.g., [Har95,
§6.12] for a discussion): Let

I :=

{((A′, B′, C ′), [T ]) ∈ [G(a′, A∗)×G(b′, B∗)×G(c′, C∗)]× P(A⊗B⊗C) | A′⊗B′⊗C ′ ⊂ T⊥}
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and note that the projection of I to P(A⊗B⊗C) has image X(a′,b′, c′).
A fiber of the other projection I → G(a′, A∗) × G(b′, B∗) × G(c′, C∗) is
P((A′⊗B′⊗C ′)⊥), a projective space of dimension abc− a′b′c′ − 1. Hence:

dim I := (abc− a′b′c′ − 1) + (a− a′)a′ + (b− b′)b′ + (c− c′)c′.

Since the map I → X is surjective, this proves the dimension assertion.
Since the projection to P(A⊗B⊗C) is a regular map, the Zariski closed
assertion also follows. �

The proof of Corollary 5.4.4.3 below uses elementary properties of Chern
classes and can be skipped by readers unfamiliar with them. Let πA :
G(a′, A∗) × G(b′, B∗) × G(c′, C∗) → G(a′, A∗) denote the projection and
similarly for πB, πC . Let E = E(a′,b′, c′) := π∗A(SA)⊗π∗B(SB)⊗π∗C(SC) be
the vector bundle that is the tensor product of the pullbacks of tautolog-
ical subspace bundles SA,SB,SC In each particular case it is possible to
explicitly compute how many different A′⊗B′⊗C ′ a generic hyperplane may
contain as follows:

Corollary 5.4.4.3. [LM16a]

(1) If (5.4.3) holds then a generic tensor is (a′,b′, c′)-compression generic.

(2) If (5.4.3) does not hold then rank E∗ ≤ dim (G(a′, A∗)×G(b′, B∗)×
G(c′, C∗)). If the top Chern class of E∗ is nonzero, then no tensor
is (a′,b′, c′)-compression generic.

Proof. The first assertion is a restatement of Proposition 5.4.4.2.

For the second, notice that T induces a section T̃ of the vector bun-
dle E∗ → G(a′, A∗) × G(b′, B∗) × G(c′, C∗) defined by T̃ (A′⊗B′⊗C ′) =

T |A′⊗B′⊗C′ . The zero locus of T̃ is {(A′, B′, C ′) ∈ G(a′, A∗) × G(b′, B∗) ×
G(c′, C∗) | A′⊗B′⊗C ′ ⊂ T⊥}. In particular, T̃ is non-vanishing if and only
if T is (a′,b′, c′)-compression generic. If the top Chern class is nonzero,
there cannot exist a non-vanishing section. �

5.5. Geometry of the Coppersmith-Winograd tensors

As we saw in Chapter 3, in practice, only tensors of minimal, or near min-
imal border rank have been used to prove upper bounds on the exponent
of matrix multiplication. Call a tensor that gives a “good” upper bound
for the exponent via the methods of [Str87, CW90], of high Coppersmith-
Winograd value or high CW-value for short. Ambainis, Filmus and LeGall
[AFLG15] showed that taking higher powers of TCW,q when q ≥ 5 cannot
prove ω < 2.30 by this method alone. They posed the problem of finding
additional tensors of high value. The work in this section was motivated by
their problem - to isolate geometric features of the Coppersmith-Winograd
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tensors and find other tensors with such features. However, it turned out
that the features described here actually characterize them! The study is in-
complete because the CW-value of a tensor also depends on its presentation,
and in different bases a tensor can have quite different CW-values. More-
over, even determining the value in a given presentation still involves some
“art” in the choice of a good decomposition, choosing the correct tensor
power, estimating the value and probability of each block [Wil].

5.5.1. The Coppersmith-Winograd tensors. Recall the Coppersmith-
Winograd tensors

(5.5.1) Tq,cw :=

q∑
j=1

a0⊗bj⊗cj+aj⊗b0⊗cj+aj⊗bj⊗c0 ∈ Cq+1⊗Cq+1⊗Cq+1

and

Tq,CW :=

q∑
j=1

(a0⊗bj⊗cj + aj⊗b0⊗cj + aj⊗bj⊗c0)

(5.5.2)

+ a0⊗b0⊗cq+1 + a0⊗bq+1⊗c0 + aq+1⊗b0⊗c0 ∈ Cq+2⊗Cq+2⊗Cq+2

both of which have border rank q + 2.

In terms of matrices,

Tq,cw(A∗) =


0 x1 · · · xq
x1 x0 0 · · ·
x2 0 x0
...

...
. . .

xq 0 · · · 0 x0

 .

Proposition 5.5.1.1. [LM15] R(Tq,cw) = 2q + 1, R(Tq,CW ) = 2q + 3.

Proof. I prove the lower bound for Tq,cw. Apply Proposition 5.3.1.1 to show
that the rank of the tensor is at least 2q − 2 plus the rank of(

0 x1

x1 x0

)
,

which has rank 3. An analogous estimate provides the lower bound for
R(Tq,CW ). To show that R(Tq,cw) ≤ 2q + 1 consider the following rank 1
matrices, whose span contains T (A∗):

1) q+ 1 matrices with all entries equal to 0 apart from one entry on the
diagonal equal to 1,

2) q matrices indexed by 1 ≤ j ≤ q, with all entries equal to zero apart
from the four entries (0, 0), (0, j), (j, 0), (j, j) equal to 1. �
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Exercise 5.5.1.2: (2) Using the lower bound for Tq,cw, prove the lower
bound for Tq,CW .

In §5.6 we saw that R(TSTR,q) = q+1, and by Exercise 5.3.1.7, R(TSTR,q) =
2q. Strassen’s tensor has rank nearly twice the border rank, like the Coppersmith-
Winograd tensors. So one potential source of high CW-value tensors are
tensors with a large gap between rank and border rank.

5.5.2. Extremal tensors. Let A,B,C = Ca. There are normal forms for
curves in Seg(PA× PB × PC) up to order a− 1, namely

Tt = (a1+ta2+· · ·+ta−1aa+O(ta))⊗(b1+tb2+· · ·+ta−1ba+O(ta))⊗(c1+tc2+· · ·+ta−1ca+O(ta))

and if the aj , bj , cj are each linearly independent sets of vectors, we will call
the curve general to order a− 1.

Proposition 5.5.2.1. [LM15] Let T ∈ A⊗B⊗C = Ca⊗Ca⊗Ca. If

T (A∗) =
da−1Tt(A

∗)

(dt)a−1
|t=0,

with Tt a curve that is general to order a, then, for suitably chosen α ∈ A∗
and bases, T (A∗)T (α)−1 is the centralizer of a regular nilpotent element.

Proof. Note that dqTt
(dt)q |t=0 = q!

∑
i+j+k=q−3 ai⊗bj⊗ck, i.e.,

dqTt(A
∗)

(dt)q
|t=0 =



xq−2 xq−3 · · · · · · x1 0 · · ·
xq−3 xq−4 · · · x1 0 · · · · · ·

...

... . .
.

x1 0 · · ·
0 0 · · ·
...

...
0 0 · · ·


.

In particular, each space contains the previous ones, and the last equals
xa xa−1 · · · x1

xa−1 xa−2 · · · x1 0
...

...
. . .

... x1

x1 0


which is isomorphic to the centralizer of a regular nilpotent element. �

This provides another, explicit proof that the centralizer of a regular
nilpotent element belongs to the closure of diagonalizable algebras.
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Note that the Coppersmith-Winograd tensor Ta−2,CW satisfies PT (A∗)∩
Seg(PB × PC) = [X] is a single point, and PT̂[X]Seg(PB × PC) ∩ PT (A∗)

is a Pa−2. It turns out these properties characterize it among 1A-generic
tensors:

Theorem 5.5.2.2. [LM15] Let T ∈ A⊗B⊗C = Ca⊗Ca⊗Ca be of border
rank a > 2. Assume PT (A∗) ∩ Seg(PB × PC) = [X] is a single point, and

PT̂[X]Seg(PB × PC) ⊃ PT (A∗). Then T is not 1A-generic.

If

(i) PT (A∗) ∩ Seg(PB × PC) = [X] is a single point,

(ii) PT̂[X]Seg(PB × PC) ∩ PT (A∗) is a Pa−2, and

(iii) T is 1A-generic,

then T is isomorphic to the Coppersmith-Winograd tensor Ta−2,CW .

Proof. For the first assertion, no element of PT̂[X]Seg(PB × PC) has rank
greater than two.

For the second, we first show that T is 1-generic. If we choose bases
such that X = b1⊗c1, then, after changing bases, the Pa−2 must be the
projectivization of

(5.5.3) E :=


x1 x2 · · · xa−1 0
x2
...

xa−1

0

 .

(Rank one tangent vectors cannot appear by property (i).)

Write T (A∗) = span{E,M} for some matrix M . As T is 1A-generic
we can assume that M is invertible. In particular, the last row of M must
contain a nonzero entry. In the basis order where M corresponds to T (αa),
the space of matrices T (B∗) has triangular form and contains matrices with
nonzero diagonal entries. The proof for T (C∗) is analogous, hence T is
1-generic.

By Proposition 5.1.4.8 we may assume that T (A∗) is contained in the
space of symmetric matrices. Hence, we may assume that E is as above and
M is a symmetric matrix. By further changing the basis we may assume
that M has:

(1) the first row and column equal to zero, apart from their last entries
that are nonzero (we may assume they are equal to 1),

(2) the last row and column equal to zero apart from their first entries.
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Hence the matrix M is determined by a submatrix M ′ of rows and columns
2 to a−1. As T (A∗) contains a matrix of maximal rank, the matrix M ′ must
have rank a − 2. We can change the basis α2, . . . , αa−1 in such a way that
the quadric corresponding to M ′ equals x2

2+· · ·+x2
a−1. This will also change

the other matrices, which correspond to quadrics x1xi for 1 ≤ i ≤ a−1, but
will not change the space that they span. We obtain the tensor Ta−2,CW .

�

5.5.3. Compression extremality. In this subsection I discuss tensors for
which the border substitution method fails miserably. In particular, al-
though the usual substitution method correctly determines the rank of the
Coppersmith-Winograd tensors, the tensors are special in that they are
nearly characterized by the failure of the border substitution method to
give lower border rank bounds.

Definition 5.5.3.1. A 1-generic, tensor T ∈ A⊗B⊗C is said to be maxi-
mally compressible if there exists hyperplanes HA ⊂ A∗, HB ⊂ B∗, HC ⊂ C∗
such that T |HA×HB×HC= 0.

If T ∈ S3A ⊂ A⊗A⊗A, T is maximally symmetric compressible if there
exists a hyperplane HA ⊂ A∗ such that T |HA×HA×HA= 0.

Recall from Proposition 5.1.4.8 that a tensor T ∈ Ca⊗Ca⊗Ca that is
1-generic and satisfies Strassen’s equations, with suitable choices of bases
becomes a tensor in S3Ca.

Theorem 5.5.3.2. [LM15] Let T ∈ S3Ca be 1-generic and maximally sym-
metric compressible. Then T is one of:

(1) Ta−1,cw

(2) Ta−2,CW

(3) T = a1(a2
1 + · · · a2

m).

In particular, the only 1-generic, maximally symmetric compressible, mini-
mal border rank tensor in Ca⊗Ca⊗Ca is isomorphic to Ta−2,CW .

Proof. Let a1 be a basis of the line HA
⊥ ⊂ Ca. Then T = a1Q for some

Q ∈ S2Ca. By 1-genericity, the rank of Q is either a or a − 1. If the rank
is a, there are two cases, either the hyperplane HA is tangent to Q, or it
intersects it transversely. The second is case (3). The first has a normal form
a1(a1aa + a2

2 + · · ·+ a2
a−1), which, when written as a tensor, is Ta−2,CW . If

Q has rank a−1, by 1-genericity, ker(Q1,1) must be in HA and thus we may
choose coordinates such that Q = (a2

2 + · · ·+ a2
a), but then T , written as a

tensor is Ta−1,cw. �
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Proposition 5.5.3.3. The Coppersmith-Winograd tensor TCW is the unique
up to isomorphism 1-generic tensor in Ca⊗Ca⊗Ca that is maximally com-
pressible and satisfies any of the following:

(1) satisfies Strassen’s equations

(2) is Z3-invariant

(3) is of border rank a.

Proof. Let a1, . . . , am be a basis of A with HA = a1
⊥ and similarly for

HB = b1
⊥ and HC = c1

⊥. Thus (allowing re-ordering of the factors A,B,C)
T = a1⊗X+b1⊗Y +c1⊗Z where X ∈ B⊗C, Y ∈ A⊗C, Z ∈ A⊗B. Now no
α ∈ HA can be such that T (α) is of maximal rank, as for any β1, β2 ∈ HB,
T (α, βj) ⊂ C{c1}. So T (a1), T (b1), T (c1) are all of rank a, where a1 is the
dual basis vector to a1 etc. After a modification, we may assume X has
rank a.

Let (g, h, k) ∈ GL(A) × GL(B) × GL(C). We may normalize X = Id,
which forces g = h. We may then rewrite X,Y, Z such that Y is full rank
and normalize

X = Y =

(
1
3

Ida−1

)
.

which forces h = k and uses up our normalizations.

Now we use any of the above three properties. The weakest is the second,
but by Z3-invariance, if X = Y , we must have Z = X = Y as well and T
is the Coppersmith-Winograd tensor. The other two imply the second by
Proposition 5.1.4.8. �

5.6. Ranks and border ranks of Structure tensors of algebras

I now show how the substitution and border substitution methods can be
applied to the structure tensors of algebras.

LetA be a finite dimensional associative algebra and let TA ∈ A∗⊗A∗⊗A
denote its structure tensor as discussed in §3.5.1.

5.6.1. Structural tensors of abelian algebras are symmetric ten-
sors. Let I ⊂ C[x1, . . . , xn] be an ideal with Zeros(I) = ∅, so that AI :=
C[x1, . . . , xn]/I is a finite dimensional algebra. Let {pI} be a basis of AI
with dual basis {p∗I} We can write the structural tensor of AI as

TAI =
∑

pI ,pJ∈AI

p∗I⊗p∗J⊗(pIpJ mod I).

This tensor is transparently in S2A∗⊗A.
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Given an algebra A = AI ∈ S2A∗⊗A defined by an ideal as above,
note that since TA(1, ·) ∈ End(A) and TA(·, 1) ∈ End(A) have full rank
and the induced isomorphism B∗ → C is just (A∗)∗ → A, and similarly
for the isomorphism A∗ → C. Strassen’s equations are thus satisfied, so by
Proposition 5.1.4.8 there exists a choice of bases such that TA ∈ S3A.

**Question: is there a general recipe for this choice of bases??**

Example 5.6.1.1. [Zui15] Consider A = C[x]/(x2), with basis 1, x, so

TA = 1∗⊗1∗⊗1 + x∗⊗1∗⊗x+ 1∗⊗x∗⊗x

writing e0 = 1∗, e1 = x∗ in the first two factors and e0 = x, e1 = 1 in the
third, we see

TA = e0⊗e0⊗e1 + e1⊗e0⊗e0 + e0⊗e1⊗e0

That is, TA = TWState is a general tangent vector to Seg(PA× PB × PC).

More generally, consider A = C[x1, . . . , xn]/(x2
1, . . . , x

2
n), with basis xI =

xi1 · · ·xi|I| , where 1 ≤ i1 < · · · < i|I| ≤ n, and by convention x∅ = 1. Then

TA =
∑

I,J⊂[n]|I∩J=∅

x∗I⊗x∗J⊗xI∪J .

Similar to above, let eI = x∗I in the first two factors and eI = x[n]\I in
the third, we obtain

TA =
∑

{I,J,K| I∪J∪K=[n],
|I|+|J|+|K|=n}

eI⊗eJ⊗eK

so we explicitly see TA ∈ S3C2n .

Exercise 5.6.1.2: (2) Show that for A = C[x1, . . . , xn]/(x2
1, . . . , x

2
n), TA '

T⊗nWState, where for T ∈ A⊗B⊗C, consider T⊗n ∈ (A⊗n)⊗(B⊗n)⊗(C⊗n) as
a three-way tensor.

Exercise 5.6.1.3: (2) Let A = C[x]/(xn). Show that TA(A)TA(1)−1 ⊂
End(A) corresponds to the centralizer of a regular nilpotent element, so
in particular R(TA) = n and R(TA) = 2n − 1 by Exercise 5.3.1.8 and
Proposition 5.1.4.5.

Exercise 5.6.1.4: (2) Fix natural numbers a1, . . . , an. LetA = C[x1, . . . , xn]/(xa1
1 , . . . , x

an
n ).

Find an explicit identification A∗ → A that renders TA ∈ S3A.

Example 5.6.1.5. [Zui15] Consider the tensor

TWState,k = a1,0⊗ · · ·⊗ ak−1,0⊗ak,1+a1,0⊗ · · ·⊗ ak−2,0⊗ak−1,1⊗ak,0+· · ·+a1,1⊗a2,0⊗ · · ·⊗ ak,0
that corresponds to a general tangent vector to Seg(P1×· · ·×P1) ∈ P((C2)⊗k).
(Note that TWState = TWState,3.) This tensor is called the generalized W -

state by physicists . LetAd,N = (C[x]/(xd))⊗N ' C[x1, . . . , xN ]/(xd1, . . . , x
d
N ).
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Exercise 5.6.1.6: (2) Show that TAd,N = (TWState,d)
⊗N .

Example 5.6.1.7 (The Coppersmith-Winograd tensor). [LM16b, BL16]
Consider the algebra

ACW,q = C[x1, . . . , xq]/(xixj , x
2
i − x2

j , x
3
i , i 6= j)

Let {1, xi, [x2
1]} be a basis of A, where [x2

1] = [x2
j ] for all j. Then

TACW,q =1∗⊗1∗⊗1 +

q∑
i=1

(1∗⊗x∗i⊗xi + x∗i⊗1∗⊗xi)

+ x∗i⊗x∗i⊗[x2
1] + 1∗⊗[x2

1]∗⊗[x2
1] + [x2

1]∗⊗1∗⊗[x2
1].

Set e0 = 1∗, ei = x∗i , eq+1 = [x2
1]∗ in the first two factors and e0 = [x2

1],
ei = xi, eq+1 = 1 in the third to obtain

TACW,q =TCW,q = e0⊗e0⊗eq+1 +

q∑
i=1

(e0⊗ei⊗ei + ei⊗e0⊗ei + ei⊗ei⊗e0)

+ e0⊗eq+1⊗e0 + eq+1⊗e0⊗e0

so we indeed obtain the Coppersmith-Winograd tensor.

When is the structure tensor of AI of minimal border rank? First of all,
if T ∈ Cm⊗Cm⊗Cm is the structure tensor of an algebra A that is a degen-
eration of (C[x]/(x))⊕m (whose structure tensor is M⊕m〈1〉 ), then R(T ) = m.

In §?? we will see that a converse holds under the assumptions of 1A and
1B genericity.

5.6.2. The substitution method applied to structure tensors of al-
gebras. Let A be a finite dimensional associative algebra. The radical of
A is the intersection of all maximal left ideals and denoted Rad(A). When
A is abelian, the radical is often call the nilradical.

Exercise 5.6.2.1: (2) Show that every element of Rad(A) is nilpotent and
that if A is abelian, Rad(A) consists exactly of the nilpotent elements of A.
(This exercise requires knowledge of standard notions from algebra.) }

Theorem 5.6.2.2. [Blä00, Thm. 7.4] For any integers p, q ≥ 1,

R(TA) ≥ dim(Rad(A)p) + dim(Rad(A)q) + dimA− dim(Rad(A)p+q−1).

For the proof we will need the following Lemma, whose proof I skip:

Lemma 5.6.2.3. [Blä00, Lem. 7.3] Let A be a finite dimensional algebra,
let U, V ⊆ A be vector subspaces such that U + Rad(A)p = A and V +
Rad(A)q = A. Then 〈UV 〉+ Rad(A)p+q−1 = A.
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Proof of Theorem 5.6.2.2. Use Proposition 5.4.1.2 with

Ã = (Rad(A)p)⊥ ⊂ A∗,

B̃ = (Rad(A)q)⊥ ⊂ A∗, and

C̃ = Rad(A)p+q−1 ⊂ A.
Then observe that any A′ ⊂ A\Rad(A)p, B′ ⊂ A\Rad(A)q, can play the
roles of U, V in the Lemma, so TA(A′, B′) 6⊂ Rad(A)p+q−1. Since C ′ ⊂
A∗\(Rad(A)p+q−1)⊥, we conclude. �

Remark 5.6.2.4. Theorem 5.6.2.2 illustrates the power of the (rank) sub-
stitution method over the border substitution method. By merely prohibit-
ing a certain Zariski closed set of degenerations, we can make TA non-
compressible. Without that prohibition, TA can indeed be compressed in
general.

Remark 5.6.2.5. Using similar (but easier) methods, one can show that if
A is simple of dimension a, then R(TA) ≥ 2a− 1, see, e.g., [BCS97, Prop.
17.22]. However in the literature, this use of the substitution method is
phrased with respect to the elements appearing in a decomposition, making
its implementation more complicated.

Theorem 5.6.2.6. [Zui15] R(T⊗nWState) = 3 · 2n − o(2n).

Proof. We have A = C[x1, . . . , xn]/(x2
1, . . . , x

2
n), so the degree s component

of A is As = spantS⊂[n]{x1 · · · x̂i1 · · · x̂is · · ·xn}. In particular dimAs =
(
n
s

)
.

Note that Rad(A)m = ⊕j≥mAj . Recall that
∑n

j=0

(
n
j

)
= 2n. Take p = q

in Theorem 5.6.2.2. We have

R(TA) ≥ 2n + 2
n∑
j=p

(
n

j

)
−

n∑
k=2p−1

(
n

k

)

= 3 · 2n − 2

p∑
j=0

(
n

j

)
−
n−2p+1∑
k=0

(
n

k

)
.

Write p = εn, for some 0 < ε < 1. Since
∑εn

j=0

(
n
j

)
≤ 2H(ε)n **ref big

numbers**, taking, e.g., ε = 1
3 gives the result. �

Corollary 5.6.2.7. [Zui15]
R(T⊗nWState)

R(T⊗nWState)
≥ 3 − o(1), where the right hand

side is viewed as a function of n.

More generally, Zuiddam shows, for T⊗nWState,k ∈ (Cn)⊗k:

Theorem 5.6.2.8. [Zui15] R(T⊗nWState,k) = k2n − o(2n).

Regarding the maximum possible ratio for rank to border rank, there is
the following theorem applicable even to X-rank and X-border rank:
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Theorem 5.6.2.9. [BT15] Let X ⊂ PV be a complex projective variety
not contained in a hyperplane. Let RX,max denote the maximum X-border
rank of a point in PV and RX,max the maximum possible X-rank. Then
RX,max ≤ 2RX,max.

Proof. Let U ⊂ PV be a Zariski dense open subset of points of rank exactly
RX,max. Let q ∈ PV be any point and let p be any point in U . The line L
through q and p intersects U at another point p (in fact, at infinitely many
more points). Since p and p′ span L, q is a linear combination of p and p′,
thus RX(q) ≤ RX(p) + RX(p′) �

Theorem 5.6.2.9 implies that the maximal possible rank of any tensor

in Cm⊗Cm⊗Cm is at most 2dm3−1
3m−2e, so for any concise tensor the maximal

rank to border rank ratio is bounded above by approximately 2m
3 .

5.6.3. The border substitution method and tensor powers of Tcw,2.

Lemma 5.6.3.1. [BL16] For any tensor T1 ∈ A1⊗B1⊗C1, and any q ≥ 2,

min(rankα∈(A⊗A1)∗\{0}R((Tcw,q⊗T1) |α⊗B∗⊗C∗) ≥ 2 min rankα1∈A1\{0}R(T1 |α1⊗B∗1⊗C∗1 ).

Proof. Write α = 1⊗α0 +
∑q

j=1 e
∗
j⊗αj ∈ (A⊗A1)∗ for some α0, αj ∈ A∗1. If

all the αj are zero for 1 ≤ j ≤ q, then Tcw,q(e
∗
0⊗α0) is the reordering and

grouping of
q∑
i=1

(ei⊗ei)⊗T1(α0)

which has rank (as a linear map) at least q · rankT1(α0). Otherwise without
loss of generality, assume α1 6= 0. Note that Tcw,q(e

∗
1⊗α1) is the reordering

and grouping of
e1⊗e0⊗T1(α1) + e0⊗e1⊗T1(α1)

which has rank two, and is linearly independent of any of the other factors
appearing in the image, so the rank is at least 2 · rankT1(α0). �

Theorem 5.6.3.2. [BL16] For all q ≥ 2, R(T⊗ncw,q) ≥ (q + 1)n + 2n − 1.

Proof. Note that T⊗ncw,q = Tcw,q⊗T⊗(n−1)
cw,q . Apply the Lemma iteratively and

use Corollary 5.4.1.4. �

Remark 5.6.3.3. As was pointed out implicitly in [BCS97] and explicitly
in [BL16], if the asymptotic border rank (see Definition 3.4.6.1) of Tcw,2 is
the minimal 3, then the exponent of matrix multiplication is 2. The bound
in the theorem does not rule this out.



Chapter 6

Valiant’s conjecture I:
permanent v.
determinant and the
complexity of
polynomials

Recall from the introduction that for a polynomial P , the determinantal
complexity of P , denoted dc(P ), is the smallest n such that P is an affine
linear projection of the determinant, and Valiant’s conjecture 1.2.4.2 that
dc(permm) grows faster than any polynomial in m. In this chapter I discuss
the conjecture, progress towards it, and its Geometric Complexity Theory
variant.

I begin, in §6.1, with a discussion of circuits, context for Valiant’s conjec-
ture, definitions of the complexity classes VP and VNP, and the strength-
ening of Valiant’s conjecture of [MS01] that is more natural for algebraic
geometry and representation theory. In particular, I explain why it might
be considered as an algebraic analog of the famous P 6= NP conjecture
(although there are other conjectures in the Boolean world that are more
closely related to it).

Our study of matrix multiplication indicates a strategy for Valiant’s
conjecture: look for polynomials on the space of polynomials that vanish
on the determinant and not on the permanent. One should look for such
polynomials with the aid of geometry and representation theory. Here there

139
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is extra geometry available: a polynomial P ∈ SdV defines a hypersurface

Z(P ) := {[α] ∈ PV ∗ | P (α) = 0} ⊂ PV ∗.

Hypersurfaces in projective space have been studied for hundreds of years
and much is known about them.

In §6.2 I discuss the simplest polynomials on spaces of polynomials, the
catalecticants that date back to Sylvester.

One approach to Valiant’s conjecture discussed at several points in this
chapter is to look for pathologies of the hypersurface Z(detn) that persist
under degeneration, and that are not shared by Z(`n−m permm). The sim-
plest pathology of a hypersurface is its singular set. I discuss the singular
loci of the permanent and determinant, as well as a few general remarks on
singularities in §6.3.

I then present the classical and recent lower bounds on dc(permm) of
von zur Gathen and Alper-Bogart-Velasco in §6.3.3. These lower bounds
on dc(permm) rely on a key regularity result observed by von zur Gathen.
These results cannot extend to the Mulmuley-Sohoni measure dc(permm)
defined in §6.1.6 because of the regularity result.

The best general lower bound on dc(permm), namely dc(permm) ≥ m2

2 ,
comes from local differential geometry: the study of Gauss maps. It is pre-
sented in §6.4. This bound does extend to dc(permm) after some work. The
extension is presented in §6.5. To better utilize geometry and representation
theory, we will examine the symmetries of the permanent and determinant.
Given P ∈ SdV , let GP := {g ∈ GL(V ) | g · P = P} denote the symmetry
group of the polynomial P .

Since det(AXB) = det(X) if A,B are n× n matrices with determinant
one, and det(XT ) = det(X), writing V = E⊗F with E,F = Cn, we have a
map

(SL(E)× SL(F )) o Z2 → Gdetn

where the Z2 is transpose.

Similarly, letting TE ⊂ SL(E) denote the diagonal matrices, we have a
map

[(TE oSn)× (TF oSn)] o Z2 → Gpermn
.

In §6.6, I show that both maps are surjective.

Just as it is interesting and useful to study the difference between rank
and border rank, it is worthwhile to study the difference between dc and dc,
which I discuss in §6.7.

Finally, although it is not strictly related to complexity theory, I cannot
resist a brief discussion of determinantal hypersurfaces - those degree n
polynomials P with dc(P ) = n in §6.8.
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In this chapter I emphasize material that is not widely available to com-
puter scientists, and do not present proofs that already have excellent ex-
positions in the literature such as the completeness of the permanent for
VNP.

This chapter may be read mostly independently of chapters 2-5.

6.1. Circuits and definitions of VP and VNP

In this section I give definitions of VP,VNP via arithmetic circuits and
show (detn) ∈ VP. I first discuss why Valiant’s conjecture is a cousin of
P 6= NP, namely I show that the permanent can compute the number of
perfect matchings of a bipartite graph, something considered difficult, while
the determinant can be computed by a polynomial size circuit.

6.1.1. The permanent can do things considered difficult. A stan-
dard problem in graph theory, for which the only known algorithms are
exponential in the size of the graph, is to count the number of perfect
matchings of a bipartite graph, that is, a graph with two sets of vertices
and edges only joining vertices from one set to the other.
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α β γ

Figure 6.1.1. A bipartite graph, Vertex sets are {A,B,C} and {α, β, γ}.

A perfect matching is a subset of the edges such that each vertex shares
an edge from the subset with exactly one other vertex.
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Figure 6.1.2. Two perfect matchings of the graph from Figure 6.1.1.

To a bipartite graph one associates an incidence matrix xij , where xij = 1
if an edge joins the vertex i above to the vertex j below and is zero otherwise.
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For example the graph above has incidence matrix1 1 0
0 1 1
0 1 1

 .

A perfect matching corresponds to a matrix constructed from the in-
cidence matrix by setting some of the entries to zero so that the resulting
matrix has exactly one 1 in each row and column, i.e., is a matrix obtained
by applying a permutation to the columns of the identity matrix.

Exercise 6.1.1.1: (1) Show that if x is the incidence matrix of a bipartite
graph, then permn(x) indeed equals the number of perfect matchings.

For example, perm3

1 1 0
0 1 1
0 1 1

 = 2.

Thus a classical problem: determine the complexity of counting the
number of perfect matchings of a bipartite graph (which is complete for the
complexity class ]P, see [BCS97, p. 574]), can be studied via algebra -
determine the complexity of evaluating the permanent.

6.1.2. Circuits.

Definition 6.1.2.1. An arithmetic circuit C is a finite, directed, acyclic
graph with vertices of in-degree 0 or 2 and exactly one vertex of out-degree
0. The vertices of in-degree 0 are labeled by elements of C ∪ {x1, . . . , xn},
and called inputs. Those of in-degree 2 are labeled with + or ∗ and are
called gates. If the out-degree of v is 0, then v is called an output gate. The
size of C is the number of edges.

yx

+

*

*

Figure 6.1.3. Circuit for (x+ y)3
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To each vertex v of a circuit C, associate the polynomial that is computed
at v, which will be denoted Cv. In particular the polynomial associated with
the output gate is called the polynomial computed by C.

At first glance, circuits do not look geometrical, as they depend on a
choice of coordinates. While computer scientists always view polynomials
as being given in some coordinate expression, in geometry one is interested in
properties of objects that are independent of coordinates. These perspectives
are compatible because with circuits one is not concerned with the precise
size of a circuit, but its size up to, e.g., a polynomial factor. Reducing
the size at worst by a polynomial factor, we can think of the inputs to our
circuits as arbitrary affine linear or linear functions on a vector space.

6.1.3. Arithmetic circuits and complexity classes.

Definition 6.1.3.1. Let d(n), N(n) be polynomials and let fn ∈ C[x1, . . . , xN(n)]≤d(n)

be a sequence of polynomials. We say (fn) ∈ VP if there exists a sequence
of circuits Cn of size polynomial in n computing fn.

Often the phrase “there exists a sequence of circuits Cn of size polynomial
in n computing fn” is abbreviated “there exists a polynomial sized circuit
computing (fn)”.

The class VNP, which consists of sequences of polynomials whose coef-
ficients are “easily” described, has a more complicated definition:

Definition 6.1.3.2. A sequence (fn) is in VNP if there exists a polynomial
p and a sequence (gn) ∈ VP such that

fn(x) =
∑

ε∈{0,1}p(n)

gn(x, ε).

One may think of the class VP as a bundle over VNP where elements of
VP are thought of as sequences of maps, say gn : CN(n) → C, and elements
of VNP are projections of these maps by eliminating some of the variables
by averaging or “integration over the fiber”. In algebraic geometry, it is well
known that projections of varieties can be far more complicated than the
original varieties. See [Bas14] for more on this perspective.

Definition 6.1.3.3. One says that a sequence (gm(y1, . . . , yM(m))) can be
(polynomially) reduced to (fn(x1, . . . , xN(n))) if there exists a polynomial
n(m) and affine linear functions X1(y1, . . . , yM ), . . . , XN (y1, . . . , yM ) such
that gm(y1, . . . , yM(m)) = fn(X1(y), . . . , XN(n)(y)). A sequence (pn) is hard
for a complexity class C if (pn) can be reduced to every (fm) ∈ C, and it is
complete for C if furthermore (pn) ∈ C.

Exercise 6.1.3.4: (1) Show that every polynomial of degree d can be re-
duced to xd.
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Theorem 6.1.3.5. [Valiant] [Val79b] (permm) is complete for VNP.

There are many excellent expositions of the proof, see, e.g. [BCS97] or
[Gat87].

Thus Conjecture 1.2.1.1 is equivalent to:

Conjecture 6.1.3.6. [Valiant][Val79b] There does not exist a polynomial
size circuit computing the permanent.

Now for the determinant:

Proposition 6.1.3.7. (detn) ∈ VP.

Remark 6.1.3.8. detn would be VP complete if dc(pm) grew no faster
than a polynomial for all sequences (pm) ∈ VP.

One can compute the determinant quickly via Gaussian elimination: one
uses the group to put a matrix in a form where the determinant is almost
effortless to compute (the determinant of an upper triangular matrix is just
the product of its diagonal entries). However this algorithm as presented is
not a circuit (there are divisions and one needs to check if pivots are zero).
After a short detour on symmetric polynomials, I prove Proposition 6.1.3.7
in §6.1.5.

6.1.4. Symmetric polynomials. An ubiquitous class of polynomials are
the symmetric polynomials: let SN act on CN by permuting basis ele-
ments, which induces an action on the polynomial ring C[x1, . . . , xN ]. Let
C[x1, . . . , xN ]SN denote the subspace of polynomials invariant under this
action. What follows are standard facts and definitions about symmetric
functions. For proofs, see, e.g., [Mac95, §I.2].

The elementary symmetric functions (or elementary symmetric polyno-
mials) are

(6.1.1) en = en,N = en(x1, . . . , xN ) :=
∑

J⊂[N ]||J |=n

xj1 · · ·xjn .

If the number of variables is understood, I write en for en,N . They generate
the ring of symmetric polynomials. They have the generating function

(6.1.2) EN (t) :=
∑
k≥0

ek(x1, . . . , xN )tk =

N∏
i=1

(1 + xit).

Exercise 6.1.4.1: (1) Verify the coefficient of tn in EN (t) is en,N .

The power sum symmetric functions are

(6.1.3) pn = pn,N = pn,N (x1, . . . , xN ) = xn1 + · · ·+ xnN .
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They also generate the ring of symmetric polynomials. They have the gen-
erating function

(6.1.4) PN (t) =
∑
k≥1

pkt
k−1 =

d

dt
ln[

N∏
j=1

(1− xjt)−1].

Exercise 6.1.4.2: (2) Verify that the coefficient of tn in PN (t) is indeed
pn,N . }

Exercise 6.1.4.3: (2) Show that

(6.1.5) PN (−t) = −
E′N (t)

EN (t)
. }

Exercise 6.1.4.3, together with a little more work (see, e.g. [Mac95, p.
28]) shows that

(6.1.6) pn = detn


e1 1 0 · · · 0
2e2 e1 1 · · · 0

...
...

. . .
. . .

...
...

...
... 1

nen en−1 en−2 · · · e1

 .

Similarly

(6.1.7) en =
1

n!
detn


p1 1 0 · · · 0
p2 p1 2 · · · 0
...

...
...

. . .
...

pn−1 pn−2 · · · n− 1
pn pn−1 · · · p1

 .

6.1.5. Proof of Proposition 6.1.3.7. Here is a construction of a small
circuit for the determinant that appeared in [Csa76]:

The determinant of a linear map f : V → V is the product of its
eigenvalues λ1, . . . , λv, i.e., ev(λ) = λ1 · · ·λv.

On the other hand, recall that trace(f) is the sum of the eigenvalues of
f , and more generally, letting fk denote the composition of f with itself k
times,

trace(fk) = pk(λ) = λk1 + · · ·+ λkv.

The quantities trace(fk) can be computed with small circuits.

Exercise 6.1.5.1: (2) Write down a circuit for the polynomialA 7→ trace(A2)
when A is an n× n matrix with variable entries.

Thus we can compute detn via small circuits and (6.1.7). While (6.1.7) is
still a determinant, it is almost lower triangular and its näıve computation,
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e.g., with Laplace expansion, can be done with an O(n3)-size circuit and
the full algorithm for computing detn can be executed with an O(n4) size
circuit.

Remark 6.1.5.2. A more restrictive class of circuits are formulas which
are circuits that are trees. Let VPe denote the sequences of polynomials
that admit a polynomial size formula. The circuit in the proof above is not
a formula because results from computations are used more than once. It is
known that the determinant admits a quasi-polynomial size formula, that is,
a formula of size nO(logn), and it is complete for the complexity class VQP =
VPs consisting of sequences of polynomials admitting a quasi-polynomial
size formula see, e.g., [BCS97, §21.5] (or equivalently, a polynomial sized
“skew” circuit, see ****). It is not known whether or not the determinant
is complete for VP.

6.1.6. The Geometric Complexity Theory (GCT) variant of Valiant’s
conjecture. Recall that when we used polynomials in the study of matrix
multiplication, we were actually proving lower bounds on tensor border rank
rather than tensor rank. In the case of matrix multiplication, at least as far
as the exponent was concerned, this changed nothing. In the case of de-
terminant versus permanent, it is not known if using polynomial methods
actually leads to a stronger separation of complexity classes. In any case, it
will be best to make additional definitions to clarify the two different types
of lower bounds.

I also need to address something I swept under the rug earlier: we are
looking for polynomials on spaces of polynomials. When the number of
variables changes, we can still use the “same” polynomials (by including the
smaller space in the larger), but a more serious problem occurs regarding
degree, which necessitates the introduction of padding. Recall that End(V )
acts on SnV by X · (xi1 · · ·xin) = (Xxi1) · · · (Xxin) and extend linearly.

Conjecture 6.1.6.1. [Rephrasing of Valiant’s conjecture] Let ` be a linear

coordinate on C1 and consider any linear inclusion C1 ⊕ Cm2 → Cn2
, so in

particular `n−m permm ∈ SnCn
2
. Let n(m) be a polynomial. Then for all

sufficiently large m,

[`n−m permm] 6∈ End(Cn
2
) · [detn(m)].

To see the equivalence of the formulations, if perm(yij) = detn(Λ +∑
i,j Aijyi,j), then `n−m permm(yi,j) = detn(`Λ +

∑
i,j Aijyi,j). Such an ex-

pression is equivalent to setting each entry of the n×nmatrix to a linear com-
bination of the variables `, yi,j , which is precisely what the elements of rank

m2 + 1 in End(Cn2
) can accomplish. Moreover `n−m permm = X · detn(m)

for some X ∈ End(Cn2
) implies X has rank m2 + 1.
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In order to use more tools from algebraic geometry and representation
theory to separate complexity classes, the following conjecture appeared in
[MS01]:

Conjecture 6.1.6.2. [MS01] Let ` be a linear coordinate on C1 and con-

sider any linear inclusion C1 ⊕ Cm2 → Cn2
, so in particular `n−m permm ∈

SnCn2
. Let n(m) be a polynomial. Then for all sufficiently large m,

[`n−m permm] 6∈ GLn2 · [detn(m)].

Note that GLn2 · [detn] = End(Cn2) · [detn] so this is a strengthening of
Conjecture 6.1.6.1. It will be useful to rephrase the conjecture slightly, to
highlight that it is a question about determining whether one orbit closure
is contained in another. Let

Detn := GLn2 · [detn],

and let

Permm
n := GLn2 · [`n−m permm].

Conjecture 6.1.6.3. [MS01] Let n(m) be a polynomial. Then for all suf-
ficiently large m,

Permm
n(m) 6⊂ Detn(m).

The equivalence of Conjectures 6.1.6.3 and 6.1.6.2 follows as `n−m permm 6∈
Detn implies GLn2 · `n−m permm 6∈ Detn, and since Detn is closed and both
sides are irreducible, there is no harm in taking closure on the left hand side,
as you showed in Exercise 3.3.1.1.

Now the goal is clear: both varieties are invariant under GLn2 so their
ideals will be GLn2-modules, as was mentioned in §1.1.13. We look for a
GLn2-module M such that M ⊂ I[Detn] and M 6⊂ I[Permm

n ].

In §8.8 I explain the original program to solve this conjecture. Although
that program cannot work as stated, I believe that the re-focusing of a prob-
lem of separating complexity classes to questions in algebraic geometry and
representation theory as they proposed, is the most viable path to resolving
Valiant’s conjecture.

6.2. Flattenings: our first polynomials on the space of
polynomials

In this section I discuss the most classical polynomials on the space of poly-
nomials, that were first introduced by Sylveseter in 1852 and called catalec-
ticants by him. They are also called flattenings and in the computer science
literature the polynomials induced by the method of partial derivatives.
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6.2.1. Three perspectives on SdCM . I review our perspectives on SdCM .
We have seen SdCM is the space of symmetric tensors in (CM )⊗d. Given a
symmetric tensor T ∈ SdCM , we may form a polynomial PT on CM∗ by, for
v ∈ CM∗, PT (v) := T (v, . . . , v). I use this identification repeatedly without
further mention.

One can also recover T from PT via polarization. Then (up to universal
constants) T (vi1 , . . . , viM ) where 1 ≤ i1 ≤ · · · ≤ iM is the coefficient of
ti1 · · · tiM in PT (t1v1 + · · ·+ tMvM ). See [Lan12, Chap. 2] for details.

As was mentioned in Exercise 2.3.0.4, we may also think of SdCM as
the space of homogeneous differential operators of order d on Sym(CM∗) :=
⊕∞j=0S

jCM∗.
Thus we may view an element of SdCM as a homogeneous polynomial

of degree d on CM∗, a symmetric tensor, and as a homogeneous differential
operator of order d on the space of polynomials Sym(CM∗).

6.2.2. Catalecticants, a.k.a. The method of partial derivatives.
Now would be a good time to read §3.1 if you have not already done so. I
review a few essential points from it.

The simplest polynomials in SnCN are just the n-th powers of linear
forms. Their zero set is a hyperplane (counted with muliplicity n). Let
P ∈ SnCN . How can one test if P is an n-th power of a linear form, P = `n

for some ` ∈ CN?

Exercise 6.2.2.1: (1!) Show that P = `n for some ` ∈ CN if and only if
dim〈 ∂P

∂x1 , . . . ,
∂P
∂xN
〉 = 1, where x1, . . . , xN are coordinates on CN .

Note that Exercise 6.2.2.1 is indeed a polynomial test: The dual space
CN∗ may be considered as the space of first order homogeneous differential
operators on SnCN , and the test is that the 2×2 minors of the map P1,n−1 :

CN∗ → Sn−1CN , given by ∂
∂xj
7→ ∂P

∂xj
are zero.

Exercise 6.2.2.1 may be phrased without reference to coordinates: recall
the inclusion SnV ⊂ V⊗Sn−1V = Hom(V ∗, Sn−1V ). For P ∈ SnV , write
P1,n−1 ∈ Hom(V ∗, Sn−1V ). We may interpret Exercise 6.2.2.1 as saying that
P is an n-th power of a linear form if and only if rank(P1,n−1) = 1.

Recall that the n-th Veronese variety is

vn(PV ) := {[P ] ∈ PSnV | P = `n for some ` ∈ V } ⊂ P(SnV ).

Exercise 6.2.2.1 shows that the Veronese variety is indeed an algebraic va-
riety and by definition, it is invariant under the action of GL(V ) on PSnV .
In fact it is homogenous - a single GL(V )-orbit.

More generally define the subspace variety

Subk(S
nV ) := P{P ∈ SnV | rank(P1,n−1) ≤ k}.
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Note that [P ] ∈ Subk(SnV ) if and only if there exists a coordinate system
where P can be expressed using only k of the dimV variables. The subspace
variety Subk(S

nV ) ⊂ PSnV has the geometric interpretation as the polyno-
mials whose zero sets in projective space are cones with a v−k dimensional
vertex. (In affine space the zero set looks like a cylinder, such as the surface
x2 + y2 = 1 in R3.) If [P ] ∈ Subk(SnV ), then there exist linear coordinates
on V such that the expression of P only involves at most k of the coordi-
nates. Consider the hypersurface XP ⊂ Pk−1 cut out by restricting P to
these variables. Then points of Z(P ) ⊂ PV ∗ are of the form [x + y] where

x ∈ X̂P and y ∈ Pv−k−1 is any point in the complementary space. See §6.4.2
for more details. Equations for Subk(S

nV ) are the size k + 1 minors of

P1,n−1 : V ∗ → Sn−1V.

In fact these generate the ideal, see §8.4.1.

The symmetric rank of P ∈ SnV ∗ is Rvn(PV )(P ) = RS(P ), the smallest
r such that P = `n1 + · · ·+ `nr for `j ∈ V . The symmetric border rank of P
is Rvn(PV )(P ) = RS(P ), which, in the language of §4.8.1, is the smallest r

such that [P ] ∈ σr(vn(PV )), the r-th secant variety of the Veronese variety.
Symmetric rank will appear naturally in the study of Valiant’s conjecture
and its variants. In the language of circuits introduced in Chapter 7, it is
(essentially) the size of the smallest homogeneous ΣΛΣ-circuit computing
P .

How would one test if P is the sum of two n-th powers, P = `n1 + `n2 for
some `1, `2 ∈ CN?

Exercise 6.2.2.2: (1) Show that P = `n1 + `n2 for some `j ∈ CN implies

dim span{ ∂P
∂x1 , . . . ,

∂P
∂xN
| 1 ≤ i, j ≤ N} ≤ 2.

Exercise 6.2.2.3: (2) Show that any polynomial vanishing on all polyno-
mials of the form P = `n1 + `n2 for some `j ∈ CN also vanishes on xn−1y.
}

Exercise 6.2.2.3 reminds us that σ2(vn(PV )) also includes points on tan-
gent lines.

The condition in Exercise 6.2.2.2 is not sufficient to determine member-
ship in σ2(vn(PV )), in other words, σ2(vn(PV )) ( Sub2(SnV ): Consider
P = `n−2

1 `22. It has rank(P1,n−1) = 2 but P 6∈ σ2(vn(PV )) as can be seen by
the following exercises:

Exercise 6.2.2.4: (1) Show that P = `n1 + `n2 for some `j ∈ CN implies

dim span{ ∂2P
∂xi∂xj

} ≤ 2.

Exercise 6.2.2.5: (1) Show that P = `n−2
1 `22 for some distinct `j ∈ CN

implies dim span{ ∂2P
∂xi∂xj

} > 2.
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Let P2,n−2 : S2CN∗ → Sn−2CN denote the map with image 〈 ∂2P
∂xi∂xj

〉.
Vanishing of the size three minors of P1,n−1 and P2,n−2 are necessary and
sufficient conditions for P ∈ σ2(vn(PV )), as was shown by Gundelfinger in
1886 [Gun].

More generally, one can consider the polynomials given by the minors
of the maps SkCN∗ → Sn−kCN , given by D 7→ D(P ). Write these maps as
Pk,n−k : SkV ∗ → Sn−kV . These equations date back to Sylvester [Syl52]
and are called the method of partial derivatives in the complexity literature,
e.g. [CKW10]. The ranks of these maps gives a complexity measure on
polynomials.

Exercise 6.2.2.6: (1!) What does the method of partial derivatives tell us
about the complexity of x1 · · ·xn, detn and permn, e.g., taking k = bn2 c? }

Exercise 6.2.2.6 provides an exponential lower bound for the permanent
in the complexity measure of symmetric border rank RS , but we obtain the
same lower bound for the determinant. Thus this measure will not be useful
for separating the permanent from the determinant. It still gives interesting
information about other polynomials such as symmetric functions, which we
will examine.

The variety of homogeneous polynomials of degree n that are products
of linear forms will also play a role in complexity theory. Recall the Chow
variety of polynomials that decompose into a product of linear forms from
§3.1.2:

Chn(V ) := P{P ∈ SnV | P = `1 · · · `n for `j ∈ V }.

One can define a complexity measure for writing a polynomial as a sum
of products of linear forms. The “Zariski closed” version of this condition
is membership in σr(Chn(V )). In the language of circuits, RChn(V )(P ) is
(essentially) the size of the smallest homogeneous ΣΠΣ circuit computing a
polynomial P . I discuss this in §7.1.

Exercise 6.2.2.6 gives a necessary test for a polynomial P ∈ SnCN to be
a product of n linear forms, namely rank(Pbn

2
c,dn

2
e) ≤

(
n
bn

2
c
)
. A question to

think about: how would one develop a necessary and sufficient condition to
show a polynomial P ∈ SnCN is a product of n linear forms? See §9.1.6 for
an answer.

Unfortunately we have very few techniques for finding good spaces of
polynomials on polynomials. One such that generalizes flattenings, called
Young flattenings is discussed in §8.2.

A natural question is whether or not all flattenings are non-trivial. I
address this in §6.2.4 below after defining conormal spaces, which will be
needed for the proof.
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6.2.3. Conormal spaces. Recall the definition of the tangent space to a
point on a variety X ⊂ PV or X ⊂ V , T̂xX ⊂ V , from §3.1.3. The conormal
space N∗xX ⊂ V ∗ is simply defined to be the annhilator of the tangent space:

N∗xX = (T̂xX)⊥.

Exercise 6.2.3.1: (2!) Show that in σ̂0
r (Seg(Pu−1 × Pv−1)), the space of

u× v matrices of rank r,

T̂Mσ
0
r (Seg(Pu−1 × Pv−1)) = {X ∈Matu×v | X ker(M) ⊂ Image(M)}.

Give a description of N∗Mσ
0
r (Seg(Pu−1 × Pv−1)). }

6.2.4. All flattenings give non-trivial equations. One idea to show all
flattenings give non-trivial equations would be to find some explicit polyno-
mial for which they are all of maximal rank. Unfortunately this is an open
question:

Problem 6.2.4.1. Find an explicit sequence of polynomials Pd,n ∈ SdCn,

such that for all 1 ≤ k ≤ bd2c, rank((Pd,n)k,d−k) =
(
n+k−1

k

)
.

Exercise 6.2.4.2: (1) Show that if Pb d
2
c,d d

2
e is of maximal rank, then all

Pk,d−k are of maximal rank.

Theorem 6.2.4.3. [Gre78, IE78] For a general polynomial P ∈ SdV , all
the maps Pk,d−k : SkV ∗ → Sd−kV are of maximal rank.

Proof. (This proof is adapted from [IK99].) By Exercise 6.2.4.2 it is suffi-

cient to consider the case k = bd2c. For each 0 ≤ t ≤
(v+b d

2
c−1

b d
2
c

)
, let

Gor(t) := {P ∈ SdV | rankPb d
2
c,d d

2
e = t}.

(“Gor” is after Gorenstein, see [IK99].) Note that SdV = ttGor(t). Since
this is a finite union there must be at least one (and exactly one by semi-

continuity) t0 such that Gor(t0) = SdV . We want to show that t0 =(v+b d
2
c−1

b d
2
c

)
. We will do this by computing conormal spaces as we must

have N∗PGor(t0) = 0 for P ∈ Gor(t0). Now, for any t, the subspace

N∗PGor(t) ⊂ SdV satisfies

N∗PGor(t) ⊂ N∗Pb d2 c,d d2 e
σt = N∗Pb d2 c,d d2 e

σt(Seg(PSb
d
2
cV×Sd

d
2
eV )) ⊂ Sb

d
2
cV⊗Sd

d
2
eV,

and N∗PGor(t) is simply the image of N∗Pb d2 c,d d2 e
σt under the symmetriza-

tion map to SdV ∗. On the other hand, by Exercise 6.2.3.1, N∗Pb d2 c,d d2 e
σt =

kerPb d
2
c,d d

2
e⊗ kerPd d

2
e,b d

2
c. In order forN∗PGor(t) to be zero, we needN∗Pb d2 c,d d2 e

σt

to be zero (otherwise there will be something nonzero in the image of the
symmetrization map: if d is odd, the two degrees are different and this is
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clear. If d is even, the conormal space is the tensor product of a vector space
with itself), which implies kerPd d

2
e,b d

2
c = 0 �

Note that the maximum symmetric border rank (in all but a few known

exceptions) is 1
v

(
v+d−1

d

)
, whereas flattenings only give equations up to sym-

metric border rank
(v+b d

2
c−1

b d
2
c

)
.

6.2.5. Jacobian varieties. While the ranks of symmetric flattenings are
the same for the permanent and determinant, by looking more closely at the
maps, we can extract geometric information that distinguishes them.

First, for P ∈ SnV , consider the images Pk,n−k(S
kV ∗) ⊂ Sn−kV . This

is a space of polynomials and we can consider the common zero set of these
polynomials, the k-th Jacobian variety of P :

Z(P )Jac,k := {[α] ∈ PV ∗ | q(α) = 0 ∀q ∈ Pk,n−k(SkV ∗)}.

It is easy to see that Z(detn)Jac,k is simply σn−k−1(Seg(Pn−1 × Pn−1)),
the matrices of rank at most n − k − 1. It is not known what the varieties
Z(permn)Jac,k are in general. I explicitly determine Z(permn)Jac,n−2 in
§6.3.2 below as it is used to prove the symmetries of the permanent are
what we expect them to be.

In §?? I discuss further information that one can extract from the image
of Pk,n−k.

6.3. Singular loci

As mentioned above, the geometry of the hypersurfaces Z(detn) and Z(permm)
will aid us in comparing the complexity of the determinant and permanent.
A simple invariant that will be useful is the dimension of the singular set
of a hypersurface. We will need a more subtle definition than that pre-
sented in §3.1.3. This new dimension is **upper?** semi-continuous under
degenerations of polynomials.

6.3.1. Definition of the (scheme theoretic) singular locus.

Definition 6.3.1.1. Say a variety X = {P1 = 0, . . . , Ps = 0} ⊂ PV has
codimension c, using the definition of codimension in §dimsubsect. Then
x ∈ X is a singular point if dP1,x, . . . , dPs,x fail to span a space of dimension
c. LetXsing ⊂ X denote the singular points ofX. In particular, ifX = Z(P )
is a hypersuface and x ∈ X, then x ∈ Xsing if and only if dPx = 0. Note
that Xsing is also the zero set of a collection of polynomials.

Warning: This definition is a property of the ideal generated by the
polynomials P1, . . . , Ps, not of X as a set. For example every point of (x2

1 +
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· · ·+x2
n)2 = 0 is a singular point. In the language of algebraic geometry, one

refers to the singular point of the scheme associated to {P1 = 0, . . . , Ps = 0}.
“Most” hypersurfaces X ⊂ PV are smooth, in the sense that {P ∈

PSdV | Z(P )sing 6= ∅} ⊂ PSdV is a hypersurface, as proven below in §??.
The size of the singular locus of Z(P ) is a measure of the pathology of P .

Singular loci will also be used in the determination of symmetry groups.

6.3.2. Singularities of Z(permm). In contrast to the determinant, the
singular set of the permanent is not understood, even its codimension is not
known! The problem is more difficult because unlike in the determinant
case, we do not have normal forms for points on Z(permm).

Exercise 6.3.2.1: (1!) Show that the permanent admits a “Laplace type”
expansion similar to that of the determinant.

Exercise 6.3.2.1 implies:

Proposition 6.3.2.2. Z(permm)sing consists of the m × m matrices with
the property that all size m− 1 sub-matrices of it have permanent zero.

Exercise 6.3.2.3: (1) Show that Z(permm)sing has codimension at most

2m in Cm2
. }

Since Z(perm2)sing = ∅, let’s start with perm3. Since we will need it
later, I prove a more general result:

Lemma 6.3.2.4. The variety Z(permm)Jac,m−2 is the union of the following
varieties:

(1) Matrices A with all entries zero except those in a single size 2
submatrix, and that submatrix has zero permanent.

(2) Matrices A with all entries zero except those in the j-th row for
some j.

(3) Matrices A with all entries zero except those in the j-th column for
some j.

In other words, let X ⊂Matm(C) denote the subvariety of matrices that
are zero except in the upper 2× 2 corner and that 2× 2 submatrix has zero
permanent, and let Y denote the variety of matrices that are zero except in
the first row, then

(6.3.1) Z(permm)Jac,m−2 =
⋃

σ∈(Sm×Sm)oZ2

σ ·X ∪ σ · Y.
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The proof is straight-forward. Here is the main idea: Take a matrix with
entries that don’t fit that pattern, e.g., one that begins

a b e
∗ d ∗

and note that it is not possible to fill in the two unknown entries and have
all size two sub-permanents, even in this corner, zero. There are just a few
such cases since we are free to act by (Sm ×Sm) o Z2 ⊂ Gpermm

.

Corollary 6.3.2.5.

{perm3 = 0}sing =
⋃

σ∈(S3×S3)nZ2

σ ·X ∪ σ · Y.

In particular, all the irreducible components of {perm3 = 0}sing have the
same dimension and and codim({perm3 = 0}sing,C9) = 6.

This equidimensionality property already fails for perm4: consider

{
x1

1 x1
2 0 0

x2
1 x2

2 0 0
0 0 x3

3 x3
4

0 0 x4
3 x4

4

 | x1
1x

2
2 + x2

1x
1
2 = 0, x3

3x
4
4 + x4

3x
3
4 = 0

}
This defines a six dimensional irreducible component of {perm4 = 0}sing
which is not contained in either a space of matrices with just two nonzero
rows (or columns) or the set of matrices that are zero except for in some
3 × 3 submatrix which has zero permanent. In [vzG87] von zur Gathen
states that all components of {perm4 = 0}sing are either of dimension six or
eight.

Although we do not know the codimension of Z(permm)sing, the follow-
ing estimate will suffice for the application of von zur Gathen’s regularity
theorem 6.3.3.1 below.

Proposition 6.3.2.6 (von zur Gathen [vzG87]).

codim(Z(permm)sing,Cm
2
) ≥ 5.

Proof. I work by induction on m, the case m = 2 is ok as Z(perm2)sing = ∅.
Let I, J be multi-indices of the same size and let sp(I|J) denote the sub-
permanent of the (m−|I|,m−|I|) submatrix omitting the index sets (I, J).
Let C ⊂ Z(permm)sing be an irreducible component of the singular set. If
sp(i1, i2|j1, j2)|C = 0 for all (i1, i2|j1, j2), we are done by induction as then
C ⊂ ∪Z(permm−1)sing where the union is over all size m−1 submatrices. So
assume there is at least one size m− 2 subpermanent that is not identically
zero on C, without loss of generality assume it is sp(m−1,m|m−1,m). We
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have, via permanental Laplace expansions,

0 = sp(m,m)|C

=

m−2∑
j=1

xjm−1sp(i,m|m− 1,m) + xm−1
m−1sp(m− 1,m|m− 1,m)

so on a Zariski open subset of C, xm−1
m−1 is a function of the m2 − 4 vari-

ables xst , (s, t) 6∈ {(m − 1,m − 1), (m − 1,m), (m,m − 1), (m,m)}, Similar
expansions give us xm−1

m , xmm−1, and xmm as functions of the other variables,

so we conclude dimC ≤ m2 − 4. We need to find one more nonzero poly-
nomial that vanishes identically on C that does not involve the variables
xm−1
m−1, x

m
m−1, x

m−1
m , xmm to obtain another relation and to conclude dimC ≤

m2 − 5. Consider

sp(m− 1,m|m− 1,m)sp(m− 2,m)− sp(m− 2,m|m− 1,m)sp(m− 1,m)

− sp(m− 2,m− 1|m− 1,m)sp(m,m)

= −2xm−2
m−1sp(m− 2,m− 1|m− 1,m)sp(m− 2,m|m− 1,m)

+ terms not involving xm−2
m−1,

where we obtained the second line by permanental Laplace expansions in the
size m−1 subpermanents in the expression, and arranged things such that all
terms with xm−1

m−1, x
m
m−1, x

m−1
m , xmm appearing cancel. Since this expression is

a sum of terms divisible by size m−1 subpermanents, it vanishes identically
on C. But 2xm−2

m−1sp(m − 2,m − 1|m − 1,m)sp(m − 2,m|m − 1,m) is not
the zero polynomial, so the whole expression is not the zero polynomial.
Thus we obtain another nonzero polynomial that vanishes identically on
C and is independent of the previous four as it does not involve any of
xm−1
m−1, x

m
m−1, x

m−1
m , xmm. �

Although one expects that in general codim(Z(permm)sing) to be greater
than 5, Proposition 6.3.2.6 is sufficient for the hypothesis of Proposition
6.3.3.1 below.

6.3.3. von zur Gathen’s regularity theorem and its consequences
for lower bounds.

Proposition 6.3.3.1 (von zur Gathen [vzG87], also see [ABV15]). Let
M > 4, and let P ∈ SmCM satisfy codim({P = 0}sing,CM ) ≥ 5. If P =

detn ◦Ã, where Ã = Λ + A : CM → Cn2
is an affine linear map with Λ

constant and A linear, then rankΛ = n− 1.

Proof. I first claim that if Ã(y) ∈ Z(detn)sing then y ∈ Z(P )sing. To see
this, note that for any y ∈ CM , the differential of P at y satisfies (by the
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chain rule)

dP |y = d(detn ◦Ã)|y = AT (d(detn)|Ã(y)),

where I have used that d(detn)|Ã(y) ∈ T
∗
Ã(y)

Cn2 ' Cn2∗ and AT : Cn2∗ →
CM∗ is the transpose of the differential of Ã. In particular, if d(detn)|Ã(y) = 0

then dPy = 0, which is what we needed to show.

Now by Theorem 3.1.5.1, the set

Ã(CM ) ∩ Z(detn)sing ⊂ Cn
2

is either empty or of dimension at least dim(Ã(CM )) + dim(Z(detn)sing)−
n2 = M + (n2 − 4) − n2 = M − 4, so the same is true for Ã−1(Ã(CM ) ∩
Z(detn)sing). But this latter set is contained in Z(P )sing, which is of dimen-
sion at most M − 5, so we conclude it is empty.

Thus for all y ∈ CM , rankÃ(y) ≥ n − 1. In particular rankÃ(0) ≥
n − 1, but Ã(0) = Λ. Finally equality holds because if Λ had rank n, then

det(Ã(CM )) would have a constant term. �

Exercise 6.3.3.2: (1) Prove that any polynomial p ∈ SdCM with singular
locus of codimension greater than four must have dc(p) > d.

Proposition 6.3.3.3. [Cai90] Let F ⊂ Matn(C) be an affine linear sub-

space such that for all X ∈ F , rank(F ) ≥ n− 1. Then dimF ≤
(
n+1

2

)
+ 1.

For the proof, see [Cai90]. Note that Proposition 6.3.3.3 is near optimal
as consider F the identity matrix plus free variables in the strictly upper-
triangular slots, which has dimension

(
n
2

)
.

Exercise 6.3.3.4: (2) Use Proposition 6.3.3.3 to show dc(permm) ≥
√

2m.

Exercise 6.3.3.5: (2) Let Q ⊂ Pn+1 be a smooth quadric hypersurface of
dimension n. Show that the maximum dimension of a linear projective space
contained in Q is bn2 c. }

Theorem 6.3.3.6 (Alper-Bogart-Velasco [ABV15]). Let P ∈ SdCM with
d ≥ 3 and such that codim(Z(P )sing,CM ) ≥ 5. Then dc(P ) ≥ codim(Z(P )sing,CM )+
1.

Proof. Let n = dc(P ). Say P = detn ◦Ã, with Ã = Λ +A. By Proposition
6.3.3.1, rank(Λ) = n−1, and using Gdetn , we may assume Λ is normalized to
the matrix that is zero everywhere but the diagonal, where it has one’s except
in the (1, 1)-slot where it is also zero. Expand det(Ã(y)) = p0 +p1 + · · ·+pn
as a sum of homogeneous polynomials. Since the right hand side equals P ,
we must have pj = 0 for j < d. Then p0 = det(Λ) = 0 and p1 = A1

1. Now
p2 =

∑n
i=2A

1
iA

i
1 = 0 and more generally, each pj is a sum of monomials,

each of which contains an element in the first column and an element in
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the first row of A. Each Aij is a linear form on CM and as such, we can

consider the intersection of their kernels. Write Γ = ∩n−1
i=1 (kerAi1)∩(kerA1

i ).

Then Γ ⊂ Z(P )sing. Consider the A1
i , A

j
1 as coordinates on C2(n−1), p2

defines a smooth quadric hypersurface in P2(n−1)−1. By Exercise 6.3.3.5,
the maximum dimension of a linear space on such a quadric is n− 1, so the

rank of the linear map CM → C2(n−1) given by y 7→ (A1
i (y), Aj1(y)) is at

most n− 1. But Γ is the kernel of this map. We have

n− 1 ≥ codimΓ ≥ codim(Z(P )sing,CM )

and recalling that n = dc(P ) we conclude. �

Exercise 6.3.3.7: (2) Prove that codim(permm) = 2m when m = 3, 4.

Corollary 6.3.3.8. [ABV15] dc(perm3) = 7 and dc(perm4) ≥ 9.

The upper bound for dc(perm3) is from (1.2.3).

Remark 6.3.3.9. Even if one could prove codim(permm) = 2m for all m,
the above theorem would only give a linear bound on dc(permm). This
bound would be obtained from taking one derivative. In the next section,
I show that taking two derivatives, one can get a quadratic bound. Unfor-
tunately, taking three derivatives does not appear to improve the situation
further.

6.4. Geometry and the state of the art regarding dc(permm)

In mathematics, one often makes transforms to reorganize information, such
as the Fourier transform. There are geometric transforms to “reorganize” the
information in an algebraic variety. Taking the Gauss image (dual variety)
of a hypersurface is one such, as I now describe.

6.4.1. Gauss maps. A classical construction for the geometry of surfaces
in 3-space, is the Gauss map that maps a point of the surface to its unit
normal vector on the unit sphere as in Figure 3.

This Gauss image can be defined for a surface in P3 without the use of
a distance function if one instead takes the union of all conormal lines (see
§6.2.3) in P3∗. Let S∨ ⊂ P3∗ denote this Gauss image. One loses qualitiative
information in this setting, however one still has the information of the
dimension of S∨.

This dimension will drop if through all points of the surface there is
a curve along which the tangent plane is constant. For example, if M is
a cylinder, i.e., the union of lines in three space perpendicular to a plane
curve, the Gauss image is a curve:
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Figure 6.4.1. The shaded area of the surface maps to the shaded
area of the sphere.

Figure 6.4.2. Lines on the cylinder are collapsed to a point.

The extreme case is when the surface is a plane, then its Gauss image is
just a point.

6.4.2. What do surfaces with degenerate Gauss maps “look like”?
Here is a generalization of the cylinder above: Consider a curve C ⊂ P3,
and a point p ∈ P3. Define the cone over C with vertex p,

J(C, p) := {[x] ∈ P3 | x = y + p for some y ∈ C, p ∈ p̂}.
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Exercise 6.4.2.1: (1) Show that if p 6= y, T̂xJ(C, p) = span{T̂yC, p̂}.

Thus the tangent space to the cone is constant along the rulings, and
the surface only has a curves worth of tangent (hyper)-planes, so its dual
variety is degenerate.

Exercise 6.4.2.2: (2) More generally, let X ⊂ PV be an irreducible variety
and let L ⊂ PV be a linear space. Define J(X,L), the cone over X with
vertex L analogously. Show that given x ∈ Xsmooth, with x 6∈ L, the tangent
space to J(X,L)∨ at x+ ` is constant for all ` ∈ L.

Here is another type of surface with a degenerate Gauss map: Consider
again a curve C ⊂ P3, and this time let τ(C) ⊂ P3 denote the Zariski closure

of the union of all points on PT̂xC as x ranges over the smooth points of C.
The variety τ(C) is called the tangential variety to the curve C.

Exercise 6.4.2.3: (2) Show that if y1, y2 ∈ τ(C) are both on a tangent line

to x ∈ C, then T̂y1τ(C) = T̂y2τ(C), and thus τ(C)∨ is degenerate. }

In 1910 C. Segre proved that the above two examples are the only sur-
faces with degenerate dual varieties:

Theorem 6.4.2.4. [Seg10, p. 105] Let S2 ⊂ P3 be a surface with degener-
ate Gauss image . Then S is one of the following:

(1) A linearly embedded P2,

(2) A cone over a curve C,

(3) A tangential variety to a curve C.

(1) is a special case of both (2) and (3) and is the only intersection of the
two.
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The proof is differential-geometric, see [?, §3.4] **check sect**.

6.4.3. Dual varieties. If X ⊂ PV is an irreducible hypersurface, the
Zariski closure of its Gauss image will be a projective subvariety of PV ∗.
Gauss images of hypersurfaces are special cases of dual varieties. For an
irreducible variety X ⊂ PV , define X∨ ⊂ PV ∗, the dual variety of X, by

X∨ := {H ∈ PV ∗ | ∃x ∈ Xsmooth, T̂xX ⊆ Ĥ⊥}

{H ∈ PV ∗ | ∃x ∈ Xsmooth, H ∈ PN∗xX}

Here H refers both to a point in PV ∗ and the hyperplane P(Ĥ⊥) ⊂ PV .

That the dual variety is indeed a variety may be seen by considering the
following incidence correspondence:

I := {(x,H) ∈ Xsmooth × PV ∗ | PT̂xX ⊆ H} ⊂ PV × PV ∗

and note that its image under the two projections are respectively X and
X∨. When X is smooth, I = PN∗X, the projectivized conormal bundle.
Both projections are surjective regular maps, so in by Theorem 3.1.4.1, X∨

is an irreducible variety.

Exercise 6.4.3.1: (2) Show

I = {(x,H) ∈ PV × (X∨)smooth | PT̂HX∨ ⊆ x} ⊂ PV × PV ∗

and thus (X∨)∨ = X. (This is called the reflexivity theorem and dates back
to C. Segre.)

For our purposes, the most important property of dual varieties is that
for a smooth hypersurface other than a hyperplane, its dual variety is also a
hypersurface. This will be a consequence of the B. Segre dimension formula
6.4.5.1 below. If the dual of X ⊂ PV is not a hypersurface, one says that X∨

is degenerate. It is a classical problem to study the varieties with degenerate
dual varieties.

Exercise 6.4.2.2 shows that higher dimensional cones have degenerate
dual varieties. Griffiths and Harris [GH79] vaguely conjectured a higher
dimensional generalization of C. Segre’s theorem, namely that a variety with
a degenerate dual is “built out of ” cones and tangent developables. For
example, Z(detn) may be thought of as the union of tangent lines to tangent
lines to ... to the Segre variety Seg(Pn−1 × Pn−1), and we will see that it
indeed has a degenerate dual variety.

Segre’s theorem indicates that if we take the Zariski closure in PSdV ∗ of
the set of irreducible hypersurfaces of degree d with degenerate dual varieties,
we will obtain a reducible variety. This will complicate the use of dual
varieties for Valiant’s conjecture.
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For more on dual varieties see [Lan12, §8.2].

6.4.4. Z(detn)sing. As far as singularities are concerned, the determinant
is quite pathological: Thanks to Gdetn , the determination of Z(detn)sing is
easy to describe. Any point of Z(detn) is in the Gdetn-orbit of some

(6.4.1) pr :=

(
Idr 0
0 0

)
where 1 ≤ r ≤ n− 1 and the blocking is (r, n− r)× (r, n− r). The nature of
the singularity of x ∈ Z(detn) is the same as that of the corresponding pr.

Recall that σr = σr(Seg(Pn−1 × Pn−1)) ⊂ P(Cn⊗Cn) is the set of ma-
trices (up to scale) of rank at most r.

The smooth points of Z(detn) = σn−1 are those in the Gdetn-orbit of
pn−1, as shown by the following exercises:

Exercise 6.4.4.1: (1) Show that d(detn)pn−1 = dxnn.

Exercise 6.4.4.2: (1) Show that Z(detn)sing = σn−2.

Exercise 6.4.4.3: (1) Show that σr = Z(detn)Jac,n−r.

Exercise 6.2.3.1 implies dimσr(Seg(Pu−1 × Pv−1)) = r(u+ v − r)− 1.

6.4.5. What does this have to do with complexity theory? Hav-
ing a degenerate dual variety is a pathology, and our dimension calcula-
tion below will show that if Q ∈ SmCM is an irreducible polynomial such
that Q is an affine linear degeneration of an irreducible polynomial P , then
dim(Z(Q)∨) ≤ dim(Z(P ))∨.

To determine the dual variety of Z(detn) ⊂ P(E⊗F ), recall that any
smooth point of Z(detn) is Gdetn-equivalent to

pn−1 =


1

. . .

1
0

 ∈ Z(detn).

and that

N∗pn−1
Z(detn) =


0 0 0 0
...

. . .
...

...
0 0 0 0
0 0 0 ∗

 .

Since any smooth point of Z(detn) can be moved to pn−1 by a change of ba-
sis, we conclude that the tangent hyperplanes to Z(detn) are parametrized
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by the rank one matrices Seg(PE∗⊗PF ∗), the space of which has dimen-
sion 2n − 1 (or 2n − 2 in projective space), because they are obtained by
multiplying a column vector by a row vector.

Proposition 6.4.5.1 (B. Segre, see e.g., [GKZ94]). Let P ∈ SdV ∗ be
irreducible and let [x] ∈ Z(P ) be a general point. Then

dim Z(P )∨ = rank(Pd−2,2(xd−2))− 2.

Here (Pd−2,2(xd−2)) ∈ S2V ∗, and we are computing the rank of this
symmetric matrix. In coordinates, Pd−2,2 may be written as a symmetric
matrix whose entries are polynomials of degree d − 2 in the coordinates of
x, and is called the Hesssian.

Proof. Let x ∈ Ẑ(P ) ⊂ V be a smooth point, so P (x) = P (x, . . . , x) = 0
and dPx = P (x, . . . , x, ·) 6= 0 and take h = dPx ∈ V ∗, so [h] ∈ Z(P )∨. Now

consider a curve ht ⊂ Ẑ(P )∨ with h0 = h. There must be a corresponding

(possibly stationary) curve xt ∈ Ẑ(P ) such that ht = P (xt, . . . , xt, ·) and

thus h′0 = (d− 1)P (xd−2, x′0, ·). Thus the dimension of T̂hZ(P )∨ is the rank
of Pd−2,2(xd−2) minus one (we subtract one because we are only allowed to
feed in vectors x′0 that are tangent to Z(P )). Now just recall that dimX =

dim T̂xX − 1. �

Exercise 6.4.5.2: (1) Show that if Q ∈ SmCM and there exists Ã : CM →
CN such that Q(y) = P (Ã(y)) for all y ∈ CM∗, then rankQm−2,2(y) ≤
rankPm−2,m(Ã(y)).

Exercise 6.4.5.3: (1) Show that every P ∈ Subk(SdV ) has dimZ(P )∨ ≤
k − 2.

Exercise 6.4.5.4: (2) Show that σ3(Chn(Cn2
)) 6⊂ Detn.

Exercise 6.4.5.5: (2) Show that σ2n+1(vn(Pn2−1)) 6⊂ Detn.

Exercise 6.4.5.6: (2) Show that {x1 · · ·xn + y1 · · · yn = 0} ⊂ P2n−1 is self
dual, in the sense that it is isomorphic to its own dual variety.

To show a hypersurface has a nondegenerate dual variety, it suffices to
find a point where the Hessian of its defining equation has maximal rank.

6.4.6. Permanent case. Consider the point

y0 =


1−m 1 · · · 1

1 1 · · · 1
...

1 1 · · · 1

 .

Exercise 6.4.6.1: (1!) Show perm(y0) = 0. }
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Now compute (permm)m−2,m(y0): First note that

∂

∂yij

∂

∂ykl
permm(y) =

{
0 if i = k or j = l

permm−2(yîk̂
ĵ l̂

) otherwise

where yîk̂
ĵ l̂

is the (m − 2) × (m − 2) size matrix obtained by removing rows

i, k and columns j, l.

Exercise 6.4.6.2: (2) Show that if we order indices y1
1, . . . , y

m
1 , y

1
2, . . . , y

m
2 , . . . , y

m
m,

then the Hessian matrix of the permanent at y0 takes the form

(6.4.2)


0 Q Q · · · Q
Q 0 R · · · R

Q R 0
. . .

...
...

...
. . .

. . . R
Q R · · · R 0


where

Q = (m−2)


0 1 · · · 1

1 0
. . .

...
...

. . .
. . . 1

1 · · · 1 0

 , R =


0 m− 2 m− 2 · · · m− 2

m− 2 0 −2 · · · −2

m− 2 −2 0
. . .

...
...

...
. . .

. . . −2
m− 2 −2 · · · −2 0

 .

Lemma 6.4.6.3. Let Q,R be invertible m ×m matrices and let M be an
m2 ×m2 matrix of the form (6.4.2). Then M is invertible.

Proof. Without loss of generality, we may assume Q = Idm (multiply
the left and right by the block diagonal matrix whose block diagonals are
Q−1, Idm, . . . , Idm). Let v = (v1, . . . , vm)T , where vj ∈ Cm, be a vector in
the kernel. Then we have the equations

v2 + · · ·+ vm = 0,

v1 +Rv3 + · · ·+Rvm = 0,

...

v1 +Rv2 + · · ·+Rvm−1 = 0.

i.e.,

v2 + · · ·+ vm = 0,

v1 −Rv2 = 0,

...

v1 −Rvm = 0.
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Multiply the first line by R to conclude (m − 1)v1 = 0 and hence v1 = 0,
and the remaining equations imply the other vj = 0. �

Thus the permanent hypersurface Z(permm) ⊂ Pm2−1. has a non-

degenerate Gauss map. When one includes Cm2 ⊂ Cn2
, so the equation

Z(permm) becomes an equation in a space of n2 variables that only uses m2

of the variables, one gets a cone with vertex Pn2−m2−1 corresponding to the
unused variables, in particular, the Gauss image will have dimension m2−2.

If one makes an affine linear substitution X = X(Y ), by the chain rule,
the Gauss map of {det(X(Y )) = 0} will be at least as degenerate as the
Gauss map of {det(X) = 0}. Using this, one obtains:

Theorem 6.4.6.4 (Mignon-Ressayre [MR04]). If n(m) < m2

2 , then there

do not exist affine linear functions xij(y
s
t ), 1 ≤ i, j ≤ n, 1 ≤ s, t ≤ m such

that
permm(Y ) = detn(X(Y )). I.e., dc(permm) ≥ m2

2 .

Remark 6.4.6.5. We saw a linear lower bound by taking one derivative
and a quadratic lower bound by taking two. Unfortunately it does not
appear to be possible to improve the Mignon-Ressayre bound by taking
three derivatives.

6.5. Extension of the Mignon-Ressayre result to dc

To extend the Mignon-Ressayre theorem to dc we will need to find poly-
nomials on PSnV that vanish on the hypersurfaces with degenerate dual
varieties. This was a classically studied question whose answer was known
only in a very few number of small cases. In this section I present an answer
to the classical question and its application to Conjecture 1.2.5.2.

6.5.1. First steps towards equations. Let P ∈ SdV ∗ be irreducible.
Segre’s formula 6.4.5.1 may be restated as: dimZ(P )∨ ≤ k if and only if,
for all w ∈ V ,

(6.5.1) P (w) = 0 V detk+3(Pd−2,2(wd−2)|F ) = 0 ∀F ∈ G(k + 3, V ).

Equivalently, for any F ∈ G(k + 3, V ), the polynomial P must divide

detk+3(Pd−2,2|F ) ∈ S(k+3)(d−2)V ∗, where detk+3 is evaluated on the S2V ∗

factor in S2V ∗⊗Sd−2V ∗.

Thus to find polynomials on SdV ∗ characterizing hypersurfaces with
degenerate duals, we need polynomials that detect if a polynomial P divides
a polynomial Q. Now P ∈ SdV ∗ divides Q ∈ SeV ∗ if and only if Q ∈
P · Se−dV ∗, i.e.

xI1P ∧ · · · ∧ xIDP ∧Q = 0
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where xIj , is a basis of Se−dV (and D =
(
v+e−d−1

e−d
)
). Let Dk,d,N ⊂ PSdCN

denote the zero set of these equations when Q = detk+3(Pd−2,2|F ) as F
ranges over G(k + 3, V ).

Define Dualk,d,N ⊂ P(SdV ∗) as the Zariski closure of the set of irre-

ducible hypersurfaces of degree d in PV ' PN−1, whose dual variety has
dimension at most k. Our discussion above implies Dualk,d,N ⊆ Dk,d,N .

Note that [detn] ∈ Dual2n−2,n,n2 ⊆ D2n−2,n,n2 .

6.5.2. The lower bound on dc(permm). The calculation of §6.4.6 shows
that permm−2,2(ym−2

0 ) is of maximal rank. Here we don’t have permm, but

rather `n−m permm.

Proposition 6.5.2.1. Let U = CM , let R ∈ SmU∗ be irreducible, let ` be
a coordinate on C be nonzero, let U∗ ⊕ C ⊂ CN∗ be a linear inclusion.

If [R] ∈ Dκ,m,M and [R] 6∈ Dκ−1,m,M , then [`d−mR] ∈ Dκ,d,N and

[`d−mR] 6∈ Dκ−1,d,N .

Proof. Let u1, . . . , uM , v, wM+2, . . . , wN be a basis of CN adapted to the
inclusions CM ⊂ CM+1 ⊂ CN , so (U∗)⊥ = 〈wM+2, . . . , wN 〉 and (L∗)⊥ =
〈u1, . . . , uM , wM+2, . . . , wN 〉. Let c = (d −m)(d −m − 1). In these coordi-
nates, the matrix of (`d−mR)d−2,2 in (M, 1, N −M −1)× (M, 1, N −M −1)-
block form:

(`d−mR)d−2,2 =

 `d−mRm−2,2 `d−m−1Rm−1,1 0
`d−m−1Rm−1,1 c`d−m−2R 0

0 0 0

 .

First note that detM+1((`d−mR)d−2,2|F ) for any F ∈ G(M + 1,CN ) is

either zero or a multiple of `d−mR. If dimZ(R)∨ = M − 2 (the expected
dimension), then for a general F ∈ G(M + 1,CN ), detM ((`d−mR)d−2,2|F )

will not be a multiple of (`d−mR)d−2,2, and more generally if dimZ(R)∨ = κ,

then for a general F ∈ G(κ+ 2,CN ), detκ+2((`d−mR)d−2,2|F ) will not be a

multiple of `d−mR but for any F ∈ G(κ+ 3,CN ), detκ+3((`d−mR)d−2,2|F )

will be a multiple of `d−mR. This shows [R] 6∈ Dκ−1,m,M , implies [`d−mR] 6∈
Dκ−1,d,N .

Exercise 6.5.2.2: (1) Show that [R] ∈ Dκ,m,M , implies [`d−mR] ∈ Dκ,d,N .
}

�

Proposition 6.5.2.1 implies:

Theorem 6.5.2.3. [LMR13] Permm
n 6⊂ D2n−2,n,n2 when m < n2

2 . In par-

ticular, dc(permm) ≥ m2

2 .
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On the other hand, by Exercise 6.4.5.3 cones have degenerate duals, so

`n−m permm ∈ D2n−2,n,n2 whenever m ≥ n2

2 .

The next step from this perspective would be:

Problem 6.5.2.4. Find equations that distinguish cones (e.g. Z(`n−m permm) ⊂
Pn2−1) from tangent developables (e.g., Z(detn) ⊂ Pn2−1). More precisely,
find equations that are zero on tangent developables but nonzero on cones.

6.5.3. A better module of equations. The equations above are of enor-
mous degree. I now derive equations of much lower degree. Since P ∈ SdCN
divides Q ∈ SeCN if and only if for each L ∈ G(2,CN ), P |L divides Q|L,
it will be sufficient to solve this problem for polynomials on C2. This will
have the advantage of producing polynomials of much lower degree.

Let V = C2, let d ≤ e, let P ∈ SdV and Q ∈ SeV . If P divides Q then
Se−dV ·P will contain Q. That is, the vectors xe−dP, xe−d−1yP, . . . , ye−dP,Q
in SeV will fail to be linearly independent, i.e.,

xe−dP ∧ xe−d−1yP ∧ · · · ∧ ye−dP ∧Q = 0.

Since dimSeV = e+ 1, these potentially give a
(
e+1
e−d+2

)
-dimensional vector

space of equations, of degree e− d+ 1 in the coefficients of P and linear in
the coefficients of Q.

By taking our polynomials to be P = P |L and Q = detk+3(Pn−2,2|F )|L
for F ∈ G(k+3, V ) and L ∈ G(2, F ) (or, for those familiar with flag varieties,
better to say (L,F ) ∈ Flag2,k+3(V )) we now have equations parametrized
by the pairs (L,F ). Note that deg(Q) = e = (k + 3)(d− 2).

Remark 6.5.3.1. More generally, with V = C2, given P ∈ SdV , Q ∈ SeV ,
one can ask if P,Q have at least r roots in common (counting multiplicity).
Then P,Q having r points in common says the spaces Se−rV ·P and Sd−rV ·Q
intersect. That is,

xe−rP ∧ xe−r−1yP ∧ · · · ∧ ye−rP ∧ xd−rQ ∧ xd−r−1yQ ∧ · · · ∧ yd−rQ = 0.

In the case r = 1, we get a single polynomial, called the resultant, which
is of central importance. In particular, the proof of Noether normalization
from §3.1.4, that the projection of a projective variety X ⊂ PW from a
point y ∈ PW with y 6∈ X, to P(W/ŷ) is still a projective variety relies on
the resultant to produce equations for the projection.

6.6. Symmetries of the determinant and permanent

The permanent and determinant both have the property that they are char-
acterized by their symmetry groups in the sense described in ***. I expect
these symmetry groups to play a central role in the study of Valiant’s con-
jecture in future work. For example, the only known exponential separation
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of the permanent from the determinant in any restricted model (as defined
in Chapter 7), is the model of equivariant determinantal complexity, which
is defined in terms of symmetry groups.

6.6.1. Symmetries of the determinant.

Theorem 6.6.1.1 (Frobenius [Fro97]). Write ρ : GLn2 → GL(SnCn2
) for

the induced action. Let φ ∈ GLn2 be such that ρ(φ)(detn) = detn. Then,

identifying Cn2
with the space of n× n matrices,

φ(z) =

{
gzh, or
gzTh

for some g, h ∈ GLn, with detn(g) detn(h) = 1. Here zT denotes the trans-
pose of z.

I will present the proof from [Die49].

Write Cn2
= E⊗F = Hom(E∗, F ) with E,F = Cn. Let Zn denote the

cyclic group on n elements and consider the inclusion Zn × Zn ⊂ GL(E)×
GL(F ) given by the n-th roots of unity times the identity matrix. Let µn
denote the kernel of the product map (Zn)×2 → Zn.

Corollary 6.6.1.2. Gdetn = (SL(E)× SL(F ))/µn o Z2

To prove the Corollary, just note that the C∗ corresponding to det(g)
above and µn are the kernel of the map C∗×SL(E)×SL(F )→ GL(E⊗F ).

Exercise 6.6.1.3: (2) Prove the n = 2 case of Corollary 6.6.1.2. }

Lemma 6.6.1.4. Let U ⊂ E⊗F be a linear subspace such that U ⊂
Z(detn). Then dimU ≤ n2 − n. The subvariety of the Grassmannian
G(n2 − n,E⊗F ) consisting of maximal linear spaces on Z(detn) has two
irreducible components, call them Σα and Σβ, where

Σα = {X ∈ G(n2 − n,E⊗F ) | ker(X) = L̂ for some L ∈ PE∗}, and(6.6.1)

Σβ = {X ∈ G(n2 − n,E⊗F ) | Image(X) = Ĥ for some H ∈ PF ∗}.(6.6.2)

Here for f ∈ X, f : E∗ → F is considered as a linear map, ker(X) means
the intersections of the kernels of all f ∈ X and Image(X) is the span of all
the images.

Moreover, for any two distinct Xj ∈ Σα, j = 1, 2, and Yj ∈ Σβ we have

dim(X1 ∩X2) = dim(Y1 ∩ Y2) = n2 − 2n, and(6.6.3)

dim(Xi ∩ Yj) = n2 − 2n+ 1.(6.6.4)

Exercise 6.6.1.5: (2) Prove Lemma 6.6.1.4.

One can say more: each element of Σα corresponds to a left ideal and
each element of Σβ corresponds to a right ideal in the space of n×n matrices.
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Proof of theorem 6.6.1.1. Let Σ = Σα ∪ Σβ. Then the automorphism
of G(n2 − n,E⊗F ) induced by φ must preserve Σ. By the conditions
(6.6.3),(6.6.4) of Lemma 6.6.1.4, in order to preserve dimensions of inter-
sections, either every U ∈ Σα must map to a point of Σα, in which case
every V ∈ Σβ must map to a point of Σβ, or, every U ∈ Σα must map to a
point of Σβ, and every V ∈ Σβ must map to a point of Σα. If we are in the

second case, replace φ by φ ◦ T , where T (z) = zT , so we may now assume φ
preserves both Σα and Σβ.

Now Σα ' PE∗, so φ induces an algebraic map φE : PE∗ → PE∗.
Exercise 6.6.1.6: (2) Show that if L1, L2, L3 ∈ PE lie on a P1, then
dim(UL1 ∩ UL2 ∩ UL3) = n2 − 2n.

In order for φ to preserve dim(UL1 ∩ UL2 ∩ UL3), the images of the Lj
under φE must also lie on a P1, and thus φE must take lines to lines (and
similarly hyperplanes to hyperplanes). But then, (see, e.g., [Har95, §18, p.
229]) φE ∈ PGL(E), and similarly, φF ∈ PGL(F ), where φF : PF ∗ → PF ∗
is the corresponding map. Here PGL(E) denotes GL(E)/C∗, the image of

GL(E) in its action on projective space. Write φ̂E ∈ GL(E) for any choice
of lift and similarly for F .

Consider the map φ̃ ∈ GL(E⊗F ) given by φ̃(X) = φ̂E
−1φ(X)φ̂F

−1.

The map φ̃ sends each U ∈ Σα to itself as well as each V ∈ Σβ, in particular
it does the same for all intersections. Hence it preserves Seg(PE × PF ) ⊂
P(E⊗F ) point-wise, so it is up to scale the identity map because E⊗F is

spanned by points of Ŝeg(PE × PF ). �

6.6.2. Symmetries of the permanent. Write Cn2
= E⊗F . Let ΓEn :=

TSLE o Sn, and similarly for F . Then it is easy to see (ΓEn × ΓFn ) o Z2 →
Gpermn

, where the nontrivial element of Z2 acts by sending a matrix to its
transpose. We would like to show this map is surjective and determine its
kernel. However, it is not when n = 2.

Exercise 6.6.2.1: What is Gperm2
? }

Theorem 6.6.2.2. [MM62] For n ≥ 3, Gpermn
= (ΓEn × ΓFn )/µn o Z2.

Proof. I follow [Ye11]. Recall the description of Z(permn)Jac,n−2 from
Lemma 6.3.2.4. Any linear transformation preserving the permanent must
send a component of Z(permn)Jac,n−2 of type (1) to another of type (1). It

must send a component Cj either to some Ck or some Ci. But if i 6= j,
Cj ∩ Ci = 0 and for all i, j, dim(Ci ∩ Cj) = 1. Since intersections must be
mapped to intersections, either all components Ci are sent to components
Ck or all are permuted among themselves. By composing with an element
of Z2, we may assume all the Ci’s are sent to Ci’s and the Cj ’s are sent to
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Cj ’s. Similarly, by composing with an element of Sn ×Sn we may assume
each Ci and Cj is sent to itself. But then their intersections are sent to
themselves. So we have, for all i, j,

(6.6.5) (xij) 7→ (λijx
i
j)

for some λij and there is no summation in the expression. Consider the
image of a size 2 submatrix, e.g.,

(6.6.6)
x1

1 x1
2

x2
1 x2

2
7→ λ1

1x
1
1 λ1

2x
1
2

λ2
1x

2
1 λ2

2x
2
2
.

In order that the map (6.6.5) be in Gpermn
, when (xij) ∈ Z(permn)Jac,n−2,

the permanent of the matrix on the right hand side of (6.6.6) must be zero.
Using that x1

1x
2
2 + x1

2x
2
1 = 0, the permanent of the right hand side of (6.6.6)

is λ1
1λ

2
2x

1
1x

2
2 +λ2

1λ
1
2x

1
2x

2
1 = x1

1x
2
2(λ1

1λ
2
2−λ2

1λ
1
2) which implies λ1

1λ
2
2−λ1

2λ
2
1 = 0,

thus all the 2× 2 minors of the matrix (λij) are zero, so it has rank one and
is the product of a column vector and a row vector, but then it is an element
of TE × TF . �

6.6.3. Do optimal determinantal expressions see symmetry? Recall
from Chapter 4 that the symmetries of the matrix multiplication tensor
appear in the optimal and conjecturally optimal rank expressions for it. Will
the same be true for determinantal expressions of polynomials, in particular
of the permanent?

The best known determinantal expression of permm is of size 2m−1 and
is due to Grenet [Gre11]. (Previously Valiant [Val79a] had shown there
was an expression of size 4m.) We saw (Corollary 6.3.3.8) that when m = 3
this is the best expression. This motivated N. Ressayre and myself to try
to understand Grenet’s expression. We observed the following equivariance
property:

Recall ΓEm ⊂ TSLE oSm ⊂ Gpermm
from §6.6.2.

Proposition 6.6.3.1. [LR15] Grenet’s expressions ÃGrenet : Matm(C) →
Matn(C) such that permm(Y ) = detn(ÃGrenet(Y )) are ΓEm-equivariant. Namely,

given g ∈ ΓEm, there exist n× n matrices B,C such that ÃGrenet,m(g · Y ) =

BÃGrenet,m(Y )C. , i.e, there exists an injective group homomorphism ψ :

ΓEm → Gdetn such that ÃGrenet,m(Y ) = ψ(g)(ÃGrenet,m(gY )).

For example, let

g(t) =

t1 t2
t3

 .
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Then AGrenet,3(g(t)Y ) = B(t)AGrenet,3(Y )C(t), where

B(t) =



t3
t1t3

t1t3
t1t3

1
1

1


and C(t) = B(t)−1.

Exercise 6.6.3.2: (2) Determine B(g) and C(g) when g ∈ ΓE3 is the per-
mutation (1, 2).

In fact, via this equivariance, one can give an invariant description of
Grenet’s expressions:

Let let k ∈ [m]. The space SkE is an irreducible GL(E)-module but
it is is not irreducible as a ΓEm-module. For example, let e1, . . . , em be a
basis of E, and let (SkE)reg denote the span of

∏
i∈I ei, for I ⊂ [m] of

cardinality k (the space spanned by the square-free monomials, also known
as the space of regular weights): (SkE)reg is an irreducible ΓEm-submodule

of SkE. Moreover, there exists a unique ΓEm-equivariant projection πk from
SkE to (SkE)reg.

For v ∈ E, define sk(v) : (SkE)reg → (Sk+1E)reg to be multiplica-

tion by v followed by πk+1. Alternatively, (Sk+1E)reg is a ΓEm-submodule

of E⊗(SkE)reg, and sk : E → (SkE)∗reg⊗(Sk+1E)reg is the unique ΓEm-
equivariant inclusion. Let IdW : W → W denote the identity map on the
vector space W . Fix a basis f1, . . . , fm of F ∗.

Proposition 6.6.3.3. [LR15] The following is Grenet’s determinantal rep-

resentation of permm. Let Cn =
⊕m−1

k=0 (SkE)reg, so n = 2m−1, and identify
S0E ' (SmE)reg (both are trivial ΓEm-modules). Set

Λ0 =
m−1∑
k=1

Id(SkE)reg

and define

(6.6.7) Ã = Λ0 +
m−1∑
k=0

sk⊗fk+1.

Then (−1)m+1 permm = detn ◦Ã. To obtain the permanent exactly, replace
Id(S1E)reg by (−1)m+1 Id(S1E)reg in the formula for Λ0.

In bases respecting the block decomposition induced from the direct sum,
the linear part, other than the last term which lies in the upper right block,
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lies just below the diagonal blocks, and all blocks other than the upper right
block and the diagonal and sub-diagonal blocks, are zero.

Moreover the map Ã is ΓEm-equivariant.

I prove Proposition 6.6.3.3 in §8.12.4.

6.7. dc v. dc

Is conjecture 6.1.6.2 really stronger than Valiant’s conjecture 6.1.6.1? That
is, do there exist sequences (Pm) of polynomials with dc(Pm) bounded by a
polynomial in m but dc(Pm) growing super-polynomially?

K. Mulmuley [Mul] conjectures that this is indeed the case, and the
existence of such sequences “explains” why Valiant’s conjecture is so difficult.

Before addressing this conjecture, one should at least find a sequence
Pm with dc(Pm) > dc(Pm). At least such a sequence is known as I now
describe.

Warning: this section is in very rough form

**begin with general discussion of finding components on the bound-
ary***

6.7.1. On the boundary of the orbit of the determinant. **get rid
of module structure, postphone

Recall that the transposition τ ∈ Gdetn allows us to write Cn2
= E⊗E =

S2E ⊕ Λ2E, where the decomposition is into the ±1 eigenspaces for τ . For
M ∈ E⊗E, write M = MS +MΛ reflecting this decomposition.

Define a polynomial PΛ ∈ Sn(Cn2
)∗ by

PΛ(M) = detn(MΛ, . . . ,MΛ,MS).

Let Pfi(MΛ) denote the Pfaffian of the skew-symmetric matrix, obtained
from MΛ by suppressing its i-th row and column. Write MS = (sij).

Exercise 6.7.1.1: Show that

PΛ(M) =
∑
i,j

sijPfi(MΛ)Pfj(MΛ).

In particular, PΛ = 0 if n is even but is not identically zero when n is odd.

Proposition 6.7.1.2. [LMR13] PΛ,n ∈ Detn. Moreover, GL(W ) · PΛ is
an irreducible codimension one component of the boundary of Detn, not
contained in End(W ) · [detn]. In particular dc(PΛ,m) = m < dc(PΛ,m).

The proof of Proposition 6.7.1.2 is given in §8.5.1

The hypersurface defined by PΛ has interesting properties.



172 6. Permanent v. Determinant

Proposition 6.7.1.3. [LMR13]

Z(PΛ)∨ = P{v2 ⊕ v ∧ w ∈ S2Cn ⊕ Λ2Cn, v, w ∈ Cn} ⊂ Pn
2−1.

Proof. Note that

PΛ(M) = lim
t→0

1

t
det(MΛ + tMS).

�

As expected, Z(PΛ)∨ resembles Seg(Pn−1 × Pn−1).

Remark 6.7.1.4. For those familiar with the notation, Z(PΛ) can be de-
fined as the image of the projective bundle π : P(E) → Pn−1, where E =
O(−1)⊕Q is the sum of the tautological and quotient bundles on Pn−1, by
a sub-linear system of OE(1) ⊗ π∗O(1). This sub-linear system contracts
the divisor P(Q) ⊂ P(E) to the Grassmannian G(2, n) ⊂ PΛ2Cn.

Remark 6.7.1.5. A second way to realize the polynomial P = ∗ ∗ ∗ from
Example ?? is via PΛ: take

MΛ =

 0 x3 x2

−x3 0 x1

−x2 −x1 0

 , MS =

x1 0 0
0 x4 0
0 0 x2

 .

6.7.2. Mulmuley’s conjectures on the wildness of the boundary.
Give conj, discuss why other models may be too weak, what is known about
gap between rank and border rank, include ABV example here with dc > dc.

Theorem 6.7.2.1 (Alper-Bogart-Velasco [ABV15]). dc(x3
1+x2

2x3+x2x
2
4) ≥

6.

Remark 6.7.2.2. Note that in contrast D̂et3 ⊃ PS3C4 **put in proof??***.
In particular a smooth cubic in four variables has determinantal complexity
three. Since x3

1 + x2
2x3 + x2x

2
4 can degenerate to a polynomial with deter-

minantal complexity three (in fact it is the unique cubic in four variables
with determinantal complexity greater than three), we see the failure of
semi-continuity ... say more....

6.7.3. Hüttenhain’s det3 theorem. **to be written**

6.8. Determinantal hypersurfaces

Classically, there was interest in determining which smooth hypersurfaces
of degree d were expressible as a d× d determinant. The result in the first
nontrivial case shows how daunting GCT might be.
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Theorem 6.8.0.1 (Letao Zhang and Zhiyuan Li). The variety P{P ∈ S4C4 |
[P ] ∈ Det4} ⊂ PS4C4 is a hypersurface of degree 640, 224.

The rest of this subsection uses more advanced language from algebraic
geometry and can be safely skipped.

The following “folklore” theorem was made explicit in [Bea00, Cor.
1.12]:

Theorem 6.8.0.2. Let U = Cn+1, let P ∈ SdU , and let Z = Z(P ) ⊂ CPn
be the corresponding hypersurface of degree d. Assume Z is smooth and

choose any inclusion U ⊂ Cd2
.

If P ∈ End(Cd2
) · [detd], we may form a map between vector bundles

M : OPn(−1)d → OdPn whose cokernel is a line bundle L → Z with the
properties:

i) H i(Z,L(j)) = 0 for 1 ≤ i ≤ n− 2 and all j ∈ Z
ii) H0(X,L(−1)) = Hn−1(X,L(j)) = 0

Conversely, if there exists L→ Z satisfying properties i) and ii), then Z
is determinantal via a map M as above whose cokernel is L.

If we are concerned with the hypersurface being in Detn, the first case
where this is not automatic is for quartic surfaces, where it is a codimension
one condition:

Proposition 6.8.0.3. [Bea00, Cor. 6.6] A smooth quartic surface is de-
terminantal if and only if it contains a nonhyperelliptic curve of genus 3
embedded in P3 by a linear system of degree 6.

Proof of 6.8.0.1. From Proposition 6.8.0.3, the hypersurface is the locus
of quartic surfaces containing a (Brill-Noether general) genus 3 curve C of
degree six. This translates into the existence of a lattice polarization

h C
h 4 6
C 6 4

of discriminant −(42 − 62) = 20. By the Torelli theorems, the K3 surfaces
with such a lattice polarization have codimension one in the moduli space
of quartic K3 surfaces.

Let D3,6 denote the locus of quartic surfaces containing a genus 3 curve
C of degree six in P34 = P(S4C4). It corresponds to the Noether-Lefschetz
divisor NL20 in the moduli space of the degree four K3 surfaces. Here
NLd denotes the Noether-Lefschetz divisor, parameterizing the degree 4 K3
surfaces whose Picard lattice has a rank 2 sub-lattice containing h with
discriminant −d. (h is the polarization of the degree four K3 surface, h2 =
4.)
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The Noether-Lefschetz number n20, which is defined by the intersection
number of NL20 and a line in the moduli space of degree four K3 surfaces,
equals the degree of D3,6 in P34 = P(S4C4).

The key fact is that nd can be computed via the modularity of the
generating series for any integer d. More precisely, the generating series
F (q) :=

∑
d ndq

d/8 is a modular form of level 8, and can be expressed by a

polynomial of A(q) =
∑

n q
n2/8 and B(q) =

∑
n(−1)nqn

2/8.

The explicit expression of F (q) is in [MP, Thm 2]. As an application,

the Noether-Lefschetz number n20 is the coefficient of the term q20/8 = q5/2,
which is 640, 224. �



Chapter 7

Valiant’s conjecture II:
Restricted models and
other approaches

This chapter continues the discussion of Valiant’s conjecture and its variants.
So far we have approached Valiant’s conjecture and its variants by trying
to improve benchmarks such as proving lower bounds for dc(permm). An-
other approach to these conjectures to to prove them under supplementary
hypotheses, which are called restricted models in the computer science liter-
ature. In the case of the restricted models of shallow circuits introduced in
§7.1, there is a path to proving the full conjecture by proving lower complex-
ity bounds that are stronger than super-polynomial, as explained in §7.1. I
begin the section with a detour for readers not familiar with big numbers
as different levels of super-polynomial growth need to be compared both for
statements and proofs, and a discussion of the geometry of one of the sim-
plest class of shallow circuits, the ΣΛΣ-circuits whose complexity essentially
measures symmetric tensor rank. In §7.2 I explain the geometry associated
to the depth 3,4, and 5 circuits that arise in [GKKS13a], as interesting
lower bounds have been proven in those models. I return to them in §7.5,
proving the lower bounds of [GKKS13a] for the permanent and determi-
nant in those models and analyze the method of proof, shifted partial deriva-
tives is in detail. There are several complexity measures that are equivalent
to determinantal complexity, such as algebraic branching programs and it-
erated matrix multiplication complexity These are discussed in §7.3. Several
additional restricted models are presented in §7.4: Shpilka’s [Shp02] depth-2
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176 7. Valiant’s conjecture II: Restricted models and other approaches

symmetric arithmetic circuits, Aravind and Joegelkar’s rank k determinan-
tal expressions of [AJ15], a beautiful result of Glynn [Gly13] on a certain
class of expressions for the permanent, Nisan’s non-commutative circuits
[Nis91], and the equivariant determinantal complexity of [LR15].

As pointed out by Shpilka and Yehudayoff in [SY09], restricted circuits
of polynomial size only compute polynomials with “simple” structure. Thus
to understand them one needs to determine the precise meaning of “simple”
for a give restricted class, and then find an “explicit” polynomial without
such structure. One could rephrase this geometrically as restricted circuits
of a fixed size define an algebraic variety in SnCN that is the closure of the
set of polynomials computable with a restricted circuit of that size. The
goal becomes to find an equation of that variety and an explicit polynomial
not satisfying that equation.

7.1. Shallow Circuits

The depth of a circuit C is the length of (i.e., the number of edges in)
the longest path in C from an input to its output. If a circuit has small
depth, it is called a shallow circuit, and the polynomial it computes can be
computed quickly in parallel. When one studies circuits of bounded depth,
one must allow gates to have an arbitrary number of edges coming in to
them (“unbounded fanin”). For such circuits, multiplication by constants is
considered “free ”.

There are depth reduction theorems described in §7.1.3 that enable one
substitute the problem of e.g., showing that there does not exist a small
circuit computing the permanent to the problem of showing that there does
not exists a “slightly less small” shallow circuit computing the permanent.
These classes of shallow circuits have algebraic varieties associated to them:
the depth three or ΣΠΣ circuits, which consist of depth three formulas where
the first layer of gates consist of additions, the second of multiplications, and
the last gate is an addition gate, the ΣΛΣΛΣ circuits, which are depth five
circuits where the first layer of gates are additions, the second layer consists
of “powering gates”, where a powering gate takes f to f δ for some natural
number δ, the third layer addition gates, the fourth layer again powering
gates, and the fifth layer is an addition gate, and the the depth four ΣΠΣΠ
circuits which are similarly defined. I describe the associated varieties to
these classes of circuits in §7.2.1, §7.2.2, and §??. A ΣΛαΣΛβΣ means the
powers are respectively β and α, and other superscripts are to be similarly
interpreted.

One can restrict one’s class of circuits further by requiring that they are
homogeneous in the sense that each gate computes a homogeneous polyno-
mial. It turns out that for ΣΛΣΛΣ circuits, this is not restrictive for the
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questions of interest, but for ΣΠΣ circuits, there is a tremendous loss of
computing power described in §??. As described in §??, this loss of com-
puting power can be overcome by something we are already familiar with:
computing padded polynomials.

7.1.1. Detour for those not familiar with big numbers. When deal-
ing with shallow circuits, we will have to distinguish between different rates
of super-polynomial growth, both in statements and proofs of theorems.
This detour is for those readers not used to comparing large numbers.

n! '
√

2πn(
n

e
)n(7.1.1)

ln(n!) = n ln(n)−O(ln(n))(7.1.2) (
2n

n

)
'

4n√
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(7.1.3)

ln

(
αn

βn

)
= αHe(

β

α
)n−O(lnn)(7.1.4) (
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βn

)
∼ [

αα

ββ(α− β)α−β
]n(7.1.5)

where He(x) := −x lnx− (1−x) ln(1−x) is the Shannon entropy. All these
identities follow from (7.1.1), which follows from Stirling’s formula, which
gives an approximation for the Gamma function, e.g., for x > 0,

Γ(x) =
√

2πxx−
1
2 e−xe

θ(x)
12x

where 0 < θ(x) < 1. Stirling’s formula may be proved via complex analysis
(estimating a contour integral), see, e.g. [Ahl78, §5.2.5].

Exercise 7.1.1.1: (1) Show alog(b) = blog(a).

Exercise 7.1.1.2: (1) Consider the following sequences of n:

log2(n), n, 100n, n2, n3, nlog2(n), 2[log2(n)]2 , n
√

log2(n), 2n,

(
2n

n

)
, n!, nn.

In each case, determine for which n, the sequence surpasses the number of
atoms in the known universe. (It is estimated that there are between 1078

and 1082 atoms in the known universe.)

Exercise 7.1.1.3: (1) Compare the sizes of s
√
d and 2

√
d log ds.

Exercise 7.1.1.4: (1) Compare the sizes of
(n2+n

2
−1

n
2

)
and

(
n
n
2

)2
.

7.1.2. σr(vd(PV ) and ΣΛΣ circuits. Recall the definition of RS from
§6.2.2. One of the simplest class of shallow circuits are the ΣΛΣ circuits
mentioned in §6.2, where a polynomial P ∈ SnV admits a size O(r) ΣΛΣ
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circuit, i.e., P = `n1 + · · · + `nO(r) for some `j ∈ V by definition means

[P ] ∈ σ0
O(r)(vn(PV )), where the superscript denotes the Zariski open subset

of σO(r)(vn(PV )) consisting of points on an honest secant Pr−1.

In this subsection I describe upper and lower bounds for RS and RS for
several basic polynomials. First for a monomial, there is Fischer’s formula
[Fis94]:

(7.1.6) x1 · · ·xn =
1

2n−1n!

∑
ε∈{−1,1}n−1

(x1 + ε1x2 + · · ·+ εn−1xn)nε1 · · · εn−1

Remark 7.1.2.1. In §10.6, I show that (7.1.6) is optimal, i.e., thatRS(x1 · · ·xn) =
2n−1, which was first shown in [RS11].

Exercise 7.1.2.2: (1) Verify (7.1.6).

Note that x1 · · ·xn = en,n. Here is a generalization of Fischer’s formula
for odd degree due to H. Lee [Lee16] (which is also optimal, see §??). First,
when when n = 2k + 1 is odd, rewrite Fischer’s formula as:
(7.1.7)

x1x2 · · ·xn =
1

2n−1n!

∑
I⊂[n],|I|≤k

(−1)|I|(δ(I, 1)x1+δ(I, 2)x2+· · ·+δ(I, n)xn)n.

For an integer set I and an integer i, define

δ(I, i) =

{
−1 i ∈ I
1 i 6∈ I .

Theorem 7.1.2.3. [Lee16] Let d = 2k + 1 and let N ≥ d. Then

ed,N =
1

2d−1d!

∑
I⊂[N ],|I|≤k

(−1)|I|
(
N − k − |I| − 1

k − |I|

)
(δ(I, 1)x1+δ(I, 2)x2+· · ·+δ(I,N)xN )d.

In particular, for d odd, RS(ed,N ) ≤
∑b d

2
c

i=0

(
N
i

)
.

Proof. We work by downwards induction, the case d = N is Fischer’s for-
mula. Let d < N and let Fd,N denote the right hand side of the expression.

Observe that Fd,d = ed,d and Fd,N−1 = Fd,N (x1, . . . , xN−1, 0) up to a
constant. In particular Fd,d = Fd,N (x1, . . . , xd, 0, . . . , 0). The analogous
statement holds setting any subset of the variables to zero. This implies
that Fd,N is an expression that has all the square-free monomials in ed,N
appearing in it. Moreover, there are no other monomials appearing in Fd,N
as otherwise there would be a monomial involving fewer than d variables that
would appear in some specialization to some ed,d. Checking the constant is
correct, we conclude. �
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Using the flattening (see §6.2), (detn)dn
2
e,bn

2
c : Sd

n
2
eW → Sb

n
2
cW and

writing W = E⊗F = Cn⊗Cn, the image of (detn)dn
2
e,bn

2
c is Λb

n
2
cE⊗Λb

n
2
cF ,

the minors of size bn2 c. For the permanent one similarly gets sub-permanents.
Thus,

(7.1.8) RS(detn) ≥
(
n

bn2 c

)2

, RS(permn) ≥
(
n

bn2 c

)2

.

Exercise 7.1.2.4: (1) Find a lower bound for RS(x1 · · ·xn).

The following proposition bounds ΣΛΣ complexity by dc:

Proposition 7.1.2.5. `n−mσr(vm(PV )) ⊂ Detn when n > rm.

Exercise 7.1.2.6: (2) Prove Proposition 7.1.2.5.}

7.1.3. Depth reduction theorems. A major result in the study of shal-
low circuits was [VSBR83], where it was shown that if a polynomial of
degree d can be computed by a circuit of size s, then it can be computed by
a circuit of depth O(log d log s) and size polynomial in s.

Here are the relevant results relevant for our discussion. They combine
results of [Bre74, GKKS13b, ?, Koi, AV08]:

Theorem 7.1.3.1. Let N = N(n) be a polynomial and let Pn ∈ SnCN be a
sequence of polynomials that can be computed by a circuit of size s = s(n).

Then:

(1) P is computable by a homogeneous ΣΠΣΠ circuit of size 2O(
√
n log(ns) log(N)).

(2) P is computable by a ΣΠΣ circuit of size roughly s
√
n, more pre-

cisely of size 2O(
√
n log(N) log(ns)).

(3) P is computable, by a homogeneous ΣΛΣΛΣ circuit of size roughly

s
√
n, more precisely of size 2O(

√
n log(ns) log(N)), and both powering

gates of size of roughly
√
n.

Here are ideas towards the proof: In [GKKS13b] they prove upper
bounds for the size of an inhomogeneous depth three circuit computing
a polynomial, in terms of the size of an arbitrary circuit computing the
polynomial. They first apply the work of [Koi, AV08], which allows one to
reduce an arbitrary circuit of size s computing a polynomial of degree d in
n variables to a formula of size 2O(log s log d) and depth d.

The next step is via the iterated matrix multiplication polynomial. In
§7.3 we will see that formula size is at least as large as iterated matrix
multiplication complexity. Say we can compute f ∈ SmCM via m matrix
multiplications of n× n matrices with linear entries. Group the entries into
groups of dma e for some a. To simplify the discussion, assume m

a is an integer,
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otherwise adjust accordingly. Write

X1 · · ·Xm = (X1 · · ·Xm
a

)(Xm
a

+1 · · ·X2m
a

) · · · (Xm−m
a

+1 · · ·Xm).

Each term in parenthesis can be computed (brutally) via a ΣΠ
m
a -circuit of

size n
m
a . After getting the resulting matrices, we can compute the rest via

a ΣΠa circuit of size na. This reduces one to a depth four circuit of size

s′ = 2O(
√
d log d log s logn) Then we can get a depth five powering circuit using

(7.1.6).

The new circuit has size O(s′) and is of the form ΣΛΣΛΣ. Finally, they
use (6.1.6) to convert the power sums to elementary symmetric functions
which keeps the size at O(s′) and drops the depth to three.

7.2. Geometry and shallow circuits

There is a simple geometric reformulation of ΣΛΣΛΣ circuits given in §7.2.1.
There is a natural geometric reformulation of homogeneous depth three cir-
cuits described in §7.2.2, namely via the variety σr(Chd(PV )). Unfortu-
nately, homogeneous depth three circuits are next to useless, as is explained
in §7.2.4. To make use of the variety σr(Chd(PV )), despite it being only
useful for homogeneous depth three circuits while Theorem 7.1.3.1 requires
arbitrary depth three circuits, one works with padded polynomials, as I
explain in §7.2.5.

7.2.1. Geometric reformulation of homogeneous ΣΛΣΛΣ circuits.
Recall that computer scientists always work in bases and the inputs to the
circuits are constants and variables. For homogeneous circuits, the inputs
are simply the variables. The first layer of such a circuit is just to obtain
arbitrary linear forms from these variables, so it plays no role in the ge-
ometry. The second layer sends a linear form ` to `δ, i.e., we are forming
points of vδ(PV ). The next layer consists of addition gates, which means
we obtain sums of d-th powers, i.e., points of σr(vδ(PV )). Then at the next
layer, we take Veronese re-embeddings of these secant varieties to obtain
points of vδ′(σr(vδ(PV ))), and in the final addition gate we obtain a point
of σr′(vδ′(σr(vδ(PV )))). Thus we may rephrase Theorem 7.1.3.1(2) as:

Proposition 7.2.1.1. [Lan14a] Let d = nO(1) and let P ∈ SdCn be a
polynomial sequence that can be computed by a circuit of size s. Then

[P ] ∈ σr1(v d
δ
(σr2(vδ(Pn−1)))) with roughly δ ∼

√
d and r1r2 ∼ s

√
d, more

precisely r1r2δ = 2O(
√
d log(ds) log(n)).

Corollary 7.2.1.2. [GKKS13b] If for all but finitely many m, δ '
√
m,

and all r1, r2 such that r1r2 = 2
√
m log(m)ω(1), one has [permm] 6∈ σr1(vm/δ(σr2(vδ(Pm

2−1)))),



7.2. Geometry and shallow circuits 181

then there is no circuit of polynomial size computing the permanent, i.e.,
VP 6= VNP.

Problem 7.2.1.3. Find equations for σr1(vδ(σr2(vδ(Pm
2−1)))).

7.2.2. Multiplicative joins and depth four circuits. Following [Lan10],
for varieties X ⊂ PSaW and Y ⊂ PSbW , define the multiplicative join of
X and Y , MJ(X,Y ) := {[xy] | [x] ∈ X, [y] ∈ Y } ⊂ PSa+bW , and de-
fine MJ(X1, . . . , Xk) similarly. Let µk(X) = MJ(X1, . . . , Xk) when all
the Xj = X, which is a multiplicative analog of the secant variety. Note
that µk(PW ) = Chk(W ). The varieties associated to the polynomials com-
putable by bounded depth formulas are of the form σrk(µdk−1

(σrk−2
(· · ·µd1(PW ) · · · ))),

and µdk+1
(σrk(µdk−1

(σrk−2
(· · ·µd1(PW ) · · · )))). In particular, a ΣrΠαΣsΠβ

circuit computes (general) points of σr(µα(σs(µβ(PW ))).

7.2.3. Secant varieties and homogeneous depth three circuits. The
relation between secant varieties of Chow varieties and depth three circuits
is as follows:

Proposition 7.2.3.1. A polynomial P ∈ SnW in σ0
r (Chn(W )) is com-

putable by a homogeneous depth three circuit of size r + nr(1 + w). If
P 6∈ σ0

r (Chn(W )), then P cannot be computed by a homogeneous depth
three circuit of size n(r + 1) + (r + 1).

Proof. In the first case, P =
∑r

j=1(x1j · · ·xnj) for some xsj ∈ W . Ex-
pressed in terms of a fixed basis of W , each xsj is a linear combination of
at worst w basis vectors, thus to create each one requires at worst nrw
additions. Then to multiply them in groups of n is nr multiplications, and
finally to add these together is r further additions. In the second case, at
best P is in σ0

r+1(Chn(W )), in which case, even if each of the xsj ’s is a basis
vector (so no initial additions are needed), we still must perform n(r + 1)
multiplications and r + 1 additions. �

I first explain why the computer science literature generally allows in-
homogeneous depth three circuits, and then why one does not need to do
so.

7.2.4. Why homogeneous depth three circuits do not appear useful
at first glance. Recalling (see §7.1.1) that

(
2m
m

)
∼ 4m√

πm
, by (7.1.8) we have

[detn], [permn] 6∈ σO( 4n

n
)vn(PW ). On the other hand, (7.1.6), implies

σr(Chn(W )) ⊂ σr2n(vn(PW )).

We conclude, for any constant C and n sufficiently large, that

detn 6∈ σC 2n

n
(Chn(W )),
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and similarly for the permanent. By Proposition 7.2.3.1, we conclude:

Proposition 7.2.4.1. [NW97] The polynomial sequences detn and permn

do not admit homogeneous depth three circuits of size 2n.

Thus homogeneous depth three circuits at first sight do not seem that
powerful because a polynomial sized homogeneous depth 3 circuit cannot
compute the determinant.

To make matters worse, consider the polynomial corresponding to iter-
ated matrix multiplication of three by three matrices IMM3

k ∈ Sk(C9k). It
is complete for VPe of Remark 6.1.5.2, and also has an exponential lower
bound for its Chow border rank:

Exercise 7.2.4.2: Use flattenings to show RS(IMM3
k ) ≥ (const.)3k, and

conclude IMM3
k 6∈ σpoly(k)(Chk(W )).

By Exercise 7.2.4.2, sequences of polynomials admitting polynomial size
formulas do not in general have polynomial size depth three circuits.

7.2.5. Homogeneous depth three circuits for padded polynomials.
If one works with padded polynomials instead of polynomials (as we did with
Detn), the power of homogeneous depth three circuits increases dramati-
cally. (As mentioned above, in [GKKS13b] and elsewhere they consider
inhomogeneous polynomials and circuits instead of padding.) The following
geometric version of a result of Ben-Or (presented below as a Corollary) was
suggested by K. Efremenko:

Proposition 7.2.5.1. Let Cm+1 have coordinates `, x1, . . . , xm and let ekm =
ekm(x1, . . . , xm). For all k ≤ m, `m−kekm ∈ σ0

m(Chm(Cm+1)).

Proof. Fix an integer u ∈ Z and define

gu(x, `) = (u`)mEm(
1

u`
)

=
m∏
i=1

(xi + u`)

=
∑
k

um−kekm(x)`m−k.

Note gu(x, `) ∈ Chm(Cm+1). Letting u = 1, . . . ,m, we may use the inverse
of the Vandermonde matrix to write each `m−kekm as a sum of m points in
Chm(Cm+1) because

10 11 · · · 1m

20 21 · · · 2m

...
m0 m1 · · · mm



`m−1e1

m

`m−2e2
m

...
`0emm

 =


g1(x, `)
g2(x, `)

...
gm(x, `)

 .
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�

Corollary 7.2.5.2 (Ben-Or). `m−kekm can be computed by a homogeneous
depth three circuit of size 3m2 +m.

Proof. As remarked above, for any point of σrChn(Cm+1) one gets a circuit
of size at most r+nr+ rn(m+ 1), but here at the first level all the addition
gates have fanin two (i.e., there are two inputs to each addition gate) instead
of the possible m+ 1. �

Remark 7.2.5.3. The best lower bound for computing the ekn via a ΣΠΣ
circuit is Ω(n2) [SW01], so Corollary 7.2.5.2 is very close to (and may well
be) sharp.

Proposition 7.2.5.4. Say P ∈ SmCM is computable by a depth three
circuit of size s. Then `n−mP is computable by a homogeneous depth three
circuit of size O(s2).

Proof. Start with the inhomogeneous circuit computing P . At the first
level, add a homogenizing variable `, so that the affine linear outputs be-
come linear in our original variables plus `, the product gates will each
produce a homogeneous polynomial. While the different product gates may
produce polynomials of different degrees, if we were trying to produce a
homogeneous polynomial, when we add them up what remains must be a
sum of homogeneous polynomials, such that when we set ` = 1, we obtain
the desired homogeneous polynomial. Say the largest power of ` appearing
in this sum is qL. Note that qL < s. For each other term there is some
other power of ` appearing, say qi for the i-th term. Then to the original
circuit, add qL − qi inputs to the i-th product gate, where each input is `.
This will not change the size of the circuit by more than qLr < s2. Our new
homogeneous depth three circuit will output `qLP . �

In geometric language:

Proposition 7.2.5.5. [Lan14a] Let d = NO(1) and let P ∈ SdCN be a
polynomial that can be computed by a circuit of size s.

Then [`n−dP ] ∈ σr(Chn(CN+1)) with roughly rn ∼ s
√
d, more precisely,

rn = 2O(
√
d log(N) log(ds)).

Corollary 7.2.5.6. [GKKS13b] [`n−m detm] ∈ σr(Chn(Cm2+1)) where rn =

2O(
√
m logm).

Proof. The determinant admits a circuit of size m4, so it admits a ΣΠΣ
circuit of size

2O(
√
m log(m) log(m∗m4)) = 2O(

√
m logm),

so its padded version lies in σr(Chn(Cm2+1)) where rn = 2O(
√
m logm). �
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Corollary 7.2.5.7. [GKKS13b] If for all but finitely many m and all r, n

with rn = 2
√
m log(m)ω(1), one has [`n−m permm] 6∈ σr(Chn(Cm2+1)), then

there is no circuit of polynomial size computing the permanent, i.e., VP 6=
VNP.

Proof. One just needs to observe that the number of edges in the first layer
(which are invisible from the geometric perspective) is dominated by the
number of edges in the other layers. �

Remark 7.2.5.8. The expected dimension of σr(Chm(W )) is rmw + r−1.
If we take n and work instead with padded polynomials `n−mP , the expected
dimension of σr(Chn(W )) is rnw+r−1. In contrast, the expected dimension
of σr(vd−a(σρ(va(PW )))) does not change when one increases the degree,
which gives some insight as to why padding is so useful for homogeneous
depth three circuits but not for ΣΛΣΛΣ circuits.

7.3. Algebraic branching programs and determinants

7.3.1. Algebraic branching programs and iterated matrix multi-
plication.

Definition 7.3.1.1 (Nisan [Nis91]). An Algebraic Branching Program (ABP)
over C is a directed acyclic graph Γ with a single source s and exactly one
sink t. Each edge e is labeled with an affine linear function `e in the vari-
ables {yi|1 ≤ i ≤ M}. Every directed path p = e1e2 · · · ek represents the

product Γp :=
∏k
j=1 `ej . For each vertex v the polynomial Γv is defined as∑

p∈Ps,v Γp where Ps,v is the set of paths from s to v. We say that Γv is

computed by Γ at v. We also say that Γt is computed by Γ or that Γt is the
output of Γ.

The size of Γ is the number of vertices. Let abpc(P ) denote the smallest
size of an algebraic branching program that computes P .

An ABP is layered if we can assign a layer i ∈ N to each vertex such that
for all i, all edges from layer i go to layer i+ 1. Let labpc(P ) denote the the
smallest size of a layered algebraic branching program that computes P . Of
course labpc(P ) ≥ abpc(P ).

An ABP is homogeneous if the polynomials computed at each vertex are
all homogeneous.

A homogeneous ABP Γ is degree layered if Γ is layered and the layer of a
vertex v coincides with the degree of v. For a homogeneous P let dlabpc(P )
denote the the smallest size of a degree layered algebraic branching program
that computes P . Of course dlabpc(P ) ≥ labpc(P ).

Definition 7.3.1.2. The iterated matrix multiplication complexity of a poly-
nomial P (y) in M variables, immc(P ) is the smallest n such that there
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exists affine linear maps Bj : CM → Matn(C), j = 1, . . . , n, such that
P (y) = trace(Bn(y) · · ·B1(y)). The homogeneous iterated matrix multi-
plication complexity of a degree m homogeneous polynomial P ∈ SmCM ,
himmc(P ), is the smallest n such that there exist natural numbers n1, . . . , nm
with 1 = n1, and n = n1 + · · · + nm, and linear maps As : CM →
Matns×ns+1 , 1 ≤ s ≤ m, with the convention nm+1 = n1, such that P (y) =
Am(y) · · ·A1(y).

In this section we describe how to obtain a size O(m3) regular deter-
minantal expression for detm. We use standard techniques about algebraic
branching programs and an algorithm described by Mahajan and Vinay
[MV97].

Proposition 7.3.1.3. Let P be a polynomial. Then dc(P ) ≤ labpc(P )− 1.
Moreover, if the constant term of P is zero, then we also have rdc(P ) ≤
labpc(P )− 1.

Proof. From a layered algebraic branching program Γalgbp we create a di-
rected graph Γroot by identifying the source and the sink vertex and by
calling the resulting vertex the root vertex. From Γroot we create a directed
graph Γloops by adding at each non-root vertex a loop that is labeled with
the constant 1. Let A denote the adjacency matrix of Γloops. Since Γalgbp is
layered, each path from the source to the sink in Γalgbp has the same length.
If that length is even, then det(A) equals the output of Γalgbp, otherwise
−det(A) equals the output of Γalgbp. This proves the first part.

Now assume P has no constant term. Let Λ denote the constant part
of A, so Λ is a complex square matrix. Since Γalgbp is layered we ignore
all edges coming out of the sink vertex of Γalgbp and order all vertices of
Γalgbp topologically, i.e., if there is an edge from vertex u to vertex v, then u
precedes v in the order. We use this order to specify the order in which we
write down Λ. Since the order is topological, Λ is lower triangular with one
exception: The first row can have additional nonzero entries. By construc-
tion of the loops in Γloops the main diagonal of Λ is filled with 1s everywhere
but at the top left where Λ has a 0. Thus corank(Λ) = 1 or corank(Λ) = 0.
But if corank(Λ) = 0, then the constant term of P is det(Λ) 6= 0, which is a
contradiction to the assumption. �

Proposition 7.3.1.4. labpc(detm) ≤ m3

3 −
m
3 + 2.

Proof. This is an analysis of the algorithm in [MV97] with all improve-
ments that are described in the article. We construct an explicit layered
ABP Γ. Each vertex of Γ is a triple of three nonnegative integers (h, u, i),
where i indicates its layer. The following triples appear as vertices in Γ.

• The source (1, 1, 0).
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• For all 1 ≤ i < m:
– The vertex (i+ 1, i+ 1, i).
– For each 2 ≤ u ≤ m and each 1 ≤ h ≤ min(i, u) the vertex

(h, u, i).

• The sink (1, 1,m).

Lemma 7.3.1.5. The number of vertices in Γ is m3

3 −
m
3 + 2. There is only

the source vertex in layer 0 and only the sink vertex in layer m. The number
of vertices in layer i ∈ {1, . . . ,m− 1} is i(i+ 1)/2 + i(m− 1).

Proof. By the above construction, the number of vertices in Γ equals

2 +

m−1∑
i=1

(
1 +

m∑
u=2

min(i, u)
)

= 1 +m+

m−1∑
i=1

m∑
u=2

min(i, u).

We see that
∑m−1

i=1

∑m
u=2 min(i, u) = (m−2)(m−1)/2+

∑m−1
i=1

∑m−1
u=1 min(i, u).

It is easy to see that
∑m−1

i=1

∑m−1
u=1 min(i, u) yields the square pyramidal num-

bers (OEIS1 A000330): m(m− 1)(m− 1
2)/3. Therefore

1+m+
m−1∑
i=1

m∑
u=2

min(i, u) = 1+m+m(m−1)(m−1
2)/3+(m−2)(m−1)/2 = m3

3 −
m
3 +2.

To analyze a single layer 1 ≤ i ≤ m− 1 we observe

1 +
m∑
u=2

min(i, u) =
m∑
u=1

min(i, u) = i(i+ 1)/2 + i(m− i).

�

We now describe the edges in Γ. The vertex (h, u, i) is positioned in
the ith layer with only edges to the layer i + 1, with the exception that
layer m− 1 has edges only to the sink. From (h, u, i) we have the following
outgoing edges.

• If i+ 1 < m:
– for all h+ 1 ≤ v ≤ m an edge to (h, v, i+ 1) labeled with xuv .
– for all h + 1 ≤ h′ ≤ m an edge to (h′, h′, i + 1) labeled with
−xuh.

• If i+ 1 = m: An edge to the sink labeled with αxuh, where α = 1 if
m is odd and α = −1 otherwise.

The fact that Γ actually computes detm follows from [MV97]. �

As an illustration for m = 3, 4, 5 we include the adjacency matrices of
the Γloops that come out of the combination of the constructions in Propo-
sition 7.3.1.4 and Proposition 7.3.1.3.

1http://oeis.org/
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0 0 0 0 x21 x31 x22 x32 x33
x12 1 0 0 0 0 0 0 0
x13 0 1 0 0 0 0 0 0

-x11 0 0 1 0 0 0 0 0
0 x22 x32 0 1 0 0 0 0
0 x23 x33 0 0 1 0 0 0
0 -x21 -x31 0 0 0 1 0 0
0 0 0 x23 0 0 0 1 0
0 -x21 -x31 -x22 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0 -x21 -x31 -x41 -x22 -x32 -x42 -x33 -x43 -x44
x12 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
x13 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
x14 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

-x11 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 x22 x32 x42 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 x23 x33 x43 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 x24 x34 x44 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 -x21 -x31 -x41 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 x23 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 x24 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 -x21 -x31 -x41 -x22 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 x22 x32 x42 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 x23 x33 x43 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 x24 x34 x44 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 -x21 -x31 -x41 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 x23 x33 x43 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 x24 x34 x44 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 -x21 -x31 -x41 -x22 -x32 -x42 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 x34 0 0 0 0 0 0 0 1 0
0 0 0 0 0 -x21 -x31 -x41 -x22 -x32 -x42 -x33 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 x21 x31 x41 x51 x22 x32 x42 x52 x33 x43 x53 x44 x54 x55
x12 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
x13 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
x14 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
x15 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

-x11 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 x22 x32 x42 x52 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 x23 x33 x43 x53 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 x24 x34 x44 x54 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 x25 x35 x45 x55 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 -x21 -x31 -x41 -x51 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 x23 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 x24 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 x25 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 -x21 -x31 -x41 -x51 -x22 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 x22 x32 x42 x52 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 x23 x33 x43 x53 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 x24 x34 x44 x54 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 x25 x35 x45 x55 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 -x21 -x31 -x41 -x51 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 x23 x33 x43 x53 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 x24 x34 x44 x54 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 x25 x35 x45 x55 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 -x21 -x31 -x41 -x51 -x22 -x32 -x42 -x52 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 x34 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 x35 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 -x21 -x31 -x41 -x51 -x22 -x32 -x42 -x52 -x33 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 x22 x32 x42 x52 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 x23 x33 x43 x53 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 x24 x34 x44 x54 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 x25 x35 x45 x55 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -x21 -x31 -x41 -x51 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 x23 x33 x43 x53 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 x24 x34 x44 x54 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 x25 x35 x45 x55 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -x21 -x31 -x41 -x51 -x22 -x32 -x42 -x52 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 x34 x44 x54 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 x35 x45 x55 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -x21 -x31 -x41 -x51 -x22 -x32 -x42 -x52 -x33 -x43 -x53 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 x45 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -x21 -x31 -x41 -x51 -x22 -x32 -x42 -x52 -x33 -x43 -x53 -x44 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Add discussion on appearances, motivating read k and rank k

7.3.2. Determinantal complexity and ABP’s. The following result,
while “known to the experts”, is not easily accessible in the literature.
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Moreover, we give a precise formulation to facilitate measuring benchmark
progress in different models.

In the following theorem note that himmc and dlabpc are only defined
for homogeneous polynomials.

Theorem 7.3.2.1. The complexity measures rdc, dc, labpc, immc, abpc,
himmc, and dlabpc are all polynomially related. More precisely, let P be

any polynomial. Let ϕ(m) := m3

3 −
m
3 + 2 denote the layered ABP size of

the Mahajan-Vinay construction for detm. Then

(1) dc(P ) ≤ labpc(P ) − 1. If P has no constant part, then rdc(P ) ≤
labpc(P )− 1.

(2) labpc(P ) ≤ ϕ(dc(P )).

(3) By definition dc(P ) ≤ rdc(P ). If P has no constant part, then
rdc(P ) ≤ ϕ(dc(P ))− 1. If codim(Psing) ≥ 5, then rdc(P ) = dc(P ).

(4) labpc(P ) = immc(P ) + 1. If P is homogeneous, then dlabpc(P ) =
himmc(P ) + 1.

(5) definition abpc(P ) ≤ labpc(P ) ≤ dlabpc(P ), where dlabpc(P ) is
defined only if P is homogeneous. If P is homogeneous of degree d
then dlabpc(P ) ≤ (d+ 1) abpc(P ).

Remark 7.3.2.2. It is an important and perhaps tractable open problem to
prove an ω(m2) lower bound for dc(permm). By Theorem 7.3.2.1, it would
suffice to prove an ω(m6) lower bound for himmc(permm).

Remark 7.3.2.3. The computation model of homogeneous iterated matrix
multiplication has the advantage that one is comparing the homogeneous it-
erated matrix multiplication polynomial himm directly with the permanent,
whereas with the determinant detn, one must compare with the padded per-
manent `n−m permm. The padding causes insurmountable problems if one
wants to find occurrence obstructions in the sense of [MS01, MS08]. The
problem was first observed in [KL14] and then proved insurmountable in
[IP15] and [BIP16]. Thus a priori it might be possible to prove Valiant’s
conjecture via occurrence obstructions in the himmc model. However, with
the determinant already one needed to understand difficult properties about
three factor Kronecker coefficients, and for the himmc model, one would need
to prove results about m-factor Kronecker coefficients, which are not at all
understood.

Regarding the geometric search for separating equations, the advantage
one gains by removing the padding is offset by the disadvantage of dealing
with the himmc polynomial that for all known equations such as Young
flattenings (which includes the method of shifted partial derivatives as a
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special case) and equations for degenerate dual varieties, behaves far more
generically than the determinant.

Remark 7.3.2.4. One can also show that if P is any polynomial of degree
d, then labpc(P ) ≤ d(abpc(P )2).

Proof. (1) is Proposition 7.3.1.3.

Proof of (2): We first write the determinant polynomial detdc(P ) as a size
ϕ(dc(P )) layered ABP Γ using 7.3.1.4. The projection that maps detdc(P )

to P can now be applied to Γ to yield a size ϕ(dc(P )) layered ABP of P .

Proof of (3): To see the second inequality we combine (1) and (2). The
last assertion is von zur Gathen’s result [vzG87].

Proof of (4): We prove labpc(P ) ≤ immc(P )+1. Given n1, . . . , nm with
n1 = 1 and n1 + · · · + nm = immc(P ) and linear maps Bj , 1 ≤ j ≤ m, we
construct the ABP Γ that has a single vertex at level m+ 1, nj vertices at
level j, 1 ≤ j ≤ m, and is the complete bipartite graph between levels. The
labels of Γ are given by the Bj . We now prove immc(P ) ≤ labpc(P ) − 1.
Given a layered ABP Γ with m + 1 layers, recall that by definition Γ has
only 1 vertex in the top layer and only one vertex in the bottom layer. Let
nj denote the number of vertices in layer j, 1 ≤ j ≤ m. Define the linear
maps Bj by reading off the labels between layer j and layer j+1. The proof
of the second claim is analogous.

Proof of (5): We first homogenize and then adjust the ABP. Replace
each vertex v other than s by d+1 vertices v1, v2, . . . , vd+1 corresponding to
the homogeneous parts of Γv. Replace each edge e going from a vertex v to
a vertex w by (2d+ 1) edges, where we split the linear and constant parts:
If e is labeled by `+ δ, where ` is linear and δ ∈ C, the edge from vi to wi,
1 ≤ i ≤ d, is labeled with δ and the edge from vi to wi+1, 1 ≤ i ≤ d − 1,
is labeled with `. We now have a homogeneous ABP. Our task is to make
it degree layered. As a first approach we assign each degree i vertex to be
in layer i, but there may be edges labeled with constants between vertices
in the same layer. The edges between vertices of different layers are linear
forms. Call the vertices in layer i that have edges incoming from layer i− 1,
layer i entry vertices. Remove the non-entry vertices. From entry vertex
of layer i to entry vertex of layer i + 1, use the linear form computed by
the sub-ABP between them. In other words, for every pair (v, w) of layer i
entry vertex v and layer i+ 1 entry vertex w, put an edge from v to w with
weight ∑

p

Πeweight(e)

where the sum is over paths p from v to w and the product is over edges in
the path p. The resulting ABP is degree homogeneous and computes P . �
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7.4. Additional restricted models

7.4.1. Elementary symmetric polynomial complexity. Let P ∈ SmV
and define the elementary symmetric complexity of P , esc(P ), to be the

smallest N such that P ∈ End(CN ) · em,N =: Ê0
m,N , and esc(P ) to be the

smallest N such that P ∈ End(CN ) · em,N = GLN · · · em,N =: Êm,N . Shpilka
[Shp02] refers to esc(P ) as the “size of the smallest depth two circuit with
a symmetric gate at the top and plus gates at the bottom”. (His circuits
have the output gate at the top.)

First this is a legitimate complexity model: for any polynomial P , esc(P )
is finite. In fact, we have the more precise:

Proposition 7.4.1.1. [Shp02] σ0
r (vm(PV )) ⊂ E0

m,rm and σr(vm(PV )) ⊂
Em,rm.

Proof. Without loss of generality, assume v = r and let y1, . . . , yr be a
basis of V . It will be sufficient to show

∑
ymj ∈ E0

m,mr. Let ω be a primitive
m-th root of unity. Then I claim∑

ymj = −em,rm(y1,−ωy1,−ω2y1, . . . , ω
m−1y1,−y2,−ωy2, . . . ,−ωm−1yr).

To see this, evaluate the generating function:

Erm(t)(y1,−ωy1,−ω2y1, . . . , ω
m−1y1,−y2,−ωy2, . . . ,−ωm−1yr)

= Πi∈[r]Πs∈[m](1− ωsyi)
= Πi∈[r](1− ymi tm)

but the coefficient of tm on the last line is −
∑

i y
m
i . �

Corollary 7.2.5.2 implies that esc(P ) is at least the square root of the
size of the smallest depth three circuit computing P .

Shpilka proves lower bounds for esc in the same way the first lower
bounds for dc were found: by considering linear spaces on Z(em,N ).

Theorem 7.4.1.2. [Shp02] Let L ⊂ Z(em,N ) ⊂ PV ∗ be a linear space.

Then dimL ≤ min(max(N −m,m− 1), m+N
2 )− 1.

Thus if Z(P ) has large linear spaces on it we obtain lower bounds for
esc(P ).

Proof. The key to the proof is the algebraic independence of the ek,N . Note
that if we have two sets of variables (x, y) = (x1, . . . , xk, y1, . . . , yN−k), then
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em,N (x, y) =
∑m

j=0 em−j,k(x)ej,N−k(y). We are assuming em,N |L̂ = 0, so

0 = em,N (x, `)

= em,k(x) +
m∑
j=1

em−j,k(x)ej(`(x)).(7.4.1)

First assume k−1 = dimL ≥ max(N−m,m−1). Since ek,u = 0 if k > u,
if N − k < m the sum in (7.4.1) is from 1 to N − k. Our linear space will
have an isomorphic projection onto some coordinate k-plane, without loss of
generality, assume it is the first, so that L has equations xs = `s(x1, . . . , xk)
for k + 1 ≤ s ≤ N .

Now let Ψ : C[x1, . . . , xk]→ C[x1, . . . , xk]
Sk denote the symmetrization

operator and recall that it is a ring homomorphism, so in particular Ψ(fg) =
Ψ(f)Ψ(g) and Ψ(f + g) = Ψ(f) + Ψ(g). Apply Ψ to (7.4.1) to obtain

0 = em,k(x) +
N−k∑
j=1

em−j,k(x)Ψ(ej(`(x)))

but this expresses em,k as a polynomial in symmetric functions of degree less
than k, a contradiction.

Now assume dim L̂ ≥ m+N
2 , so we have

0 = em,k(x) + em,N−k(`(x)) +

m∑
j=1

em−j,k(x)ej(`(x)).

The idea is again the same, but we must somehow reduce to a smaller space.
If we take D ∈ {`1, . . . , `N − k}⊥ ⊂ V ∗ and apply it, we can eliminate the
em,N−k(`(x)) term. But if we take a random such D, we will no longer
have symmetric functions. However, one can find a D such that, if we
restrict to span of the the first m − 1 coordinate vectors, call this space
Vm−1 ⊂ Ck ⊂ CN , then Der,k|Vm−1 = er−1,m−1. Just take D of the form

D =
∑m−1

j=1
d
dxj

+ D′ (Such a D always exists by counting dimensions.)

Unfortunately this is still not good enough, as letting x′ = (x1, . . . , xm−1)
we now have

0 = em−1,m−1(x′)

m∑
j=1

em−j,k(x
′)ej(`(x

′)).

We could argue as before if we could eliminate the j = 1 term. But we can!
since k ≥ m+N

2 , one can also assume D(e1,k(x)) = 0. �

Exercise 7.4.1.3: (1) Show esc(detm) ≥ 2m2 − 3m.

Exercise 7.4.1.4: (1) Show that if m ≥ N+1
2 , there exists a linear space of

dimension d− 1 on Z(em,N ). }
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Proposition 7.4.1.5. [Shp02] (attributed to Saks) There exists a Pb
N
q
c−1 ⊂

Z(em,N ), where q is the smallest integer such that q does not divide m.

Proof. Let ω be a primitive q-th root of unity. Let e1, . . . , eN denote the
standard basis of CN . Consider

L̂ := span{e1+jq + ωe2+jq + ω2e3+jq + · · ·+ ωq−1eq+jq | j = 0, . . . , bN
q
c − q}

Note that all the power sum polynomials pr,N , 1 ≤ r ≤ m vanish on L̂,
so L is contained in the hypersurface defined by any symmetric function of
degree m. �

By Exercise 7.4.1.4 and Proposition 7.4.1.5, we see Theorem 7.4.1.2 is
close to being sharp.

The following conjecture appeared in [Shp02] (phrased differently):

Conjecture 7.4.1.6. [Shp02] There exists a polynomial r(m) such that

σ0
r(m)Chm(Cmr(m)) 6⊂ E0

m,2m . In fact one might even be able to take r(m) ≡
2.

The second assertion is astonishing, as when r = 1 the two sets coincide,
and when r = 2 the left hand side has dimension about 4m and the right
hand side has dimension about 4m.

Exercise 7.4.1.7: (2) Show that σ2(Chm(C2m)) 6⊂ Em, 3
2
m−3.

Question 7.4.1.8. [Shp02] What is the maximal dimension of a linear
subspace L ⊂ PV ∗ such that L ⊂ Z(em,v)?

Remark 7.4.1.9. ***remove or move** Strassen [Str75] proved a lower
bound of Ω(n log n) for the size of any arithmetic circuit computing all the

ejn simultaneously.

7.4.2. Non-commutative circuits.

7.4.3. A classical exponential lower bound for the permanent (and
determinant). Here the restriction is that one is not allowed to exploit the
commutivity of multiplication. Let C{y1, . . . , yN} denote the ring of poly-
nomials in the non-commuting variables y1, . . . , yN . Choose an expression
for a polynomial P and consider it as in this larger ring. The definition of
circuits is the same here, just that we cannot assume ab = ba for expressions
a and b.

Define the non-commutative algebraic branching program complexity of
a polynomial P , NCabpc(P ) to be the size of the smallest non-commutative
ABP that commutes P .

Theorem 7.4.3.1. [Nis91] NCabpc(detn) = NCabpc(permn) = 2n − 1.
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Proof. Insert proof �

7.4.4. Column-multilinear HIMM. Theorems 7.4.3.1 and 7.4.7.1 are
related.

**insert here after write-up with Christian***

7.4.5. Glynn’s Theorem on expressions for the permanent. Recall,
for P ∈ SmCM , RChm(CM )(P ) is the smallest r such that P (y1, . . . , yM ) =∑r

s=1 Πm
u=1(

∑M
a=1 λsuaya) for some constants λsua. This corresponds to the

smallest homogeneous ΣrΠΣM circuit that computes P . If P is multilinear,
so M = mw and we may write ya = (yiα) where 1 ≤ i ≤ m, 1 ≤ α ≤ w,
and P =

∑
Cαy1α · · · ymα we could restrict to multi-linear ΣΠΣ circuits,

those of the form
∑r

s=1 Πm
i=1(

∑w
α=1 λsuyi,α). Write RML

Chm(CM )
(P ) for the

smallest multilinear ΣrΠΣw circuit for such a P . We can consider multilinear
ΣΠΣ-circuit complexity as a restricted model. In this context, we have the
following theorem of Glynn:

Theorem 7.4.5.1. [Gly13] RML
Chm(CM )

(permm) = RS(x1 · · ·xm) = 2m−1.

More precisely, constants λs,j , 1 ≤ s ≤ r, 1 ≤ j ≤ m satisfy:

(7.4.2) x1 · · ·xm =
r∑
s=1

(
m∑
j=1

λs,jxj)
m

if and only if

(7.4.3) permm(yij) = m!
r∑
s=1

Πm
i=1(

m∑
j=1

λs,jyij).

Proof. Given a Waring decomposition (7.4.2) of x1 · · ·xm, set xj =
∑

k yjkzk.
The coefficient of z1 · · · zm in the resulting expression on the left hand side
is the permanent and the coefficient of z1 · · · zm on the right hand side is the
right hand side of (7.4.3).

To see the other direction, given an expression (7.4.3), we specialize
to various matrices to show identities among the λs,j that will imply all
coefficients but the desired one on the right hand side are zero.

The coefficient of xb11 · · ·xbmm , where b1 + · · · + bm = m in (7.4.2) is(
m

b1,...,bm

)∑
s λ

b1
s,1 · · ·λbms,m.

Let y be a matrix where there are bj 1’s in column j and zero elsewhere.
Then unless each bj = 1, perm(y) = 0. But (7.4.3) says that 0 = perm(y) is

a nonzero constant times
∑

s λ
b1
s,1 · · ·λbms,m. Thus all these terms are zero and

the only potential nonzero coefficient in the right hand side of (7.4.2) is the
coefficient of x1 · · ·xm. This coefficient is m! =

(
m

1,...,1

)
times λs,1 · · ·λs,m.

Plugging in y = Id shows 1 = m!λs,1 · · ·λs,m. �



194 7. Valiant’s conjecture II: Restricted models and other approaches

7.4.6. Rank k determinantal expressions. ***add here ***

7.4.7. Equivariant determinantal complexity. Motivated by the sym-
metry of Grenet’s expressions for the permanent discussed in §6.6.3, N.
Ressayre and I asked, what happens if one imposes the ΓEm-equivariance?
We found:

Theorem 7.4.7.1. [LR15] Among ΓEm-equivariant determinantal expres-
sions for permm, Grenet’s size 2m − 1 expressions are optimal and unique
up to trivialities.

The ΓEm-equivariance is peculiar as it only makes sense for the perma-
nent. To fix this, we defined a complexity measure that could be applied to
all polynomials:

Definition 7.4.7.2. Let Ã : V −→ Matn(C) be a determinantal represen-
tation of P ∈ SmV ∗. Define

GA = {g ∈ Gdetn | g · Λ = Λ and g ·A(V ) = A(V )},

the symmetry group of the determinantal representation Ã of P .

The group GA comes with a representation ρA : GA −→ GL(A(V ))
obtained by restricting the action to A(V ). We assume that P cannot be
expressed using dim (V )−1 variables, i.e., that P 6∈ SmV ′ for any hyperplane
V ′ ⊂ V ∗. Then A : V −→ A(V ) is bijective. Let A−1 : A(V ) −→ V denote
its inverse. Set

ρ̄A : GA −→ GL(V )(7.4.4)

g 7−→ A ◦ ρA(g) ◦A−1.

Definition 7.4.7.3. We say Ã is an equivariant representation of P if
ρA(GA) = GP .

If G is a subgroup of GP , we say that Ã is G-equivariant if G is contained
in the image of ρ̄A.

Definition 7.4.7.4. For P ∈ SmV ∗, define the equivariant determinantal
complexity of P , denoted edc(P ), to be the smallest n such that there is an
equivariant determinantal representation of P .

Note that if P is a generic polynomial, edc(P ) = dc(P ) because it will
have a trivial symmetry group. One also has edc(detm) = dc(detm) because

taking Ã = Id is equivariant.

Theorem 7.4.7.5. [LR15] There exists a Gpermm
-equivariant determinan-

tal expression for permm of size
(

2m
m

)
− 1 ∼ 4m.
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Theorem 7.4.7.6. [LR15] Among Gpermm
-equivariant determinatal ex-

pressions for permm, the size
(

2m
m

)
− 1 expressions are optimal and unique

up to trivialities.

In particular, Valiant’s conjecture holds in the restricted model of equi-
variant expressions.

Proofs are given in §8.12.4.

7.5. Permanent (and determinant) v. Shallow circuits

In this section I describe work of Gupta, Kamath, Kayal, and Saptharishi
[GKKS13a] that generated considerable excitement, winning the best pa-
per award at the 2013 Conference on Computational Complexity (CCC)
because it came tantalizingly close to proving Valiant’s conjecture by show-
ing that the permanent does not admit a size 2o(

√
n) depth four circuit with

bottom fanin bounded by
√
n. Compare this with Theorem 7.1.3.1 that

implies it would be sufficient to show that permm is not computable by

a homogeneous ΣΠΣΠ circuit of size 2Ω(
√
d log(ds) log(n)). **check fanin is-

sue***

The caveat is that in the same paper, they proved the same lower bound
for the determinant. On the other hand, a key estimate they use (7.11.1)
is close to being sharp for the determinant but conjecturally far from being
sharp for the permanent.

Their method of proof is via a classical subject in algebraic geometry:
the study of Hilbert functions, and opens the way for using techniques from
commutative algebra (study of syzygies) in algebraic complexity theory. In
§?? I show that the shifted partial derivative technique alone is not enough
for proving VP 6= VNP, but I also discuss potential extensions of it that
could produce stronger results.

7.5.1. Lower complexity bounds for permm (and detn) for depth
four circuits.

Theorem 7.5.1.1. [GKKS13a] Any ΣΠO(
√
m)ΣΠO(

√
m) circuit that com-

putes permm or detm must have top fanin at least 2Ω(
√
m).

In other words [permm] 6∈ σs(MJq(σt(MJm−q(Pm2−1)))), for s = 2o(
√
m)

and q = O(
√
m). In fact they show [permm] 6∈ σs(MJq(PSm−qCm2

)).

***add depth three corollary, say how solved open problem CKW10.***

A basic measure of the singularity of a point z of a hypersurface Z =
Zeros(P ) ⊂ PV is its multiplicity. Choose affine linear coordinates in a stan-
dard affine open subset (isomorphic to Cv) so that z = (0, . . . , 0). Write out
the Taylor expansion of (the de-homogenized) P in the coordinates centered
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at z. That z ∈ Z says the 0-th order term of the series is zero. If z is a sin-
gular point, the first order term will vanish. The multiplicity of Z at z is the
lowest degree non-vanishing term in the Taylor series. (The tangent cone to
a point on a hypersurface is the zero set of the lowest degree homogeneous
term in the Taylor series (see, e.g. [Mum95, §5.1]).)

Recall the Jacobian varieties from §6.2.5. The dimension of ZJac,k is a
measure of the nature of the singularities of Z.

If P = Q1 · · ·Qp is the product of p polynomials, and k ≤ p, then ZJac,k
will be of codimension at most k because it contains Zeros(Qi1) ∩ · · · ∩
Zeros(Qik) for all (i1, . . . , ik) ⊂ [p].

Now the GKKS model is not polynomials of this form, but sums of such.
With the sum of M such, we can arrive at a smooth hypersurface. So the
goal is to find a pathology of Q1 · · ·Qp that persists even when taking sums.

(The goal is to find something that persists even when taking a sum of 2
√
m

such!)

Recall the method of partial derivatives/flattenings which has the desired
persistence property. In this situation, the dimension of the space of partial
derivatives (rank of the flattenings) is not small enough to prove the desired
lower bounds. However, the image of the flattening map will be of a very
pathological nature, in that all the polynomials in the image are in an ideal
generated by a small number of lower degree polynomials. To see this any
first derivative is in the span of Sq−1V · (

∑
j Q1 · · · Q̂j · · ·Qp), where the hat

denotes omission. The space of k-th derivatives is in the span of Sq−kV ·
(
∑
|J |=kQ1 · · · Q̂j1 · · · Q̂jk · · ·Qp). In particular, it has dimension at most

(7.5.1)

(
p

k

)
dimSq−kV =

(
p

k

)(
v + q − k − 1

q − k

)
.

More important than its dimension, is its structure: the ideal it gener-
ates, in a given degree D “looks like” the polynomials of degee D− k times
a small fixed space of dimension

(
p
k

)
.

This is behaviour similar to the ideals that grow the slowest, the lex-
segement ideals (see, e.g., [Gre98, §3]). These are the ideals, say generated
by K elements, where the generators are the first K monomials in lexo-
graphic order. For 1 ≤ K ≤ M , the generators are xd1, x

d−1
1 x2, . . . , x

d−1
1 xK .

For M + 1 ≤ K ≤ 2M , the generators are xd−1
1 xj , x

d−2
1 x2xs, 1 ≤ j ≤ M ,

2 ≤ s ≤ K −M , etc... Among ideals with a fixed number of generators in a
fixed degree, these ideals grow the slowest.

Theorem 7.5.1.2 (Macaulay-Gotzmann, see, e.g., [Got78, Gre98]). Say
I ⊂ Sym(V ) is generated in degree at most κ, and dimC[X]κ = dimSκV/Iκ =
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Q. Write

(7.5.2) Q =

(
aκ
κ

)
+

(
aκ−1

κ− 1

)
+ · · ·+

(
aδ
δ

)
with aκ > aκ−1 > · · · > aδ (such an expression exists and is unique), then

(7.5.3) dimC[X]κ+τ ≤
(
aκ + τ

κ+ τ

)
+

(
aκ−1 + τ

κ+ τ − 1

)
+ · · ·+

(
aδ + τ

δ + τ

)
Equality is achieved for all τ if equality holds for τ = 1. Equality holds for
lex-segment ideals.

In contrast, the fastest possible growth of an ideal generated in degree
d by K < N generators is like that of a complete intersection *** define: In
degree D they are have dimension

K

(
N + (D − d)− 1

D − d

)
−
(
K

2

)(
N + (D − 2d)− 1

D − 2d

)
+

(
K

3

)(
N + (D − 3d)− 1

D − 3d

)
+· · ·

Fröberg [Frö85] conjectures such ideals exist even when K > N and Iar-
robino [Iar97] conjectures further that the ideal generated by `d1, . . . , `

d
K has

this growth (this is known for K ≤M).

The study of the growth of ideals is a classical subject in algebraic ge-
ometry. The function Hilbt(I) := dim It is called the Hilbert function of the
ideal I ⊂ Sym(V ).

This suggests comparing the Hilbert functions of the ideal generated
by a polynomial computable by a “small” depth four circuit, i.e, of the
form

∑s
j=1Q1j · · ·Qpj and the ideal generated by the partial derivatives of

the permanent, which are just the sub-permanents. Little is known about
the latter, even the dimension of their zero set is not known in general.
Nevertheless, we just need a lower bound on its growth, which we can obtain
by degenerating it to an ideal that we can estimate.

First we get an upper bound on the growth of the Jacobian variety of
Q1 · · ·Qm: By the discussion above, it has dimension at most(

p

k

)
dimSq−k+`V =

(
p

k

)(
v + `+ q − k − 1

q − k

)
.

To get the lower bound on the growth of the ideal generated by sub-
permanents we use a crude estimate: given a polynomial f given in coordi-
nates, its leading monomial in some order (say lexographic), is the monomial
in its expression that is highest in the order. So if an ideal is generated by
f1, . . . , fq in degree d, then in degree d + `, it is of dimension at most the
number of monomials in degree d+ ` that contain a leading monomial from
one of the fj .
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If we order the variables in Cm2
by y1

1 > y1
2 > · · · > y1

m > y2
1 > · · · > ymm,

then the leading monomial of any sub-permanent is the product of the el-
ements on the principal diagonal. Even working with this the estimate
is difficult, so in [GKKS13a] they restrict further to only look at lead-
ing monomials among the variables on the diagonal and super diagonal:
{y1

1, . . . , y
m
m, y

1
2, y

2
3, . . . , y

m−1
m }. Among these, they compute that the num-

ber of leading monomials of degree δ is
(

2m−δ
δ

)
. In our case, δ = m− k and

D = ` + m − k. Let I
permm,k
d ⊂ SdCm2

denote the degree d component of
the ideal generated by the order k partial derivatives of the permanent. We
have

(7.5.4) dim I
permm,k
n−k+` ≥

(
m+ k

2k

)(
m2 + `− 2k

`

)
.

Putting the estimates together, if we want to realize the permanent by a
depth four circuit as above, for some s, we need

(7.5.5) s ≥
(
m+k

2k

)(
m2+`−2k

`

)(c√m+k
k

)(m2+`+(
√
m−1)k

m2

)
They obtain their result by setting ` = m

5
2 and k = εm

1
2 where ε is a

constant defined below. To see this, one calculates (using the estimates of
§7.1.1):

ln

(m2+m
5
2−2ε

√
m

m
5
2

)
(m2+m

5
2 +(
√
m−1)ε

√
m

m2

) = −2ε
√
m ln

√
m− ε

√
m±O(1)

ln

(m2+ε
√
m

2ε
√
m

)
((c+ε)√m

ε
√
m

) =
√
m[2ε ln

√
m

2ε
+ 2ε

+ (c+ ε)[
ε

c+ ε
ln(

ε

c+ ε
) + (1− ε

c+ ε
) ln(1− ε

c+ ε
)] +O(lnm)

Putting these together, we get

ln(s) ≥ ε
√
m ln

1

4ε(c+ ε)
±O(1)

so if we choose ε such that 1
4ε(c+ε) = e, we get ln(s) ≥ Ω(

√
m).

***add precise numerical result and compare with Guan***
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7.6. Shifted partial derivatives cannot separate permanent
from determinant

7.6.1. Statement of the result. We prove the method of shifted partial
derivatives cannot give better than a quadratic separation of the permanent
from the determinant:

Theorem 7.6.1.1. [ELSW16] There exists a constant M such that for all
m > M and every n > 2m2 + 2m, any τ and any k < n,

rank((`n−m permm)(k,n−k)[τ ]) < rank((detn)(k,n−k)[τ ]).

7.6.2. Overview of the proof. The proof of Theorem 7.6.1.1 splits into
four cases:

• (C1) Case k≥n− n
m+1 ,

• (C2) Case 2m ≤ k ≤ n− 2m,

• (C3) Case k < 2m and τ > 3
2n

2m,

• (C4) Case k < 2m and τ < n3

6m .

Note that C1,C2 overlap when n > 2m2 + 2m and C3,C4 overlap when

n > m2

4 , so it suffices to take n > 2m2 + 2m.

In the first case, the proof has nothing to do with the padded permanent
or its derivatives: it is valid for any polynomial in m2 + 1 variables. Cases
C2,C3 only use that we have a padded polynomial. In the case C4, the
only property of the permanent that is used is an estimate on the size of
the space of its partial derivatives. Case C1 is proved by showing that
in this range the partials of the determinant can be degenerated into the
space of all polynomials of degree n − k in m2 + 1 variables. Cases C2,C3
use that when k < n − m, the Jacobian ideal of any padded polynomial
`n−mP ∈ SnW is contained in the ideal generated in degree n − m − k
by `n−m−k, which has slowest possible growth by Macaulay’s theorem as
explained below. Case C2 compares that ideal with the Jacobian ideal of
the determinant; it is smaller in degree n − k and therefore smaller in all
higher degrees by Macaulay’s theorem. Case C3 compares that ideal with an
ideal with just two generators in degree n− k. Case C4 uses a lower bound
for the determinant used in [GKKS13a] and compares it with a very crude
upper bound for the dimension of the space of shifted partial derivatives for
the permanent.

7.7. Macaulay’s Theorem

We only use Corollary 7.7.0.4 from this section in the proof of Theorem
7.6.1.1.
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Theorem 7.7.0.1 (Macaulay, see, e.g., [Gre98]). Let I ⊂ Sym(CN ) be a
homogeneous ideal, and let d be a natural number. Write

(7.7.1) dimSdCN/Id =

(
ad
d

)
+

(
ad−1

d− 1

)
+ · · ·+

(
aδ
δ

)
with ad > ad−1 > · · · > aδ (such an expression exists and is unique). Then
(7.7.2)

dim Id+τ ≥
(
N + d+ τ − 1

d+ τ

)
−
[(
ad + τ

d+ τ

)
+

(
ad−1 + τ

d+ τ − 1

)
+ · · ·+

(
aδ + τ

δ + τ

)]
.

Remark 7.7.0.2. Gotzman [Got78] showed that if I is generated in degree
at most d, then equality is achieved for all τ in (7.7.2) if equality holds for
τ = 1. Ideals satisfying this minimal growth exist, for example, lex-segment
ideals satisfy this property, see [Gre98].

Remark 7.7.0.3. Usually Macaulay’s theorem is stated in terms of the
coordinate ring C[X] := Sym(W )/I of the variety (scheme) X ⊂ W ∗ that
is the zero set of I, namely

dimC[X]d+τ ≤
(
ad + τ

d+ τ

)
+

(
ad−1 + τ

d+ τ − 1

)
+ · · ·+

(
aδ + τ

δ + τ

)
.

Corollary 7.7.0.4. Let I be an ideal such that dim Id ≥ dimSd−qCN =(
N+d−q−1

d−q
)

for some q < d. Then dim Id+τ ≥ dimSd−q+τCN =
(
N+τ+d−q−1

τ+d−q
)
.

Proof. First use the identity

(7.7.3)

(
a+ b

b

)
=

q∑
j=1

(
a+ b− j
b− j + 1

)
+

(
a+ b− q
b− q

)
with a = N − 1, b = d. Write this as(

N − 1 + d

d

)
= Qd +

(
N − 1 + d− q

d− q

)
.

Set

Qd+τ :=

q∑
j=1

(
N − 1 + d+ τ − j
d+ τ − j + 1

)
.

By Macaulay’s theorem, any ideal I with

dim Id ≥
(
N − 1 + d− q

d− q

)
must satisfy

dim Id+τ ≥
(
N − 1 + d+ τ

d+ τ

)
−Qd+τ =

(
N − 1 + d− q + τ

d− q + τ

)
.

�

We will use Corollary 7.7.0.4 with N = n2, d = n− k, and d− q = m.
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7.8. Case C1

Our assumption is (m+ 1)(n−k)≤n. It will be sufficient to show that some
R ∈ End(W ) · detn satisfies rank((`n−m permm)(k,n−k)[τ ]) < rank(Rk,n−k[τ ]).

Block the matrix x = (xsu) ∈ Cn2
, with 1 ≤ s, u ≤ n, as a union of n − k

blocks of size m×m in the upper-left corner plus the remainder, which by
our assumption includes at least n − k elements on the diagonal. Set each
diagonal block to the matrix (yij), with 1 ≤ i, j ≤ n, (there are n − k such

blocks), fill the remainder of the diagonal with ` (there are at least n − k
such terms), and fill the remainder of the matrix with zeros. Let R be the
restriction of the determinant to this subspace. Then the space of partials of

R of degree n− k, Rk,n−k(S
kCn2∗) ⊂ Sn−kCn2

contains a space isomorphic

to Sn−kCm2+1, and I`
n−m permm,k
n−k ⊂ Sn−kCm2+1 so we conclude.

Example 7.8.0.1. Let m = 2, n = 6, k = 4. The matrix is

y1
1 y1

2

y2
1 y2

2

y1
1 y1

2

y2
1 y2

2

`
`

 .

The polynomial (y1
1)2 is the image of ∂4

∂x2
2∂x

4
4∂x

5
5∂x

6
6

and the polynomial y1
2y

2
2

is the image of ∂4

∂x2
1∂x

3
3∂x

5
5∂x

6
6
.

7.9. Case C2

As long as k < n−m, I`
n−m permm,k
n−k ⊂ `n−m−k · SmW , so

(7.9.1) dim I`
n−m permm,k
n−k+τ ≤

(
n2 +m+ τ − 1

m+ τ

)
.

By Corollary 7.7.0.4, it will be sufficient to show that

(7.9.2) dim Idetn,k
n−k =

(
n

k

)2

≥ dimSmW =

(
n2 +m− 1

m

)
.

In the range 2m ≤ k ≤ n − 2m, the quantity
(
n
k

)
is minimized at k = 2m

and k = n− 2m, so it is enough to show that

(7.9.3)

(
n

2m

)2

≥
(
n2 +m− 1

m

)
.
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Using (??)

ln

(
n

2m

)2

= 2[n ln(n)− 2m ln(2m)− (n− 2m) ln(n− 2m)]−Θ(ln(n))

= 2[n ln(
n

n− 2m
) + 2m ln(

n− 2m

2m
)]−Θ(ln(n))

≤ 4m+m ln [(
n

2m
− 1)4]−Θ(ln(n)),

where to obtain the last line we used (1− 2m
n )n > e−2meΘ(m

2

n
), and

ln

(
n2 +m− 1

m

)
= (n2 +m− 1) ln(n2 +m− 1)−m ln(m)− (n2 − 1) ln(n2 − 1)−Θ(ln(n))

= (n2 − 1) ln(
n2 +m− 1

n2 − 1
) +m ln(

n2 +m− 1

m
)−Θ(ln(n))

= m ln(
n2

m
− m− 1

m
) +m−Θ(ln(n)).

So (7.9.3) will hold when ( n
2m − 1)4 > (n

2

m −
m−1
m ) which holds for all suffi-

ciently large m when n > m2.

7.10. Case C3

Here we simply degenerate detn to R = `n1 + `n2 by e.g., setting all di-
agonal elements to `1, all the sub-diagonal elements to `2 as well as the
(1, n)-entry, and setting all other elements of the matrix to zero. Then

IR,kn−k = span{`n−k1 , `n−k2 }. In degree n − k + τ , this ideal consists of all

polynomials of the form `n−k1 Q1 + `n−k2 Q2 with Q1, Q2 ∈ SτCn
2
, which has

dimension 2dim SτCn2 − dimSτ−(n−k)Cn2
because the polynomials of the

form `n−k1 `n−k2 Q3 with Q3 ∈ Sτ−(n−k)Cn2
appear in both terms. By this

discussion, or simply because this is a complete intersection ideal, we have

(7.10.1) dim IR,kn−k+τ = 2

(
n2 + τ − 1

τ

)
−
(
n2 + τ − (n− k)− 1

τ − (n− k)

)
.

We again use the estimate (7.9.1) from Case C2, so we need to show

2

(
n2 + τ − 1

τ

)
−
(
n2 + τ +m− 1

τ +m

)
−
(
n2 + τ − (n− k)− 1

τ − (n− k)

)
> 0.
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Divide by
(
n2+τ−1

τ

)
. We need

2 >Πm
j=1

n2 + τ +m− j
τ +m− j

+ Πn−k
j=1

τ − j
n2 + τ − j

(7.10.2)

= Πm
j=1(1 +

n2

τ +m− j
) + Πn−k

j=1 (1− n2

n2 + τ − j
)(7.10.3)

The second line is less than

(7.10.4) (1 +
n2

τ
)m + (1− n2

n2 + τ − 1
)n−k.

We analyze (7.10.4) as a function of τ . Write τ = n2mδ, for some constant
δ. Then (7.10.4) is bounded above by

e
1
δ + e

2
δ
− n
mδ .

The second term goes to zero for large m, so we just need the first term to
be less than 2, so we take, e.g. δ = 3

2 .

7.11. Case C4

We use a lower bound on Idetn,k
n−k+τ from [GKKS13a]: Given a polynomial

f given in coordinates, its leading monomial in some monomial order, is
the monomial in its expression that is highest in the order. If an ideal is
generated by f1, . . . , fq in degree n−k, then in degree n−k+τ , its dimension
is at least the number of monomials in degree n−k+τ that contain a leading
monomial from one of the fj .

If we order the variables in Cn2
by x1

1 > x1
2 > · · · > x1

n > x2
1 > · · · > xnn,

then the leading monomial of any minor is the product of the elements on
the principal diagonal. Even estimating just these monomials is difficult, so
in [GKKS13a] they restrict further to only look at leading monomials of
size (n−k) minors among the variables on the diagonal and super diagonal:
{x1

1, . . . , x
n
n, x

1
2, x

2
3, . . . , x

n−1
n }. Among these, they compute that the number

of leading monomials of degree n−k is
(
n+k
2k

)
. Then then show that in degree

n − k + τ the dimension of this ideal is bounded below by
(
n+k
2k

)(
n2+τ−2k

τ

)
so we conclude

(7.11.1) dim Idetn,k
n−k+τ ≥

(
n+ k

2k

)(
n2 + τ − 2k

τ

)
.

We compare this with the very crude estimate

dim I`
n−m permm,k
n−k+τ ≤

k∑
j=0

(
m

j

)2(n2 + τ − 1

τ

)
,
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where
∑k

j=0

(
m
j

)2
is the dimension of the space of partials of order k of

`n−m permm, and the
(
n2+τ−1

τ

)
is what one would have if there were no

syzygies (relations among the products).

We have

ln

(
n+ k

2k

)
= n ln

n+ k

n− k
+ k ln

n2 − k2

4k2
+ Θ(ln(n))

(7.11.2)

= k ln
n2 − k2

4k2
+ Θ(ln(n))

ln

(
n2+τ−2k

τ

)(
n2+τ−1

τ

) = n2 ln
(n2 + τ − 2k)(n2 − 1)

(n2 − 2k)(n2 + τ − 1)
+ τ ln

n2 + τ − 2k

n2 + τ − 1
+ 2k ln

n2 − 2k

n2 + τ − 2k
+ Θ(ln(n))

(7.11.3)

= −2k ln(
τ

n2
+ 1) + Θ(ln(n)),

where the second lines of expressions (7.11.2),(7.11.3) hold because k < 2m.
We split this into two sub-cases: k ≥ m

2 and k < m
2 .

7.11.1. Subcase k ≥ m
2 . In this case we have

∑k
j=0

(
m
j

)2
<
(

2m
m

)
. We

show the ratio

(7.11.4)

(
n+k
2k

)(
n2+τ−2k

τ

)(
2m
m

)(
n2+τ−1

τ

)
is greater than one. Now

ln

(
2m

m

)
= m ln 4 + Θ(ln(m)).(7.11.5)

= k ln(4
m
k ) + Θ(ln(m)).

If

k ln

(
n2 − k2

4k2

1

( τ
n2 + 1)2

1

4
m
k

)
±Θ(ln(n))

is positive, then (7.11.4) is greater than one. This will occur if

n2 − k2

4k2

1

( τ
n2 + 1)2

1

4
m
k

> 1

i.e., if

τ < n2(

√
n2 − k2

2k4
m
2k

− 1).

Write this as

(7.11.6) τ < n2(
n

2εm4
1
2ε

− 1).
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The worst case is ε = 2 where it suffices to take τ < n3

6m .

7.11.2. Subcase k < m
2 . Here we use that

∑k
j=0

(
m
j

)2
< k

(
m
k

)2
and a

similar argument gives that it suffices to have

τ < n2(

√
n2 − k2

2k

1√
m
k − 1

− 1).

The smallest upper bound for τ occurs when k = m
2 , where the estimate

easily holds when τ < n3

6m .

7.12. Polynomial identity testing, hitting sets and explicit
Noether normalization

**This section to be written***

7.13. Raz’s theorem on tensor rank and arithmetic formulas

**This section to be written***





Chapter 8

Representation theory
and its uses in
complexity theory

In this chapter I derive the representation theory of the general linear group
and give numerous applications to complexity theory. In order to get to the
applications as soon as possible, I summarize basic facts about representa-
tions of the general linear group GL(V ) in §8.1. The first application, in
§8.2, explains the theory of Young flattenings underlying the equations that
led to the 2n2−n lower bound for the border rank of matrix multiplication
(Theorem 2.6.3.6). I also explain how the method of shifted partial deriva-
tives may be viewed as a special case of Young flattenings. Next, in §8.3,
I briefly discuss how representation theory has been used to find equations
for secant varieties of Segre varieties (and other varieties). In §8.4, I de-
scribe severe restrictions on (modules of) polynomials to be useful for the
permanent v. determinant problem. In §8.5, I give the proofs of several
statements about Detn from Chapter 7. In §8.6, I begin to develop repre-
sentation theory. There are several paths to obtaining the representation
theory of the general linear group. I use the path via the double commutant
theorem, the algebraic Peter-Weyl theorem and Schur-Weyl duality. The
reason for this choice is that the (finite) Peter-Weyl theorem is the start-
ing point of the Cohn-Umans program of §3.5 and the algebraic Peter-Weyl
theorem was the starting point of the program of [MS01, MS08] described
in §8.8. The representations of the general linear group are then derived
in §8.7. In §8.8 I begin a discussion of the program of [MS01, MS08], as
refined in [BLMW11], to separate the permanent from the determinant via

207
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representation theory. This is continued in §8.9, where detailed information
about the coordinate ring of the orbit is given, §8.10, which contains a gen-
eral discussion of plethysm coefficients, and §8.11, which presents results of
[IP15] and [BIP16] that show this program cannot work as stated. I then
outline the proof of Theorems 7.4.7.1 and 7.4.7.6 giving the exponential sep-
aration of the permanent from the determinant in the restricted model of
equivariant determinantal expressions. I conclude, in §8.13 with a descrip-
tion of the symmetry groups of other polynomials, which will be useful for
future work.

8.1. Representation theory of the general linear group

Irreducible representations of GL(V ) in V ⊗d are indexed by partitions of
d with length at most v, as we will prove in Theorem 8.7.1.2. Let SπV
denote the isomorphism class of the irreducible representation associated to
the partition π, and let SπV denote some particular realization of SπV .
For a partition π = (p1, . . . , pk), write |π| = p1 + · · ·+ pk and `(π) = k. If
a number is repeated I sometimes use superscripts to record its multiplicity,
for example (2, 2, 1, 1, 1) = (22, 13).

To visualize π, define a Young diagram associated to a partition π to
be a collection of left-aligned boxes with pj boxes in the the j-th row, as in
Figure 8.1.1.

Figure 8.1.1. Young diagram for π = (4, 2, 1)

Define the conjugate partition π′ to π to be the partition whose Young
diagram is the reflection of the Young diagram of π in the north-west to
south-east diagonal.

Figure 8.1.2. Young diagram for π′ = (3, 2, 1, 1), the conjugate parti-
tion to π = (4, 2, 1).
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8.1.1. Lie algebras. Associated to any Lie group G is a Lie algebra g,
which is a vector space that may be identified with TIdG. For basic infor-
mation on Lie algebras associated to a Lie group, see any of [Spi79, IL03,
Pro07].

When G = GL(V ), then g = gl(V ) := V ∗⊗V . If G ⊆ GL(V ), so that G
acts on V ⊗d, there is an induced action of g ⊆ gl(V ) given by, for X ∈ g,

X.(v1⊗v2⊗ · · ·⊗ vd)
= (X.v1)⊗v2⊗ · · ·⊗ vd + v1⊗(X.v2)⊗ · · ·⊗ vd + · · ·+ v1⊗v2⊗ · · ·⊗ vd−1⊗(X.vd).

To see why this is a natural induced action, consider a curve g(t) ⊂ G with
g(0) = Id and X = g′(0) and take

d

dt
|t=0 g · (v1⊗ · · ·⊗ vd) =

d

dt
|t=0 (g · v1)⊗ · · ·⊗ (g · vd).

One concludes by applying the Leibnitz rule.

8.1.2. Weights. Fix a basis e1, . . . , ev of V , let T ⊂ GL(V ) denote the
subgroup of diagonal matrices, called a maximal torus, let B ⊂ GL(V ) be
the subgroup of upper triangular matrices, called a Borel subgroup, and let
N ⊂ B be the upper triangular matrices with 1’s along the diagonal. The
Lie algebra n of N consists of nilpotent matrices. Call z ∈ V ⊗d a weight
vector if T [z] = [z]. Ifx1

. . .

xv

 z = (x1)p1 · · · (xv)pvz

we say z has weight (p1, . . . , pv) ∈ Zv.

Call z a highest weight vector if B[z] = [z], i.e., if Nz = z. If M is
an irreducible GL(V )-module and z ∈ M is a highest weight vector, call
the weight of z the highest weight of M . A necessary condition for two
irreducible GL(V )-modules to be isomorphic is that they have the same
highest weight (because they must also be isomorphic T -modules). The
condition is also sufficient, see §8.7.

Exercise 8.1.2.1: (1) Show that z is a highest weight vector if and only if
n.z = 0.

The elements of n are often called raising operators.

Exercise 8.1.2.2: (1) Show that if z ∈ V ⊗d is a highest weight vector of
weight (p1, . . . , pv), then (p1, . . . , pv) is a partition of d. }

When G = GL(A1) × · · · × GL(An), the maximal torus in G is the
product of the maximal tori in the GL(Aj), and similarly for the Borel. A
weight is then defined to be an n-tuple of weights etc...
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Because of the relation with weights, it will often be convenient to add
a string of zeros to a partition to make it a string of v integers.

Exercise 8.1.2.3: (1) Show that the space S2(S2C2) contains a copy of
S22C2 by showing that (x2

1)(x2
2) − (x1x2)(x1x2) ∈ S2(S2C2) is a highest

weight vector.

Exercise 8.1.2.4: (1!) Find highest weight vectors in V, S2V,Λ2V, S3V,Λ3V
and the kernels of the symmetrization and skew-symmetrization maps V⊗S2V →
S3V and V⊗Λ2V → Λ3V . Note that both of the last two modules have
highest weight (2, 1), i.e., they are realizations of S21V .

Exercise 8.1.2.5: (2) More generally, find a highest weight vector for the
kernel of the symmetrization map V⊗Sd−1V → SdV and of the kernel of
the “exterior derivative” (or “Koszul”) map

SkV⊗ΛtV → Sk−1V⊗Λt+1V(8.1.1)

x1 · · ·xk⊗y1 ∧ · · · ∧ yt 7→
k∑
j=1

x1 · · · x̂j · · ·xk⊗xj ∧ y1 ∧ · · · ∧ yt.

Exercise 8.1.2.6: (1!) Let π = (p1, . . . , p`) be a partition with at most v
parts and let π′ = (q1, . . . , qp1) denote the conjugate partition. Show that

(8.1.2) zπ := (e1 ∧ · · · ∧ eq1)⊗(e1 ∧ · · · ∧ eq2)⊗ · · ·⊗(e1 ∧ · · · ∧ eqp1 ) ∈ V ⊗|π|

is a highest weight vector of weight π.

Exercise 8.1.2.7: (2) Show that a basis of the highest weight space of
[2, 1]⊗S21V ⊂ V ⊗3 is v1 = e1 ∧ e2⊗e1 and v2 = e1⊗e1 ∧ e2. Let Z3 ⊂ S3 be
the cylic permutation of the three factors in V ⊗3 and show that ωv1±ω2v2

are eigenvectors for this action with eigenvalues ω, ω2, where ω = e
2πi
3 .

The Lie algebra of SL(V ), denoted sl(V ), is the set of traceless endomor-
phisms. One can defined weights for the Lie algebra of the torus, which are
essentially the logs of the corresponding torus in the group. In particular,
vectors of sl-weight zero have GL(V )-weight (d, . . . , d) = (dv) for some d.

8.1.3. The Pieri rule. I describe the decomposition of SπV⊗V as aGL(V )-
module. Write π′ = (q1, . . . , qp1) and recall zπ from (8.1.2). Consider the
vectors:

(e1 ∧ · · · ∧ eq1 ∧ eq1+1)⊗(e1 ∧ · · · ∧ eq2)⊗ · · ·⊗(e1 ∧ · · · ∧ eqp1 )

...

(e1 ∧ · · · ∧ eq1)⊗(e1 ∧ · · · ∧ eq2)⊗ · · ·⊗(e1 ∧ · · · ∧ eqp1 ∧ eqp1+1)

(e1 ∧ · · · ∧ eq1)⊗(e1 ∧ · · · ∧ eq2)⊗ · · ·⊗(e1 ∧ · · · ∧ eqp1 )⊗e1.
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These are all highest weight vectors obtained by tensoring zπ with a vector
in V and skew-symmetrizing appropriately, so the associated modules are
contained in SπV⊗V . With a little more work, one can show these are
highest weight vectors of all the modules that occur in SπV⊗V . If qj =
qj+1 one gets the same module if one inserts eqj+1 into either slot, but its
multiplicity in SπV⊗V is one. More generally one obtains:

Theorem 8.1.3.1 (The Pieri formula). The decomposition of SπV⊗SdV is
multiplicity free. The partitions corresponding to modules SµV that occur
are those obtained from the Young diagram of π by adding d boxes to the
diagram of π, with no two boxes added to the same column.

Definition 8.1.3.2. Let π, µ be partitions with `(µ) < `(π) One says µ
interlaces π if p1 ≥ m1 ≥ p2 ≥ m2 ≥ · · · ≥ m`(π)−1 ≥ p`(π).

Exercise 8.1.3.3: (1) Show that SπV⊗S(d)V consists of all the SµV such
that |µ| = |π|+ d and π interlaces µ.

Exercise 8.1.3.4: (1) Show that a necessary condition for SπV to appear
in Sd(SnV ) is that `(π) ≤ d.

Although a pictorial proof is possible, the standard proof of the Pieri
formula uses a character (see §8.6.7) calculation, computing χπχ(d) as a
sum of χµ’s. See, e.g., [Mac95, §I.9]. A different proof, using Schur-Weyl
duality is in [GW09, §9.2]. There is an algorithm to compute arbitrary
tensor product decompositions called the Littlewood Richardson Rule. See,
e.g., [Mac95, §I.9] for details.

Similar considerations give:

Theorem 8.1.3.5. [The skew-Pieri formula] The decomposition of SπV⊗ΛkV
is multiplicity free. The partitions corresponding to modules SµV that oc-
cur are those obtained from the Young diagram of π by adding k boxes to
the diagram of π, with no two boxes added to the same row.

8.1.4. The GL(V )-modules not appearing in the tensor algebra of
V . The GL(V )-module V ∗ does not appear in the tensor algebra of V . Nor

do the one-dimensional representations det−k : GL(V )→ GL(C1) given by,

for v ∈ C1, det−k(g)v := det(g)−kv.

Exercise 8.1.4.1: (1) Show that if π = (p1, . . . , pv) with pv > 0, then
det−1⊗SπV = S(p1−1,...,pv−1)V . }

Exercise 8.1.4.2: (1) Show that as aGL(V )-module, V ∗ = Λv−1V⊗det−1 =
S1v−1V⊗det−1. }

Every irreducible GL(V )-module is of the form SπV⊗det−k for some
k ≥ 0. Thus they may be indexed by non-increasing sequences of integers
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(p1, . . . , pv) where p1 ≥ p2 ≥ · · · ≥ pv. Such a module is isomorphic to
S(p1−pv,...,pv−1−pv,0)V⊗detpv .

Using

SπV⊗V ∗ = SπV⊗Λv−1V⊗det−1,

we may compute the decomposition of SπV⊗V ∗ using the skew-symmetric
version of the Pieri rule.

Example 8.1.4.3. Let w = 3, then

S(32)W⊗W ∗ = S(43)W⊗det−1⊕S(331)W⊗det−1⊕S(421)W⊗det−1

= S(43)W⊗det−1⊕S(22)W ⊕ S(31)W.

The first module does not occur in the tensor algebra but the rest do.

8.1.5. SL(V )-modules in V ⊗d. Every SL(V )-module is the restriction to
SL(V ) of some GL(V )-module. However distinct GL(V )-modules, when re-
stricted to SL(V ) can become isomorphic, such as the trivial representation
and ΛvV .

Proposition 8.1.5.1. Let π = (p1, . . . , pv) be a partition. The SL(V )-
modules in the tensor algebra V ⊗ that are isomorphic to SπV are SµV with
µ = (p1 + j, p2 + j, . . . , pv + j) for −pv ≤ j <∞.

Exercise 8.1.5.2: (2) Prove Proposition 8.1.5.1. }

For example, for SL2-modules, Sp1,p2C2 ' Sp1−p2C2. We conclude:

Corollary 8.1.5.3. A complete set of the finite dimensional irreducible rep-
resentations of SL2 are the SdC2 with d ≥ 0.

The GL(V )-modules that are SL(V )-equivalent to SπV may be visu-
alized as being obtained by erasing or adding columns of size v from the
Young diagram of π, as in Figure 8.1.5.

, , , , · · ·

Figure 8.1.3. Young diagrams for SL3-modules equivalent to S421C3

Exercise 8.1.5.4: (1!) Let TSL ⊂ SL(V ) be the diagonal matrices with

determinant one. Show that (V ⊗d)T
SL

is zero unless d = δv for some natural
number δ and in this case it consists of all vectors of weight (δv).
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8.2. Young flattenings

Most known equations for border rank of tensors, i.e., polynomials in the
ideal of the variety σr(Seg(PA1 × · · · × PAn)) and symmetric border rank
of polynomials, i.e., polynomials in the ideal of the variety σr(vd(PV )), are
obtained by taking minors of some auxiliary matrix constructed from the
tensor (polynomial). What follows is a general way to use representation
theory to find such matrices.

8.2.1. The case of polynomials. Let P ∈ SdV . Recall the flattenings
from §6.2: Pk,d−k : SkV ∗ → Sd−kV . We may think of this as a consequence

of the fact that SdV ⊂ SkV⊗Sd−kV . The generalization is similar: we want
to find linear inclusions SdV ⊂ U⊗W , i.e., as a space of linear maps from
U∗ to W . If the rank of the linear map associated to `d is r0 and the rank
of the linear map associated to P is r, then RS(P ) ≥ r

r0
.

Exercise 8.2.1.1: (1!) Prove the last assertion. }

This method works best when r0 is small. For example in the classical
flattening case r0 = 1.

Representation theory comes in because we will take U,W to be GL(V )-
modules and the linear inclusion a GL(V )-module map. It turns out that
we know all such maps. The Pieri rule §8.1.3 says they are all of the form
SdV ⊂ SπV

∗⊗SµV where the Young diagram of µ is obtained from the
Young diagram of π by adding d boxes, with no two boxes added to the same
column. To make this completely correct, we need to consider sequences
with negative integers, where e.g., the Young diagram of (−d) should be
thought of as −d boxes in a row. Alternatively, one can work with SL(V )-
modules, as then S(−d)V = S(dv−1)V as SL(V )-modules. For every such
pair there is exactly one GL(V )-inclusion. Call the resulting linear map a
Young-flattening.

The classical case is π = (−k) and µ = (d − k), or in terms of SL(V )-
modules, π = (kv−1) and µ = (kv, d − k). The main example in [LO13],
called a Koszul flattening was constructed as follows: take the classical flat-
tening Pk,d−k : SkV ∗ → Sd−kV and tensor it with IdΛpV for some p, to get a

map SkV ∗⊗ΛpV → Sd−kV⊗ΛpV . Now include Sd−kV ⊂ Sd−k−1V⊗V ,
so we have a map SkV ∗⊗ΛpV → Sd−k−1V⊗V⊗ΛpV and finally skew-
symmetrize the last two factors to obtain a map

(8.2.1) P∧pk,d−k : SkV ∗⊗ΛpV → Sd−k−1V⊗Λp+1V.

If one views this as a map SdV⊗(SkV ∗⊗ΛpV ) → Sd−k−1V⊗Λp+1V , it is a
GL(V )-module map. By the Pieri rule,

(SkV ∗⊗ΛpV )∗ = Sk,1v−pV⊗det−1⊕Sk+1,1v−p−1V⊗det−1



214 8. Representation theory and its uses in complexity theory

and
Sd−k−1V⊗Λp+1V = Sd−k−1,1p+1V ⊕ Sd−k,1pV.

Although in practice one usually works with the map (8.2.1), the map is
zero except restricted to the map between irreducible modules:

[Sk,1v−pV
∗⊗ det−1]∗ → Sd−k,1pV.

The method of shifted partial derivatives §7.5 is a type of Young flatten-
ing which I will call a Hilbert flattening, because it is via Hilbert functions
of Jacobian ideals. It is the symmetric cousin of the Koszul flattening: take
the classical flattening Pk,d−k : SkV ∗ → Sd−kV and tensor it with IdSpV for

some p, to get a map SkV ∗⊗SpV → Sd−kV⊗SpV . Now simply take the
projection Sd−kV⊗SpV → Sd−k+pV , to obtain a map

(8.2.2) SkV ∗⊗SpV → Sd−k+pV.

The target is an irreducible GL(V )-module, so the pruning is easier here.

8.2.2. The case of A⊗B⊗C. Young flattenings can also be defined for
tensors. For tensors in A⊗B⊗C, the Koszul flattenings T∧pA : ΛpA⊗B∗ →
Λp+1A⊗C used in §2.6 appear to be the only useful cases.

In principle there are numerous inclusions

A⊗B⊗C ⊂ (SπA⊗SµB⊗SνC)∗⊗(Sπ̃A⊗Sµ̃B⊗Sν̃C),

where the Young diagram of π̃ is obtained from the Young diagram of π
by adding a box (and similarly for µ, ν), and the case of Koszul flattenings
is where (up to permuting the three factors) π = (1p), µ = (1b−1) (so
SµB ' B∗) and ν = ∅.

Exercise 2.5.0.1 already indicates why symmetrization is not useful, and
an easy generalization of it proves this to be the case. But perhaps ad-
ditional skew-symmetrization could be useful: Let T ∈ A⊗B⊗C and con-
sider T⊗ IdΛpA⊗ IdΛqB ⊗ IdΛsC as a linear map B∗⊗ΛqB∗⊗ΛpA⊗ΛsC →
ΛqB∗⊗ΛpA⊗A⊗ΛsC⊗C. Now quotient to the exterior powers to get a map:

Tp,q,s : Λq+1B∗⊗ΛpA⊗ΛsC → ΛqB∗⊗Λp+1A⊗Λs+1C.

This generalizes the map T∧pA which is the case q = s = 0. Claim: this
generalization does not give better lower bounds for border rank than Koszul
flattenings when a = b = c. (Although it is possible it could give better
lower bounds for some particular tensor.) If T has rank one, say T = a⊗b⊗c,
the image of Tp,q,s is

Λq(b⊥)⊗(a ∧ ΛpA)⊗(c ∧ ΛsC).

Here b⊥ := {β ∈ B∗ | β(b) = 0}. The image of (a⊗b⊗c)p,q,s has dimension

dp,q,s :=

(
b− 1

q

)(
a− 1

p

)(
c− 1

s

)
.
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Thus the size rdp,q,s + 1 minors of Tp,q,s potentially give equations for the
variety of tensors of border rank at most r. We have nontrivial minors as
long as

rdp,q,s + 1 ≤ min{dim(ΛqB∗⊗Λp+1A⊗Λs+1), dim(Λq+1B∗⊗ΛpA⊗ΛsC)},

i.e., as long as

r < min{
(
b
q

)(
a
p+1

)(
c
s+1

)(
b−1
q

)(
a−1
p

)(
c−1
s

) , (
b
q+1

)(
a
p

)(
c
s

)(
b−1
q

)(
a−1
p

)(
c−1
s

)},
i.e.

r < min{ abc

(b− q)(p+ 1)(s+ 1)
,

abc

(q + 1)(a− p)(c− s)
}.

Consider the case q = 0, so we need

r < min{ ac

(p+ 1)(s+ 1)
,

abc

(a− p)(c− s)
}.

Let’s specialize to a = c, p = q, so we need

r < min{ a2

(p+ 1)2
,

a2b

(a− p)2
}.

Consider the case a = mp for some m. Then if m is large, the first term
is large, but the second is very close to b. So unless the dimensions are
unbalanced, one is unlikely to get any interesting equations out of these
Young flattenings.

8.2.3. General perspective. Let X ⊂ PV be a G-variety for some reduc-
tive group G, where V = Vλ is an irreducible G-module. The goal is to find
irreducible G-modules Vµ, Vν such that Vλ ⊂ Vµ⊗Vν . Then given v ∈ V , we
obtain a linear map vµ,ν : V ∗µ → Vν . Say the maximum rank of such a linear
map for x ∈ X is q, then the size (qr + 1)-minors of vµ,ν test membership
σr(X).

8.3. Additional uses of representation theory to find
modules of equations

In this section, I briefly cover additional techniques for finding modules of
polynomials in ideals of G-varietieis. I am brief because either the methods
are not used in this book or they are described at length in [Lan12].
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8.3.1. A näıve algorithm. Let X ⊂ PW be a G-variety. We are primarily
interested in the cases X = σr(Seg(PA× PB × PC)) ⊂ P(A⊗B⊗C), where

G = GL(A)×GL(B)×GL(C) and X = Detn ⊂ PSnCn2
, where G = GLn2 .

Since the ideal of X will be a G-module, we can look for irreducible modules
in the ideal of X by testing highest weight vectors. If U ⊂ SdW ∗ is an
irreducible G-module with highest weight vector u, then U ⊂ I(X) if and
only if u ∈ I(X) because if u ∈ I(X) then g(u) ∈ I(X) for all g ∈ G and such
vectors span U . Thus in each degree d, we can in principle determine Id(X)
by a finite calculation. In practice we test each highest weight vector u on a
“random” point [x] ∈ X. If u(x) 6= 0, we know for sure that U 6⊂ Id(X). If
u(x) = 0, then with extremely high probability (probability one if the point
is truly randomly chosen), we have U ⊂ I(X). After testing several such
points, we have high confidence in the result. Once one has a candidate
module by such tests, one can often prove it is in the ideal by different
methods.

More precisely, if SdW ∗ is multiplicity free, there are a finite number of
highest weight vectors to check. If a given module has multiplicity m, then
we need to take a basis u1, . . . , um of the highest weight space, test on say
x1, . . . , xq with q ≥ m if

∑
j yjuj(xs) = 0 for some constants y1, . . . , ym and

all 1 ≤ s ≤ q.
To carry out this procedure in our two cases we would respectively need

- A method to decompose Sd(A⊗B⊗C)∗ (resp. Sd(SnCn2
)) into irre-

ducible submodules.

- A method to explicitly write down highest weight vectors.

There are several systematic techniques for accomplishing both these
tasks that work well in small cases, but as cases get larger one needs to
introduce additional methods to be able to carry out the calculations in
practice. The first task amounts to the well-studied problem of computing
Kronecker coefficients defined in §8.9.2. I briefly discuss the second task in
§8.7.2.

8.3.2. Enhanced search using numerical methods. Rather than dis-
cuss the general theory, I outline the method used in [HIL13] to find equa-
tions for σ6(Seg(P3 × P3 × P3)). First fix a “random” linear space L ⊂ P63

of dimension 4 (i.e., codimσ6(Seg(P3 × P3 × P3))) and consider the finite
set Z := σ6(Seg(P3 × P3 × P3)) ∩ L. The first objective is to compute
points in Z, with a goal of computing every point in Z. To this end, we
first computed one point in Z as follows. One first picks a random point
x∗ ∈ σ6(Seg(P3 × P3 × P3)), which is easy since an open dense subset of

σ6(Seg(P3 × P3 × P3)) is parameterizable. Let L̃ be a system of 59 linear

forms so that L is the zero locus of L̃ and let Lt,x∗ be the zero locus of
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L(x) − t · L(x∗). Since x∗ ∈ σ6(Seg(P3 × P3 × P3)) ∩ L1,x∗ , a point in Z is
the endpoint of the path defined by σ6(Seg(P3 × P3 × P3)) ∩ Lt,x∗ at t = 0
starting from x∗ at t = 1.

Even though the above process could be repeated for different x∗ to
compute points in Z, we instead used monodromy loops [SVW01] for gen-
erating more points in Z. After performing 21 loops, the number of points
in Z that we computed stabilized at 15,456. The trace test [SVW02] shows
that 15,456 is indeed the degree of σ6(Seg(P3 × P3 × P3)) thereby showing
we had indeed computed Z.

From Z, we performed two computations. The first was the membership
test of [HS13] for deciding if M〈2〉 ∈ σ6(Seg(P3 × P3 × P3)), which requires
tracking 15,456 homotopy paths that start at the points of Z and end on
a P4 containing M〈2〉. In this case, each of these 15,456 paths converged to

points in σ6(Seg(P3 × P3 × P3)) distinct from M〈2〉 providing a numerical

proof that M〈2〉 /∈ σ6(Seg(P3 × P3 × P3)). The second was to compute the
minimal degree of nonzero polynomials vanishing on Z ⊂ L. This sequence
of polynomial interpolation problems showed that no nonconstant polyno-
mials of degree ≤ 18 vanished on Z and hence σ6(Seg(P3 × P3 × P3)). The
15456×8855 matrix resulting from polynomial interpolation of homogeneous
forms of degree 19 in 5 variables using the approach of [GHPS14] has a
64-dimensional null space. Thus, the minimal degree of nonzero polynomials
vanishing on Z ⊂ L is 19, showing dim I19(σ6) ≤ 64.

The next objective was to verify that the minimal degree of nonzero
polynomials vanishing on the curve C := σ6(Seg(P3 × P3 × P3)) ∩K ⊂ K
for a fixed “random” linear space K ⊂ P63 of dimension 5 was also 19.
We used 50,000 points on C and the 50000 × 42504 matrix resulting from
polynomial interpolation of homogeneous forms of degree 19 in 6 variables
using the approach of [GHPS14] also has a 64-dimensional null space.
With this agreement, we decomposed S6(C4⊗C4⊗C4) and looked for a 64-
dimensional submodule. The only reasonable candidate was to take a copy of
S5554C4⊗S5554C4⊗S5554C4. We found a particular copy that was indeed in
the ideal and then proved that M〈2〉 is not contained in σ6(Seg(P3×P3×P3))
by showing a polynomial in this module did not vanish on it. The evaluation
was numerical, so the result was:

Theorem 8.3.2.1. [HIL13] With extremely high probability, the ideal of
σ6(Seg(P3×P3×P3)) is generated in degree 19 by the module S5554C4⊗S5554C4⊗S5554C4.
This module does not vanish on M〈2〉.

In the same paper, a copy of the trivial degree twenty module S5555C4⊗S5555C4⊗S5555C4

is shown to be in the ideal of σ6(Seg(P3 × P3 × P3)) by symbolic methods,
giving a new proof that:
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Theorem 8.3.2.2. [Lan06, HIL13] R(M〈2〉) = 7.

The same methods have shown I45(σ15(Seg(P3×P7×P8)) = 0 and that
I186,999(σ18(Seg(P6 × P6 × P6)) = 0 (this variety is a hypersurface), both of
which are relevant for determining the border rank of M〈3〉, see [HIL13].

8.3.3. Inheritance. Inheritance is a general technique for studying equa-
tions of G-varieties that come in series. It is discussed extensively in [Lan12,
§7.4,16.4].

If V ⊂ W then SπV ⊂ V ⊗d induces a module SπW ⊂ W⊗d by, e.g.,
choosing a basis of W whose first v vectors are a basis of V . Then the two
modules have the same highest weight vector and one obtains the GL(W )-
module the span of the GL(W )-orbit of the highest weight vector.

Because the realizations of SπV in V ⊗d do not depend on the dimen-
sion of V , one can reduce the study of σr(Seg(PA × PB × PC)) to that of
σr(Seg(Pr−1×Pr−1×Pr−1)). As discussed in §3.3.1 this latter variety is an
orbit closure, namely the orbit closure of the so called unit tensor M⊕r〈1〉 .

Proposition 8.3.3.1. [LM04, Prop. 4.4] For all vector spaces Bj with
dimBj = bj ≥ dimAj = aj ≥ r, a module Sµ1

B1⊗ · · ·⊗SµnBn such that
`(µj) ≤ aj for all j, is in Id(σr(Seg(PB∗1 × · · · × PB∗n))) if and only if
Sµ1

A1⊗ · · ·⊗SµnAn is in Id(σr(Seg(PA∗1 × · · · × PA∗n))).

Corollary 8.3.3.2. [LM04, AR03] Let dimAj ≥ r, 1 ≤ j ≤ n. The ideal
of σr(Seg(PA1×· · ·×PAn)) is generated by the modules inherited from the
ideal of σr(Seg(Pr−1 × · · · × Pr−1)) and the modules generating the ideal of
Subr,...,r. The analogous scheme and set-theoretic results hold as well.

8.3.4. Prolongation. Prolongation (and multi-prolongation) provides a
systematic method to find equations for secant varieties that is particu-
larly effective for secant varieties of homogeneous varieties. For a general
discussion and proofs see [Lan12, §7.5]. For our purposes, we will need the
following:

Proposition 8.3.4.1. Given X ⊂ PV ∗, Ir+1(σr(X)) = (I2(X)⊗Sr−1V ) ∩
Sr+1V .

Proposition 8.3.4.2. Let X ⊂ PV be a variety with Id−1(X) = 0. Then
for all δ < (d− 1)r, Iδ(σr(X)) = 0.

Corollary 8.3.4.3. Id(σd(vn(PV )) = 0.

8.4. Necessary conditions for modules of polynomials to be
useful for GCT

The polynomial `n−m permm ∈ SnCn
2

has two properties that can be studied
individually: it is padded: i.e., it is divisible by a large power of a linear form,
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and its zero set is a cone with a n2 −m2 − 1 dimensional vertex, that is, it
only uses m2 + 1 of the n2 variables in an expression in good coordinates.
Both of these properties restrict the types of polynomials we should look for.
Equipped with the language of representation theory we can give precise
descriptions of the modules we should restrict our attention to, which I call
GCT useful.

I begin with the study of cones, as this is a classical topic.

8.4.1. Cones. Recall the subspace variety Subk(S
dV ) ⊂ PSdV from §6.2.2,

the polynomials whose associated hypersurfaces are cones with a v − k di-
mensional vertex.

Proposition 8.4.1.1. Iδ(Subk(S
dV )) consists of the isotypic components

of the modules SπV
∗ appearing in Sδ(SdV ∗) such that `(π) > k.

Exercise 8.4.1.2: (2!) Prove Proposition 8.4.1.1. }

With just a little more effort, one can prove these degree k+1 equations
generate the ideal:

Theorem 8.4.1.3. [Wey03, Cor. 7.2.3] The ideal of Subk(S
dV ) is gener-

ated by the image of Λk+1V ∗⊗Λk+1Sd−1V ∗ ⊂ Sk+1(V ∗⊗Sd−1V ∗) in Sk+1(SdV ∗),
the size k + 1 minors of the (k, d− k)-flattening.

Aside 8.4.1.4. Here is further information about the variety Subk(S
dV ):

First, it is a good example of a variety admitting a Kempf-Weyman desingu-
larization, a type of desingularization that G-varieties often admit. Rather
than discuss the general theory here (see [Wey03] for a full exposition or
[Lan12, Chap. 17] for an elementary introduction), I just explain this
example, which gives a proof of Theorem 8.4.1.3, although more elemen-
tary proofs are possible. The Grassmannian G(k, V ) has a tautological
vector bundle π : S → G(k, V ), where the fiber over a k-plane E is just
the k-plane itself. The whole bundle is a sub-bundle of the trivial bun-
dle V with fiber V . Consider the bundle SdS ⊂ SdV . We have a pro-
jection map p : SdV → SdV . The image of SdS under p is Ŝubk(S

dV ).
Moreover, the map is a desingularization, that is SdS is smooth, and the
map to Ŝubk(S

dV ) is generically one to one. In particular, this implies

dim Ŝubk(S
dV ) = dim(SdS) =

(
k+d−1
d

)
+ d(v − k). One obtains the en-

tire minimal free resolution of Subk(S
dV ) by “pushing down” a tautological

resolution “upstairs”.

8.4.2. The variety of padded polynomials. Define the variety of padded
polynomials
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Padn−m(SnW ) :=

P{P ∈ SnW | P = `n−mh, for some ` ∈W,h ∈ SmW} ⊂ PSnW.

Proposition 8.4.2.1. [KL14] Let π = (p1, . . . , pw) be a partition of dn.
If p1 < d(n − m), then the isotypic component of SπW

∗ in Sd(SnW ∗) is
contained in Id(Padn−m(SnW )).

Proof. Fix a (weight) basis e1, . . . , ew of W with dual basis x1, . . . , xw of
W ∗. Note any element `n−mh ∈ Padn−m(SnW ) is in the GL(W )-orbit

of (e1)n−mh̃ for some h̃, so it will be sufficient to show that the ideal in
degree d contains the modules vanishing on the orbits of elements of the
form (e1)n−mh. The highest weight vector of any copy of S(p1,...,pw)W

∗

in Sd(SnW ∗) will be a linear combination of vectors of the form mI :=

(x
i11
1 · · ·x

i1w
w ) · · · (xi

d
1

1 · · ·x
idw
w ), where i1j + · · · + idj = pj for all 1 ≤ j ≤ w and

ik1 + · · ·+ ikw = n for all 1 ≤ k ≤ d as these are all the vectors of weight π in
Sd(SnW ). Each mI vanishes on any (e1)n−mh unless p1 ≥ d(n −m). (For
a coordinate-free proof, see [KL14].) �

What we really need to study is the variety Padn−m(Subk(S
dW )) of

padded cones.

Proposition 8.4.2.2. [KL14] Id(Padn−m(Subk(S
nW ∗))) consists of all mod-

ules SπW such that SπCk is in the ideal of Padn−m(SnCk∗) and all modules
whose associated partition has length at least k + 1.

Exercise 8.4.2.3: (2) Prove Proposition 8.4.2.2.

In summary:

Proposition 8.4.2.4. In order for a module S(p1,...,p`)W
∗, where (p1, . . . , p`)

is a partition of dn to be GCT-useful for showing `n−m permm 6∈ GLn2 · detn
we must have

• ` ≤ m2 + 1, and

• p1 > d(n−m).

8.5. Proofs of results stated earlier regarding Detn

8.5.1. Proof of Proposition 6.7.1.2. Recall PΛ(M) = detn(MΛ, . . . ,MΛ,MS)
from §6.7.1 where M = MΛ + MS is the decomposition of the matrix M
into its skew-symmetric and symmetric components. We need to show

GLn2 · [PΛ] has codimension one in Detn and is not contained in End(Cn2
) ·

[detn]. We compute the stabilizer of PΛ inside GL(E⊗E), where E = Cn.
The action of GL(E) on E⊗E by M 7→ gMgT preserves PΛ up to scale, and



8.5. Proofs of results stated earlier regarding Detn 221

the Lie algebra of the stabilizer of [PΛ] is a GL(E) submodule of End(E⊗E).
Note that sl(E) = S21n−2E and gl(E) = sl(E)⊕ C. Decompose End(E⊗E)
as a GL(E)-module:

End(E⊗E) = End(Λ2E)⊕ End(S2E)⊕Hom(Λ2E,S2E)⊕Hom(S2E,Λ2E)

= Λ2E⊗Λ2E∗ ⊕ S2E⊗S2E∗ ⊕ Λ2E∗⊗S2E ⊕ S2E∗⊗Λ2E

= (gl(E)⊕ S22,1n−2E)⊕ (gl(E)⊕ S4,2n−1E)⊕ (sl(E)⊕ S3,1n−2E)⊕ (sl(E)⊕ S32,2n−2E)

(8.5.1)

By testing highest weight vectors, one concludes the Lie algebra of GPΛ
is

isomorphic to gl(E) ⊕ gl(E), which has dimension 2n2 = dimGdetn + 1,

implying GL(W ) · PΛ has codimension one in GL(W ) · [detn]. Since it is
not contained in the orbit of the determinant, it must be an irreducible
component of its boundary. Since the zero set is not a cone, PΛ cannot be
in End(W ) · detn which consists of GL(W ) · detn plus cones, as any element
of End(W ) either has a kernel or is invertible.

Exercise 8.5.1.1: (3) Verify by testing on highest weight vectors that the
only summands in (8.5.1) annihilating PΛ are those in gl(E)⊕ gl(E). Note
that as a gl(E)-module, gl(E) = sl(E) ⊕ C so one must test the highest
weight vector of sl(E) and C.

8.5.2. The module structure of the equations for hypersurfaces
with degenerate duals. Recall the equations for Dk,d,N ⊂ P(SdCN∗) that

we found in §6.5.1 that enabled the lower bound dc(permm) ≥ m2

2 . In this
subsection I describe the module structure of the equations, in particular I
verify that they are GCT-useful.

Write P =
∑

J P̃Jx
J with the sum over |J | = d. The weight of a mono-

mial P̃J0x
J0 is J0 = (j1, . . . , jn). Adopt the notation [i] = (0, . . . , 0, 1, 0, . . . , 0)

where the 1 is in the i-th slot and similarly for [i, j] where there are two
1’s. The entries of Pd−2,2 are, for i 6= j, (Pd−2,2)i,j = PI+[i,j]x

I , and for

i = j, PI+2[i]x
I , where |I| = d − 2, and PJ is P̃J with the coefficient

adjusted, e.g., P(d,0,...,0) = d(d − 1)P̃(d,0,...,0) etc.. (This won’t matter be-
cause we are only concerned with the weights of the coefficients, not their
values.) To determine the highest weight vector, take L = span{e1, e2},
F = span{e1, . . . , ek+3}. The highest weight term of

(xe−d1 P |L) ∧ (xe−d−1
1 x2P |L) ∧ · · · ∧ (xe−d2 P |L) ∧ (detk+3(Pd−2,2 |F ))|L

is the coefficient of xe1 ∧ x
e−1
1 x2 ∧ · · · ∧ xe−(e−d+2)

1 xe−d+2
2 . It will not mat-

ter how we distribute these for the weight, so take the coefficient of xe1 in
(detk+3(Pd−2,2 |F ))|L. It has leading term

P(d,0,...,0)P(d−2,2,0,...,0)P(d−2,0,2,0,...,0) · · ·P(d−2,0,...,0,2,0,...,0)
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which is of weight (d+(k+2)(d−2), 2k+2). For each (xe−d−s1 xs2P |L) take the

coefficient of xe−s−1
1 xs+1

2 which has the coefficient of P(d−1,1,0,...,0) each time,
to get a total weight contribution of ((e− d+ 1)(d− 1), (e− d+ 1), 0, . . . , 0)
from these terms. Adding the weights together, and recalling that e =
(k + 3)(d− 2) the highest weight is

(d2k + 2d2 − 2dk − 4d+ 1, dk + 2d− 2k − 3, 2k+1),

which may be written as

((k + 2)(d2 − 2d) + 1, (k + 2)(d− 2) + 1, 2k+1).

In summary:

Theorem 8.5.2.1. [LMR13] The ideal of the variety Dk,d,N ⊂ P(SdCN∗)
contains a copy of the GLN -module Sπ(k,d)CN , where

π(k, d) = ((k + 2)(d2 − 2d) + 1, d(k + 2)− 2k − 3, 2k+1).

Since |π| = d(k + 2)(d− 1), these equations have degree (k + 2)(d− 1).

Observe that the module π(2n − 2, n) indeed satisfies the requirements

to be (m, m
2

2 )-GCT useful, as p1 = 2n3 − 2n2 + 1 > n(n−m) and `(π(2n−
2, n)) = 2n+ 1.

Recall that Dualk,d,N ⊂ PSdCN∗ is the Zariski closure of the irreducible
polynomials whose hypersurfaces have k-dimensional dual varieties. The
following more refined information may be useful for studying permanent v.
determinant:

Proposition 8.5.2.2. [LMR13] When restricted to the open subset of ir-
reducible hypersurfaces in SdCN∗ , Dualk,d,N = Dk,d,N as sets.

Proof. Let P ∈ Dk,d,N be irreducible. For each (L,F ) ∈ G(2, F ) × G(k +
3, V ) one obtains set-theoretic equations for the condition that P |L divides
Q|L, where Q = det(Pd−2,2|F ). But P divides Q if and only if restricted to
each plane P divides Q, so these conditions imply that the dual variety of
the irreducible hypersurface Z(P ) has dimension at most k. �

Theorem 8.5.2.3. [LMR13]Detn is an irreducible component ofD2n−2,n,n2

The proof of Theorem 8.5.2.3 requires familiarity with Zariski tangent
spaces to schemes. Here is an outline: Given two schemes, X,Y with X
irreducible and X ⊆ Y , an equality of Zariski tangent spaces, TxX = TxY
for some x ∈ Xsmooth, implies that X is an irreducible component of Y (and
in particular, if Y is irreducible, that X = Y ). The following theorem is a
more precise version:
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Theorem 8.5.2.4. [LMR13] The scheme D2n−2,n,n2 is smooth at [detn],
and Detn is an irreducible component of D2n−2,n,n2 .

The idea of the proof is as follows: We need to show T[detn]Dn,2n−2,n2 =
T[detn]Detn. We already know T[detn]Detn ⊆ T[detn]Dn,2n−2,n2 . Both of these
vector spaces are Gdetn-submodules of Sn(E⊗F ). In 8.7.1.3 you will prove
the Cauchy formula that Sn(E⊗F ) = ⊕|π|=nSπE⊗SπF .

Exercise 8.5.2.5: (2) Show that [detn] = S1nE⊗S1nF and T̂detnDetn =
S1nE⊗S1nF ⊕ S2,1n−1E⊗S2,1n−1F . }

So as a GL(E)×GL(F )-module, T[detn]Detn = S2,1n−2E⊗S2,1n−2F . The
problem now becomes to show that none of the other modules in Sn(E⊗F )
are in T[detn]Dn,2n−2,n2 . To do this, it suffices to check a single point in
each module. A first guess would be to check highest weight vectors, but
these are not so easy to write down in any uniform manner. Fortunately
in this case there is another choice, namely the immanants IMπ defined by
Littlewood [Lit06], the unique trivial representation of the diagonal Sn in
the weight ((1n), (1n)) subspace of SπE⊗SπF , and the proof in [LMR13]
proceeds by checking that none of these other than IM2,1n−2 are contained
in T[detn]Dn,2n−2,n2 .

Theorem 8.5.2.4 implies that theGL(W )-module of highest weight π(2n−
2, n) given by Theorem 8.5.2.1 gives local equations at [detn] of Detn, of
degree 2n(n − 1). Since Subk(S

nCN ) ⊂ Dualk,n,N , the zero set of the

equations is strictly larger than Detn. Recall that dimSubk(S
nCn2

) =(
k+n+1
n

)
+ (k + 2)(N − k − 2) − 1. For k = 2n − 2, N = n2, this is larger

than the dimension of the orbit of [detn], and therefore Dual2n−2,n,n2 is not
irreducible.

8.6. Double-Commutant and algebraic Peter-Weyl Theorems

I now present the theory that will enable proofs of the statments in §8.1 and
§3.5.

8.6.1. Algebras and their modules. For an algebra A, and a ∈ A the
space Aa is a left ideal and a (left) A-module.

Let G be a finite group. Recall from §3.5.1 the notation C[G] for the
space of functions on G, and δg ∈ C[G] for the function such that δg(h) = 0
for h 6= g and δg(g) = 1. Define a representation L : G → GL(C[G]) by
L(g)δh = δgh and extending the action linearly. Define a second representa-
tion R : G → GL(C[G]) by R(g)δh = δhg−1 . Thus C[G] is a G × G-module
under the representation (L,R), and for all c ∈ C[G], the ideal C[G]c is a
G-module under the action L.
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A representation ρ : G → GL(V ) induces an algebra homomorphism
C[G] → End(V ), and it is equivalent that V is a G-module or a left C[G]-
module.

A module M (for a group, ring, or algebra) is simple if it has no proper
submodules. The module M is semi-simple if it may be written as the direct
sum of simple modules. An algebra is completely reducible if all its modules
are semi-simple. For groups alone I will continue to use the terminology
irreducible for a simple module, completely reducible for a semi-simple mod-
ule, and reductive for a group such that all its modules can be decomposed
into a direct sum of irreducible modules.

Exercise 8.6.1.1: (2) Show that if A is completely reducible, V is an A-
module with an A-submodule U ⊂ V , then there exists an A-invariant
complement to U in V and a projection map π : V → U that is an A-
module map. }

8.6.2. The double-commutant theorem. Our sought-after decomposi-
tion of V ⊗d as a GL(V )-module will be obtained by exploiting the fact that
the actions of GL(V ) and Sd on V ⊗d commute. In this subsection we study
commuting actions in general, as this is also the basis of the generalized DFT
used in the Cohn-Umans method §3.5, and the starting point of the program
of [MS01, MS08]. References for this section are [Pro07, Chap. 6] and
[GW09, §4.1.5]. Let S ⊂ End(V ) be any subset. Define the centralizer or
commutator of S to be

S′ := {X ∈ End(V ) | Xs = sX ∀s ∈ S}

Proposition 8.6.2.1.

(1) S′ ⊂ End(V ) is a sub-algebra.

(2) S ⊂ (S′)′.

Exercise 8.6.2.2: (1!) Prove Proposition 8.6.2.1.

Theorem 8.6.2.3. [Double-Commutant Theorem] Let A ⊂ End(V ) be a
completely reducible associative algebra. Then A′′ = A.

There is an ambiguity in the notation S′ as it makes no reference to V ,
so instead introduce the notation EndS(V ) := S′.

Proof. By Proposition 8.6.2.1, A ⊆ A′′. To show the reverse inclusion, say
T ∈ A′′. Fix a basis v1, . . . , vv of V . Since the action of T is determined
by its action on a basis, we need to find a ∈ A such that avj = Tvj for
j = 1, . . . ,v. Let w := v1 ⊕ · · · ⊕ vv ∈ V ⊕v and consider the submodule
Aw ⊆ V ⊕v. By Exercise 8.6.1.1, there exists an A-invariant complement to
this submodule and anA-equivariant projection π : V ⊕v → Aw ⊂ V ⊕v, that
is, a projection π that commutes with the action of A, i.e., π ∈ EndA(V ⊕v).
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Since T ∈ EndA(V ) and the action on V ⊕v is diagonal, T ∈ EndA(V ⊕v).
We have π(Tw) = T (π(w)) but T (π(w)) = T (w) = Tv1 ⊕ · · · ⊕ Tvv. But
since π(Tw) ∈ Aw, there must be some a ∈ A such that aw = T (w), i.e.,
av1 ⊕ · · · ⊕ avv = Tv1 ⊕ · · · ⊕ Tvv, i.e., avj = Tvj for j = 1, . . . ,v. �

Burnside’s theorem, stated in §3.5, has a similar proof:

Theorem 8.6.2.4. [Burnside] Let A ⊆ End(V ) be a finite dimensional sim-
ple sub-algebra of End(V ) (over C) acting irreducibly on a finite-dimensional
vector space V . Then A = End(V ). More generally, a finite dimensional
semi-simple associative algebra A over C is isomorphic to a direct sum of
matrix algebras:

A 'Matd1×d1(C)⊕ · · · ⊕Matdq×dq(C)

for some d1, . . . , dq.

Proof. For the first assertion, we need to show that given X ∈ End(V ),
there exists a ∈ A such that avj = Xvj for v1, . . . , vv a basis of V . Now just
imitate the proof of Theorem 8.6.2.3. For the second assertion, note that A
is a direct sum of simple algebras. �

Remark 8.6.2.5. A pessimist could look at this theorem as a disappoint-
ment: all kinds of interesting looking algebras over C, such as the group
algebra of a finite group, are actually just plain old matrix algebras in dis-
guise. An optimist could view this theorem as stating there is a rich structure
hidden in matrix algebras. We will determine the matrix algebra structure
explicitly for the group algebra of a finite group.

8.6.3. Consequences for reductive groups. Let S be a group or algebra
and let V,W be S-modules, adopt the notation HomS(V,W ) for the space
of S-module maps V →W , i.e.,

HomS(V,W ) : = {f ∈ Hom(V,W ) | s(f(v)) = f(s(v)) ∀ s ∈ S, v ∈ V }

= (V ∗⊗W )S .

Theorem 8.6.3.1. Let G be a reductive group and let V be a G-module.
Then

(1) The commutator EndG(V ) is a semi-simple algebra.

(2) The isotypic components of G and EndG(V ) in V coincide.

(3) Let U be one such isotypic component, say for irreducible represen-
tations A ofG and B of EndG(V ). Then, as aG×EndG(V )-module,

U = A⊗B,
as an EndG(V )-module

B = HomG(A,U),
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and as a G-module

A = HomEndG(V )(B,U).

In particular, mult(A, V ) = dimB and mult(B, V ) = dimA.

Example 8.6.3.2. Below we will see that EndGL(V )(V
⊗d) = C[Sd]. Re-

call from Equation (4.5.1) that V ⊗3 = S3V ⊕ (S21V )⊗2 ⊕ Λ3V as a GL(V )
module. As an S3 × GL(V )-module, we have the decomposition V ⊗3 =
([3]⊗S3V )⊕([2, 1]⊗S21V )⊕([1, 1, 1]⊗Λ3V ) which illustrates Theorem 8.6.3.1.

To prove the theorem, we will need the following lemma:

Lemma 8.6.3.3. For W ⊂ V a G-submodule and f ∈ HomG(W,V ), there
exists a ∈ EndG(V ) such that a|W = f .

Proof. Consider the diagram

End(V ) −→ Hom(W,V )
↓ ↓

EndG(V ) −→ HomG(W,V )

The vertical arrows are G-equivariant projections, and the horizontal ar-
rows are restriction of domain of a linear map. The diagram is commuta-
tive. Since the vertical arrows and upper horizontal arrow are surjective, we
conclude the lower horizontal arrow is surjective as well. �

Proof of Theorem 8.6.3.1. I first prove (3): The space HomG(A, V ) is
an EndG(V )-module because for s ∈ HomG(A, V ) and a ∈ EndG(V ), the
composition as : A→ V is still a G-module map. We need to show (i) that
HomG(A, V ) is an irreducible EndG(V )-module and (ii) that the isotypic
component of A in V is A⊗HomG(A, V ).

To show (i), it is sufficient to show that for all nonzero s, t ∈ HomG(A, V ),
there exists a ∈ EndG(V ) such that at = s. Since tA and sA are isomor-
phic G-modules, by Lemma 8.6.3.3, there exists a ∈ EndG(V ) extending an
isomorphism between them, so a(tA) = sA, i.e., at : A → sA is an isomor-
phism. Consider the isomorphism S : A → sA, given by a 7→ sa, so S−1at
is a nonzero scalar c times the identity. Then ã := 1

ca has the property that
ãt = s.

To see (ii), let U be the isotypic component of A, so U = A⊗B for some

vector space B. Let b ∈ B and define a map b̃ : A→ V by a 7→ a⊗b, which
is a G-module map where the action of G on the target is just the action
on the first factor. Thus B ⊆ HomG(A, V ). Any G-module map A→ V by
definition has image in U , so equality holds.

(3) implies (2).
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To see (1), note that EndG(V ) is semi-simple because if the irreducible
G × EndG(V )-components of V are Ui, then EndG(V ) = ⊕i EndG(Ui) =
⊕i EndG(Ai⊗Bi) = ⊕i End(Bi). �

8.6.4. Matrix coefficients. For affine algebraic reductive groups, one can
obtain all their (finite dimensional) irreducible representations from the ring
of regular functions on G, denoted C[G]. Here G is an affine algebraic
variety, i.e., a subvariety of CN for some N , so C[G] = C[x1, . . . , xN ]/I(G).

Exercise 8.6.4.1: (1!) Show that GLn is an affine algebraic subvariety of

Cn2+1 with coordinates (xij , z) by considering the polynomial z detn(xij)−1.

Thus C[GL(W )] may be defined to be the restriction of polynomial func-

tions on Cn2+1 to the subvariety isomorphic to GL(W ). (For a finite group,
all complex-valued functions on G are algebraic, so this is consistent with
our earlier notation.) If G ⊂ GL(W ) is defined by algebraic equations, this
also enables us to define C[G] because G ⊂ GL(W ) is a subvariety. In this
section and the next, we study the structure of C[G] as a G-module.

Let G be an affine algebraic group. Let ρ : G → GL(V ) be a finite
dimensional representation of G. Define a map iV : V ∗⊗V → C[G] by
iV (α⊗v)(g) := α(ρ(g)v). The space of functions iV (V ∗⊗V ) is called the
space of matrix coefficients of V .

Exercise 8.6.4.2: (1)

i) Show iV is a G×G-module map.

ii) Show that if V is irreducible, iV is injective. }

iii) If we choose a basis v1, . . . , vv of V with dual basis α1, . . . , αv, then
iV (αi⊗vj)(g) is the (i, j)-th entry of the matrix representing ρ(g)
in this basis (which explains the name “matrix coefficients”).

iv) Compute the matrix coefficient basis of the three irreducible rep-
resentations of S3 in terms of the standard basis δσ, σ ∈ S3.

v) Let G = GL2C, write g =

(
a b
c d

)
∈ G, and compute the matrix

coefficient basis as functions of a, b, c, d when V = S2C2, S3C2 and
Λ2C2.

Theorem 8.6.4.3. Let G be an affine algebraic group and V an irreducible
G-module. Then iV (V ∗⊗V ) equals the isotypic component of type V in
C[G] under the action L and the isotypic component of V ∗ in C[G] under
the action R.

Proof. It suffices to prove one of the assertions, consider the action L. Let
j : V → C[G] be a G-module map under the action L. We need to show
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j(V ) ⊂ iV (V ∗⊗V ). Define α ∈ V ∗ by α(v) := j(v)(Id). Then j(v) =
iV (α⊗v), as j(v)g = j(v)(g · Id) = j(gv)(Id) = α(gv) = iV (α⊗v)g. �

8.6.5. Application to representations of finite groups. Theorem 8.6.4.3
implies:

Theorem 8.6.5.1. Let G be a finite group, then as a G×G-module under
the action (L,R) and as an algebra,

(8.6.1) C[G] =
⊕
i

Vi⊗V ∗i

where the sum is over all the distinct irreducible representations of G.

Exercise 8.6.5.2: (1!) Let G be a finite group and H a subgroup. Show
that C[G/H] = ⊕iV ∗i ⊗(Vi)

H as a G-module under the action L.

8.6.6. The algebraic Peter-Weyl Theorem. Theorem 8.6.5.1 has gen-
eralizations to several different classes of groups. The most important gen-
eralization for our purposes is to reductive algebraic groups. The proof is
unchanged, except that one has an infinite sum:

Theorem 8.6.6.1. Let G be a reductive algebraic group. Then there are
only countably many non-isomorphic finite dimensional irreducibleG-modules.
Let Λ+

G denote a set indexing the irreducible G-modules, and for λ ∈ Λ+
G, let

Vλ denote the irreducible module associated to λ. Then, as a G×G-module

C[G] =
⊕
λ∈Λ+

G

Vλ⊗V ∗λ .

Corollary 8.6.6.2. Let H ⊂ G be a closed subgroup. Then, as a G-module,

(8.6.2) C[G/H] = C[G]H =
⊕
λ∈Λ+

G

Vλ⊗(V ∗λ )H =
⊕
λ∈Λ+

G

V
⊕ dim(V ∗λ )H

λ .

Here G acts on the Vλ and (V ∗λ )H is just a vector space whose dimension
records the multiplicity of Vλ in C[G/H].

Exercise 8.6.6.3: (2!) Use Corollary 8.6.6.2 to determine C[vd(PV )] (even
if you already know it by a different method).

8.6.7. Characters and representations of finite groups. Let ρ : G→
GL(V ) be a representation. Define a function χρ : G → C by χρ(g) =
trace(ρ(g)). The function χρ is called the character of ρ.

Exercise 8.6.7.1: (1) Show that χρ is constant on conjugacy classes of G.

A function f : G → C such that f(hgh−1) = f(g) for all g, h ∈ G is
called a class function.
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Exercise 8.6.7.2: (1) Show that for representations ρj : G→ GL(Vj), that
χρ1⊕ρ2 = χρ1 + χρ2 .

Exercise 8.6.7.3: (1) Given ρj : G → GL(Vj) for j = 1, 2, define ρ1⊗ρ2 :
G→ GL(V1⊗V2) by ρ1⊗ρ2(g)(v1⊗v2) = ρ1(g)v1⊗ρ2(g)v2. Show that χρ1⊗ρ2 =
χρ1χρ2 .

Theorem 8.6.5.1 is not yet useful, as we do not yet know what the Vi
are. Let µi : G → GL(Vi) denote the representation. It is not difficult to
show that the functions χµi are linearly independent in C[G]. (One uses

a G-invariant Hermitian inner-product 〈χV , χW 〉 := 1
|G|
∑

g∈G χV (g)χW (g)

and shows that they are orthogonal with respect to this inner-product, see,
e.g., [FH91, §2.2].) On the other hand, we have a natural basis of the
class functions, namely the δ-functions on each conjugacy class. Let Cj be
a conjugacy class of G and define δCj :=

∑
g∈Cj δg. It is straight-forward to

see, via the DFT (§3.5.1), that the span of the δCj ’s equals the span of the
χµi ’s, that is the number of distinct irreducible representations of G equals
the number of conjugacy classes (see, e.g, [FH91, §2.2] for the standard
proof using the Hermitian inner-product on class functions and [GW09,
§4.4] for a DFT proof).

Remark 8.6.7.4. The classical Heisenberg uncertainty principle from physics,
in the language of mathematics, is that it is not possible to localize both
a function and its Fourier transform. A discrete analog of this uncertainty
principle holds, in that the transforms of the delta functions have large sup-
port in terms of matrix coefficients and vice versa. Another manifestation
of the uncertainty principle is that the relation between these two bases can
be complicated.

8.6.8. Representations of Sd. When G = Sd, we get lucky: we will
associate irreducible representations directly to conjugacy classes.

The conjugacy class of a permutation is determined by its decomposition
into a product of disjoint cycles. The conjugacy classes of Sd are in 1-1 corre-
spondence with the set of partitions of d: to a partition π = (p1, . . . , pr) one
associates the conjugacy class of an element with disjoint cycles of lengths
p1, . . . , pr. Let [π] denote the isomorphism class of the irreducible Sd-module
associated to the partition π. In summary:

Proposition 8.6.8.1. The irreducible representations of Sd are indexed by
partitions of d.

Thus as an Sd ×Sd module under the (L,R)-action:

(8.6.3) C[Sd] =
⊕
|π|=d

[π]∗L⊗[π]R.
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We can say even more: as Sd modules, [π] is isomorphic to [π]∗. This is
usually proved by first noting that for any finite group G, and any irreducible
representation µ, χµ∗ = χµ where the overline denotes complex conjugate
and then observing that the characters of Sd are all real-valued functions.
Thus we may rewrite (8.6.3) as

(8.6.4) C[Sd] =
⊕
|π|=d

[π]L⊗[π]R.

Exercise 8.6.8.2: (2) Show [d] ⊂ [π]⊗[µ] if and only if π = µ. }

8.7. Representations of Sd and GL(V )

In this section we finally obtain our goal of the decomposition of V ⊗d as
a GL(V )-module. Representations of GL(V ) occurring in V ⊗ may also be
indexed by partitions, which is explained in §8.7.1 where Schur-Weyl duality
is stated and proved.

8.7.1. Schur-Weyl duality. We have already seen that the actions of
GL(V ) and Sd on V ⊗d commute.

Proposition 8.7.1.1. EndGL(V )(V
⊗d) = C[Sd].

Proof. We will show that EndC[Sd](V
⊗d) is the algebra generated by GL(V )

and conclude by the double commutant theorem. Since

End(V ⊗d) = V ⊗d⊗(V ⊗d)∗

' (V⊗V ∗)⊗d

under the re-ordering isomorphism, End(V ⊗d) is spanned by elements of the

form X1⊗ · · ·⊗ Xd with Xj ∈ End(V ), i.e., elements of Ŝeg(P(End(V )) ×
· · · × P(End(V ))). The action of X1⊗ · · ·⊗ Xd on v1⊗ · · ·⊗ vd induced
from the GL(V )×d-action is v1⊗ · · ·⊗ vd 7→ (X1v1)⊗ · · ·⊗ (Xdvd). Since
g ∈ GL(V ) acts by g ·(v1⊗ · · ·⊗ vd) = gv1⊗ · · ·⊗ gvd, the image of GL(V ) in
(V⊗V ∗)⊗d lies in Sd(V⊗V ∗), in fact it is a Zariski open subset of v̂d(P(V⊗V ∗))
which spans Sd(V⊗V ∗). In other words, the algebra generated by GL(V )
is Sd(V⊗V ∗) ⊂ End(V ⊗d). But by definition Sd(V⊗V ∗) = [(V⊗V ∗)⊗d]Sd
and we conclude. �

Applying Theorem 8.6.3.1 we obtain:

Theorem 8.7.1.2. [Schur-Weyl duality] The irreducible decomposition of
V ⊗d as a GL(V ) × C[Sd]-module (equivalently, as a GL(V ) ×Sd-module)
is

(8.7.1) V ⊗d =
⊕
|π|=d

SπV⊗[π],
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where SπV := HomSd([π], V ⊗d) is an irreducible GL(V )-module.

Note that as far as we know, SπV could be zero. (It will be zero whenever
`(π) ≥ dimV .)

Exercise 8.7.1.3: (2) Show that as a GL(E)×GL(F )-module, Sd(E⊗F ) =
⊕|π|=dSπE⊗SπF . This is called the Cauchy formula. }

8.7.2. Explicit realizations of representations of Sd and GL(V ). By
Theorem 8.6.5.1 we may explicitly realize each irreducible Sd-module via
some projection from C[Sd]. The question is, which projections?

Given π we would like to find elements cπ ∈ C[Sd] such that C[Sd]cπ is
isomorphic to [π]. I write π instead of just π because the elements are far
from unique; there is a vector space of dimension dim[π] of such projection
operators by Theorem 8.6.5.1, and the overline signifies a specific realization.
In other words, the Sd-module map RMcπ : C[Sd]→ C[Sd], f 7→ fcπ should
kill all SR

d -modules not isomorphic to [π]R, and the image should be [π]L⊗v
for some v ∈ [π]R. If this works, as a bonus, the map cπ : V ⊗d → V ⊗d

induced from the Sd-action will have image SπV⊗v for the same reason,
where SπV is some realization of SπV and v ∈ [π].

Here are projection operators for the two representations we understand
well:

When π = (d), there is a unique up to scale c
(d)

and it is easy to see

it must be c
(d)

:=
∑

σ∈Sd δσ, as the image of RMc
(d)

is clearly the line

through c
(d)

on which Sd acts trivially. Note further that c
(d)

(V ⊗d) = SdV

as desired.

When π = (1d), again we have a unique up to scale projection, and its
clear we should take c

(1d)
=
∑

σ∈Sd sgn(σ)δσ as the image of any δτ will be

sgn(τ)c
(1d)

, and c
(1d)

(V ⊗d) = ΛdV .

The only other representation of Sd that we have a reasonable under-
standing of is the standard representation π = (d− 1, 1) which corresponds
to the complement of the trivial representation in the permutation action
on Cd. A basis of this space could be given by e1− ed, e2− ed, . . . , ed−1− ed.
Note that the roles of 1, . . . , d− 1 in this basis are the “same” in that if one
permutes them, one gets the same basis, and that the role of d with respect
to any of the other ej is “skew” in some sense. To capture this behavior,
consider

c
(d−1,1)

:= (δId − δ(1,d))(
∑

σ∈Sd−1[d−1]

δσ)
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where Sd−1[d− 1] ⊂ Sd is the subgroup permuting the elements {1, . . . , d−
1}. Note that c

(d−1,1)
δτ = c

(d−1,1)
for any τ ∈ Sd−1[d − 1] so the image is

of dimension at most d = dim(C[Sd]/C[Sd−1]).

Exercise 8.7.2.1: (2) Show that the image is d− 1 dimensional.

Now consider RMc
(d−1,1)

(V ⊗d): after re-orderings, it is the image of the

composition of the maps

V ⊗d → V ⊗d−2⊗Λ2V → Sd−1V⊗V.
In particular, in the case d = 3, it is the image of

V⊗Λ2V → S2V⊗V,
which is isomorphic to S21V , as was mentioned in in §4.5.

Here is the general recipe to construct an Sd-module isomorphic to [π]:
fill the Young diagram of a partition π of d with integers 1, . . . , d from top
to bottom and left to right. For example let π = (4, 2, 1) and write:

(8.7.2)

1 4 6 7
2 5
3

Define Sπ′ ' Sq1×· · ·×Sqp1
⊂ Sd to be the subgroup that preserves the

subsets of elements in the columns and Sπ is the subgroup of Sd permuting
the elements in the rows.

Explicitly, writing π = (p1, . . . , pq1) and π′ = (q1, . . . , qp1), Sq1 permutes
the elements of {1, . . . , q1}, Sq2 permutes the elements of {q1+1, . . . , q1+q2}
etc.. Similarly, Sπ ' Sp1 × · · · × Sp` ⊂ Sd is the subgroup where Sp1

permutes the elements {1, q1 + 1, q1 + q2 + 1, . . . , q1 + · · ·+ qp1−1 + 1}, Sp2

permutes the elements {2, q1 + 2, q1 + q2 + 2, . . . , q1 + · · ·+ qp1−1 + 2} etc..

Define two elements of C[Sd]: sπ :=
∑

σ∈Sπ δσ and aπ :=
∑

σ∈Sπ′
sgn(σ)δσ.

Fact: Then [π] is the isomorphism class of the Sd-module C[Sd]aπsπ. (It
is also the isomorphism class of C[Sd]sπaπ, although these two realizations
are generally distinct.)

Exercise 8.7.2.2: (1) Show that [π′] = [π]⊗[1d] as Sd-modules. }

The space V ⊗dcπ will be a copy of the module SπV because cπ kills
all modules not isomorphic to π and maps [π] to a one dimensional vec-
tor space. The action on V ⊗d is first to map it to Λq1V⊗ · · ·⊗ Λqp1V , and
then the module SπV is realized as the image of a map from this space
to Sp1V⊗ · · ·⊗ Spq1V . So despite their original indirect definition, we may
realize the modules SπV explicitly simply be skew-symmetrizations and sym-
metrizations.
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Other realizations of SπV (resp. highest weight vectors for SπV , in fact
a basis of them) can be obtained by letting Sd act on V ⊗dcπ (resp. the
highest weight vector of V ⊗dcπ).

Example 8.7.2.3. Consider c
(2,2)

, associated to

(8.7.3)

1 3
2 4

which realizes a copy of S(2,2)V ⊂ V ⊗4. It first maps V ⊗4 to Λ2V⊗Λ2V and

then maps that to S2V⊗S2V . Explicitly, the maps are

a⊗b⊗c⊗c 7→ (a⊗b− b⊗a)⊗(c⊗d− d⊗c) = a⊗b⊗c⊗d− a⊗b⊗d⊗c− b⊗a⊗c⊗d+ b⊗a⊗d⊗c
7→ (a⊗b⊗c⊗d+ c⊗b⊗a⊗d+ a⊗d⊗c⊗b+ c⊗d⊗a⊗b)
− (a⊗b⊗d⊗c+ d⊗b⊗a⊗c+ a⊗c⊗d⊗b+ d⊗c⊗a⊗b)
− (b⊗a⊗c⊗d+ c⊗a⊗b⊗d+ b⊗d⊗c⊗a+ c⊗d⊗b⊗a)

+ (b⊗a⊗d⊗c+ d⊗a⊗b⊗c+ b⊗c⊗d⊗a+ d⊗c⊗b⊗a)

Exercise 8.7.2.4: Let v1 = (e1 ∧ e2)⊗e1 and v2 = e1⊗(e1 ∧ e2) denote
a basis of the highest weight space for S21V⊗[2, 1] ⊂ V ⊗3. Compute the
action of Z3 on these vectors and find a new basis consisting of eigenvectors
for the Z3-action. What are the eigenvalues? }

8.8. The program of [MS01, MS08]

Algebraic geometry was used successfully in [Mul99] to prove lower bounds
in the “PRAM model without bit operations” (the model is defined in
[Mul99]), and the proof indicated that algebraic geometry, more precisely
invariant theory, could be used to resolve the P v. NC problem (a cousin
of permanent v. determinant). This was investigated further in [MS01,
MS08] and numerous sequels. In this section I present the program out-
lined in [MS08], as refined in [BLMW11], as well as an outline of the proof
[IP15, BIP16] that this program cannot work as originally proposed or even
the refinement discussed in [BLMW11]. Despite this negative news, the
program has opened several promising directions, and inspired perspectives
that have led to concrete advances such as [LR15] as described in §7.4.7.
As explained below, it is conceiveably possible to carry out a variant of the
program.

Independent of its viability, I expect the ingredients that went into the
program of [MS01, MS08] will play a role in future investigations regarding
Valiant’s conjecture and thus are still worth studying.
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8.8.1. Preliminaries. LetW = Cν2
. Recall C[D̂etn] := Sym(SnW ∗)/I(Detn),

the homogeneous coordinate ring of the (cone over) Detn. This is the space

of polynomial functions on D̂etn inherited from polynomials on the ambient
space.

Since I(Detn) ⊂ Sym(SnW ∗) is a GL(W )-submodule, and since GL(W )
is reductive, we obtain the following splitting as a GL(W )-module:

Sym(SnW ∗) = I(Detn)⊕ C[D̂etn].

In particular, if a module SπW appears in Sym(SnW ∗) and it does not
appear in C[Detn], it must appear in I(Detn).

Now consider

C[GL(W ) · detn] = C[GL(W )/Gdetn ] = C[GL(W )]Gdetn .

There is an injective map

C[D̂etn]→ C[GL(W ) · detn]

given by restriction of functions. The map is an injection because any func-
tion identically zero on a Zariski open subset of an irreducible variety is
identically zero on the variety.

Corollary 8.6.6.2 indicates the following plan:

Plan : Find a module SπW
∗ not appearing in C[GL(W )/Gdetn ] that does

appear in Sym(SnW ∗).

By the above discussion such a module must appear in I(Detn).

Definition 8.8.1.1. An irreducible GL(W )-module SπW
∗ appearing in

Sym(SnW ∗) and not appearing in C[GL(W )/Gdetn ] is called an orbit oc-
currence obstruction.

The precise condition a module must satisfy in order to not occur in
C[GL(W )/Gdetn ] is explained in Proposition 8.9.2.2. The discussion in §8.4
shows that in order to be useful, π must have a large first part and few parts.

One might object that the coordinate rings of different orbits could coin-
cide, or at least be very close. Indeed this is the case for generic polynomials,
but in GCT one generally restricts to polynomials whose symmetry groups
characterize the orbit as follows:

Definition 8.8.1.2. Let V be a G-module. A point P ∈ V is characterized
by its stabilizer GP if any Q ∈ V with GQ ⊇ GP is of the form Q = cP for
some constant c.

We have seen in §6.6 that both the determinant and permanent polyno-
mials are characterized by their stabilizers.
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Corollary 8.6.6.2 motivates the study of polynomials characterized by
their stabilizers: if P ∈ V is characterized by its stabilizer, then G · P is
the unique orbit in V with coordinate ring isomorphic to C[G · P ] as a G-
module. Thus one can think of polynomial sequences that are complete for
their complexity classes and are characterized by their stabilizers as “best”
representatives of their class.

Remark 8.8.1.3. All GL(W )-modules S(p1,...,pw)W may be graded using
p1 + · · ·+ pw as the grading. One does not have such a grading for SL(W )-
modules, which makes their use in GCT more difficult. In [MS01, MS08],
it was proposed to use the SL(W )-module structure because it had the
advantage that the SL-orbit of detn is already closed. The disadvantage
from the lack of a grading appears to outweigh this advantage.

8.9. C[GL(W ) · detn]

Before determining the module structure of C[GL(W )·detn], I start with the
coordinate ring of a generic polynomial for comparison. The calculations of
this section follow [BLMW11].

8.9.1. Generic polynomials. Let P ∈ SdV be generic. If d, n > 3, then
GP = {λ Id : λd = 1} ' Zd, hence GL(V ) · P ' GL(V )/Zd, where Zd acts
as multiplication by the d-th roots of unity, see [Pop75]. (If P ∈ SdV is
any element, then Zd ⊂ GP .)

We need to determine the Zd-invariants in GL(V )-modules. Since SπV is

a submodule of V ⊗|π|, ω ∈ Zd acts on SπV⊗(detV )−s by the scalar ω|π|−ns.
By Theorem 8.6.6.1, we conclude the following equality of GL(V )-modules:

C[GL(V ) · P ] =
⊕

(π,s) | d||π|−ns

(SπV
∗)⊕ dimSπV⊗(detV ∗)−s.

When we pass to C[GL(V ) · P ] =
⊕

δ S
δ(SdV ∗)/Iδ(GL(V ) · P ) we loose

all terms with s > 0. Since degree is respected, we may write:

(8.9.1) C[GL(V ) · P ]δ ⊆
⊕

π | |π|=δd

(SπV
∗)⊕dimSπV .

Note that C[GL(V ) · P ]δ ⊂ Sδ(SdV ), and there are far fewer modules and
multiplicities in Sδ(SdV ) than on the right hand side of (8.9.1).

8.9.2. The coordinate ring of GLn2 · detn. Write Cn2
= E⊗F , with

E,F = Cn. We first compute the SL(E) × SL(F )-invariants in Sπ(E⊗F )
where |π| = d. Recall from §8.7.1 that by definition, SπW = HomSd([π],W⊗d).
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Thus

Sπ(E⊗F ) = HomSd([π], E⊗d⊗F⊗d)

= HomSd([π], (
⊕
|µ|=d

[µ]⊗SµE)⊗(
⊕
|ν|=d

[ν]⊗SνF )

=
⊕

|µ|=|ν|=d

HomSd([π], [µ]⊗[ν])⊗SµE⊗SνF

The vector space HomSd([π], [µ]⊗[ν]) simply records the multiplicity of SµE⊗SνF
in Sπ(E⊗F ). The numbers kπ,µ,ν = dim HomSd([π], [µ]⊗[ν]) are called Kro-
necker coefficients.

Exercise 8.9.2.1: (2) Show that

kπ,µ,ν = HomSd([d], [π]⊗[µ]⊗[ν]) = mult(SπA⊗SµB⊗SνC, Sd(A⊗B⊗C)).

In particular, kπ,µ,ν = kµ,π,ν .

Recall from §8.1.5 that SµE is a trivial SL(E) module if and only if
µ = (δn) for some δ ∈ Z. Thus so far, we are reduced to studying the
Kronecker coefficients kπ,δn,δn . Now take the Z2 action given by exchanging
E and F into account. Write [µ]⊗[µ] = S2[µ] ⊕ Λ2[µ]. The first module
will be invariant under Z2 = S2, and the second will transform its sign
under the transposition. So define the symmetric Kronecker coefficients
skπµ,µ := dim(HomSd([π], S2[µ])).

We conclude:

Proposition 8.9.2.2. [BLMW11] Let W = Cn2
. The coordinate ring of

the GL(W )-orbit of detn is

C[GL(W ) · detn] =
⊕
d∈Z

⊕
π | |π|=nd

(SπW
∗)⊕sk

π
dndn .

While Kronecker coefficients were studied classically (if not the sym-
metric version), unfortunately very little is known about them. See, e.g.,
[Man15a] for recent progress and a brief history regarding Kronecker coef-
ficients.

8.10. Plethysm coefficients

I now discuss the decomposition of Sd(SnV ).

8.10.1. Asymptotics. Kronecker coefficients and the plethysm coefficients
mult(SπW,S

d(SnW )) have been well-studied in both the geometry and com-
binatorics literature. I briefly discuss a geometric method of L. Manivel and
J. Wahl [Wah91, Man97, Man98, Man15b, Man15a] based on the
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Bott-Borel-Weil theorem that realizes modules as spaces of sections of vec-
tor bundles on homogeneous varieties. Advantages of the method are: (i)
the vector bundles come with filtrations that allow one to organize infor-
mation, (ii) the sections of the associated graded bundles can be computed
explicitly, giving one bounds for the coefficients, and (iii) Serre’s theorem
on the vanishing of sheaf cohomology tells one that the bounds are achieved
eventually, and gives an upper bound for when stabilization occurs.

A basic, if not the basic problem in representation theory is: given a
group G, an irreducible G-module U , and a subgroup H ⊂ G, decompose U
as anH-module. The determination of Kronecker coefficients can be phrased
this way with G = GL(V⊗W ), U = Sλ(V⊗W ) and H = GL(V )×GL(W ).
The determination of plethysm coefficients may be phrased as the case G =
GL(SnV ), U = Sd(SnV ) and H = GL(V ).

I focus on plethysm coefficients. We want to decompose Sd(SnV ) as a
GL(V )-module, or more precisely, to obtain qualitative asymptotic informa-
tion about this decomposition. Note that SdnV ⊂ Sd(SnV ) with multiplicity
one. Beyond that the decomposition gets complicated. Let x1, . . . , xv be a
basis of V , so ((x1)n)d is the highest highest weight vector in Sd(SnV ).

Define two maps (their names come from [BIP16]):

Define a map mx1 = md,m,n
x1 : Sd(SmV ) → Sd(SnV ) on basis elements

by

((x1)i
1
1(x2)i

1
2 · · · (xd)i

1
d) · · · ((x1)i

d
1 · · · (xd)i

d
d)(8.10.1)

7→ ((x1)i
1
1+(n−m)(x2)i

1
2 · · · (xd)i

1
d) · · · ((x1)i

d
1+(n−m) · · · (xd)i

d
d)

and extend linearly. Call mx1 the inner degree lifting map. A vector
of weight µ = (q1, q2, . . . , qd) is mapped under mx1 to a vector of weight
π = (p1, . . . , pd) := µ+ (d(n−m)) = (q1 + d(n−m), q2, . . . , qd) in Sd(SnV ).

Define a map ox1 = oδ,d,nx1 : Sδ(SnV )→ Sd(SnV ) on basis elements by
(8.10.2)
(xi1,1 · · ·xi1,n) · · · (xiδ,1 · · ·xiδ,n) 7→ (xi1,1 · · ·xi1,n) · · · (xiδ,1 · · ·xiδ,n)(xn1 ) · · · (xn1 )

and extend linearly. Call ox1 the outer degree lifting map. A vector of
weight µ = (q1, q2, . . . , qd) is mapped under ox1 to a vector of weight π =
(p1, . . . , pd) := µ+ ((d− δ)n) = (q1 + (d− δ)n, q2, . . . , qd) in Sd(SnV ).

Both mx1 and ox1 take highest weight vectors to highest weight vectors,
as Lie algebra raising operators annihilate x1.

This already shows qualitative behavior if we allow the first part of a
partition to grow. More generally, one has:
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Theorem 8.10.1.1. [Man97] Let µ be a fixed partition. Then mult(S(dn−|µ|,µ), S
d(SnV ))

is a non-decreasing function of both d and n that is constant as soon as
d ≥ |µ| or n ≥ `(µ).

More precisely, the innner and outer degree lifting maps mx1 and ox1

are both injective and eventually isomorphisms on highest weight vectors of
isotypic components of partitions (p1, . . . , pv) with (p2, . . . , pv) fixed and p1

growing.

There are several proofs of the stability, the precise stabilization is proved
by computing the space of sections of homogeneous vector bundles on PV
via an elementary application of Bott’s theorem (see, e.g., [Wey03, §4.1]
for an exposition).

One way to view what we just did was to write V = x1 ⊕ T , so

(8.10.3) Sn(x1 ⊕ T ) =

n⊕
j=0

xn−j1 ⊗SjT.

Then decompose the d-th symmetric power of Sn(x1 ⊕ T ) and examine the
stable behavior as we increase d and n. One could think of the decomposition
(8.10.3) as the osculating sequence of the n-th Veronese embedding of PV
at [xn1 ] and the further decomposition as the osculating sequence (see, e.g.,
[IL03, Chap. 4]) of the d-th Veronese re-embedding of the ambient space
refined by (8.10.3).

For Kronecker coefficients and more general decomposition problems the
situation is more complicated in that the ambient space is no longer projec-
tive space, but a homogeneous variety, and instead of an osculating sequence,
one examines jets of sections of a vector bundle.

We can now prove a partial converse to Proposition 8.4.2.1:

Proposition 8.10.1.2. [KL14] Let π = (p1, . . . , pw) be a partition of dn.
If p1 ≥ min{d(n− 1), dn−m}, then Id(Padn−m(SnW )) does not contain a
copy of SπW

∗.

Proof. The image of the space of highest weight vectors for the isotypic
component of SµW

∗ in Sd(SmW ∗) under mx1 will be in C[Padn−m(SnW )]

because, for example, such a polynomial will not vanish on (e1)n−m[(e1)i
1
1 · · · (ed)i

1
d+

· · ·+ (e1)i
d
1 · · · (ed)i

d
d ], but if p1 ≥ d(n− 1) we are in the stability range.

For the sufficiency of p1 ≥ dn−m, note that if p1 ≥ (d−1)n+(n−m) =
dn−m, then in an element of weight π, each of the exponents i11, . . . , i

d
1 of x1

must be at least n−m. So there again exists an element of Padn−m(SnW )
such that a vector of weight π does not vanish on it. �
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8.11. Orbit occurrence obstructions can’t work: the padding
problem

8.11.1. Even occurence obstructions can’t work. The program of
[MS01, MS08] proposes to use orbit occurrence obstructions to prove
Valiant’s conjecture. In [IP15] they show that this cannot work. Fur-
thermore, in [BIP16] they prove that one cannot even use the following
relaxation of orbit occurrence obstructions:

Definition 8.11.1.1. An irreducible GL(W )-module SλW
∗ appearing in

Sym(SnW ∗) and not appearing in C[D̂etn] is called an occurrence obstruc-
tion.

Throughout this subsection, set W = Cn2
.

The extension is all the more remarkable because they essentially prove
that occurrence obstructions cannot even be used to separate any degree m
polynomial padded by `n−m in m2 variables from

(8.11.1) MJ(vn−k(PW ), σr(vk(PW ))) = GL(W ) · [`n−k(xk1 + · · ·+ xkr )]

for certain k, r with kr ≤ n. Here MJ is the multiplicative join of §7.2.2.

First we show that the variety (8.11.1) is contained in Detn. We recall
the classical result:

Theorem 8.11.1.2. [Valiant [Val79b], Liu-Regan [LR06]] Every f ∈ C[x1, . . . , xn]

of formula size u is a projection of detu+1. In other words f ∈ End(C(u+1)2
) ·

detu+1.

Note that the formula size of xd1 + · · ·+ xdr is at most rd.

Corollary 8.11.1.3. [BIP16] If rs < n then [`n−s(xs1+· · ·+xsr)] ∈ Detn and

thus MJ(vn−k(PW ), σr(vk(PW ))) = GL(W ) · [`n−k(xk1 + · · ·+ xkr )] ⊂ Detn.

The main theorem is

Theorem 8.11.1.4. [BIP16] Let n > m25. Let π = (p1, . . . , p`) be a parti-
tion of dn such that ` ≤ m2 +1 and p1 ≥ d(n−m). If a copy of SπW

∗ occurs

in Sd(SnW ∗) then a copy also occurs in some C[GL(W ) · [`n−k(xk1 + · · ·+ xkr )]]
for some r, k with rk < n.

By the above discussion, this implies occurance obstructions cannot be
used to separate the permanent from the determinant.

The proof is done by splitting the problem into three cases:

(1) d ≤
√

n
m

(2) d >
√

n
m and p1 > dn−m10

(3) d >
√

n
m and p1 ≤ dn−m10.
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The first case is an immediate consequence of the prolongation property
§8.3.4: take r = d and k = m.

The second reduces to the first by two applications of Manivel’s stability
theorem:

Proposition 8.11.1.5. [BIP16, Prop. 5.2] Let |π| = dn, `(π) ≤ m2 + 1,
p2 ≤ k, m2k2 ≤ n and m2k ≤ d. If a copy of SπW occurs in Sd(SnW ), then

a copy also occurs in C[GL(W ) · [`n−k(xk1 + · · ·+ xk
m2k

)]].

Proof. First note that the inner degree lifting map (8.10.1) md,k,n
` : Sd(SkW ∗)→

Sd(SnW ∗) is an isomorphism on highest weight vectors in this range because
d is sufficiently large, so there exists µ with |µ| = dk and π = µ. Moreover, if

vµ is a highest weight vector of weight µ, then md,k,n
` (vµ) is a highest weight

vector of weight π. Since m2k is sufficently large, there exists ν with |µ| =
m2k2 = (m2k)k, with ν = µ such vµ = ox1(wν), where wν is a highest weight

vector of weight ν in Sm
2k(SkW ∗). Since Im2k(σm2k(vk(PW ))) = 0, we con-

clude that a copy of SνW
∗ is in C[σm2k(vk(PW ))] and then by the discussion

above the modules corresponding to µ and π are respectively in the coordi-

nate rings of MJ([`d−m
2k], σm2k(vk(PW ))) and MJ([`n−k], σm2k(vk(PW ))).

Since (m2k)k ≤ n, the result follows by prolongation. �

The third case relies on a building block construction made possible by
the following exercise:

Exercise 8.11.1.6: (1) Show that if V is a GL(W )-module and Q ∈ SλW ⊂
SdV and R ∈ SµW ⊂ SδV are both highest weight vectors, then QR ∈
Sλ+µW ⊂ Sd+δV is also a highest weight vector.

Exercise 8.11.1.6, combined with the fact that if Q,R ∈ C[X], then
QR ∈ C[X] enables the building block construction. I will show (Corollary
9.2.1.2) that for n even, there exists a copy of SndW in C[σd(vn(PW ))],
providing one of the building blocks. The difficulty in their proof lies in
establishing the other base building block cases. See [BIP16] for the details.

Remark 8.11.1.7. In [IP15] the outline of the proof is similar, except there
is an interesting argument by contradiction: they show that if in a certain
range of n and m, if an orbit occurrence obstruction exists, then the same is
true for larger values of n with the same m. But this contradicts Valiant’s
result (see §6.6.3) that if n = 4m, then `n−m permm ∈ Detn.

It is conceivably possible to carry out the program either taking into ac-
count information about multiplicities, or with the degree m iterated matrix
multiplication polynomial IMMm

n in place of the determinant, as the latter
can be compared to the permanent without padding.
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8.12. Proofs of equivariant complexity bounds

***remind reader what proving***

While it is not formally necessary for the proof, the guide for the proof
of Theorem 7.4.7.6 is the Howe-Young duality functor : The involution on
the space of symmetric functions (see [Mac95, §I.2]), that exchanges ele-
mentary symmetric functions with complete symmetric functions, extends
to modules of the general linear group. This functor exchanges symmetriza-
tion and skew-symmetrization. I expect it will be useful for future work
regarding permanent v. determinant. The idea is that one first proves the
theorem (with a supplementary hypothesis) for the determinant, which is
easy, and then the functor provides a guide as to how to write the proof for
the permanent. We will see this functor again in §10.3.

The supplementary hypothesis is regularity. By von-Zur Gathen’s regu-
larity theorem 6.3.3.1, for any determinantal expression for the permanent,
we may assume the constant part of Ã is the identity except for a zero in
the (1, 1)-slot, which I will denote Λn−1. Add this as a hypothesis for the
determinant, and call such a regular determinantal expression for the deter-
minant. The determinantal expressions of the determinant we saw in §7.3
are regular.

8.12.1. Malcev’s theorem. **condense this para*** Let G be an affine
complex algebraic group. The group G is unipotent if it is isomorphic to
a subgroup of the group Un of upper triangular matrices with 1’s on the
diagonal.

Given a complex algebraic group G, there exists a maximal normal
unipotent subgroupRu(G), called the unipotent radical. The quotientG/Ru(G)
is reductive. Moreover there exists subgroups L in G such that G = Ru(G)L.
In particular such L are reductive. Such a subgroup L is not unique, but
any two such are conjugate in G (in fact by an element of Ru(G)). Such a
subgroup L is called a Levi factor of G. A good reference is [OV90, Thm.
4. Chap. 6].

Malcev’s theorem (see, e.g., [OV90, Thm. 5. Chap. 6]) states that fixing
a Levi subgroup L ⊂ G and given any reductive subgroup H of G, there
exists g ∈ Ru(G) such that gHg−1 ⊆ L.

For example, when G is a parabolic subgroup, e.g. G =

(
∗ ∗
0 ∗

)
, we

have L =

(
∗ 0
0 ∗

)
and Ru(G) =

(
Ida ∗
0 Idb

)
.

A more important example for us is Ru(Gdetn,Λn−1) = (H⊕H∗⊗`2) and
a Levi subgroup is L = (GL(`2)×GL(H)) o Z2.
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8.12.2. Outline of the proofs of lower bounds. ***clean*** Let P ∈
SmV ∗ be permm or detm. Say a regular representation Ã is equivariant with
respect to some G ⊆ GP .

The matrix Λn−1 induces a splitting of Cn = ` ⊕ H, where ` is a line,
and similarly for Cn∗. Write

Mn(C) =

(
`∗1⊗`2 H∗⊗`2
`∗1⊗H H∗⊗H

)
, Λn−1 =

(
0 0
0 IdH

)
.

The first step consists in lifting G to the symmetry group of Ã, GA from
Definition 7.4.7.2. More precisely, in each case we construct a reductive
subgroup G̃ of GA such that ρ̄A : G̃ −→ G is finite and surjective. In a
first reading, it is relatively harmless to assume that G̃ ' G. Then, using
Malcev’s theorem, after possibly conjugating Ã, we may assume that G̃
is contained in (GL(`2) × GL(H)) o Z2. Up to considering an index two

subgroup of G̃ if necessary, we assume that G̃ is contained in GL(`2) ×
GL(H).

Now, both Matn(C) = (`1⊕H)∗⊗(`2⊕H) and V (via ρ̄A) are G̃-modules.
Moreover, A is an equivariant embedding of V in Matn(C). This turns out
to be a very restrictive condition.

If m ≥ 2 the `∗1⊗`2 coefficient of Ã has to be zero. Then, since P 6= 0,
the projection of A(V ) on `∗1⊗H ' H has to be non-zero. We thus have
a G-submodule H1 ⊂ H isomorphic to an irreducible submodule of V . A
similar argument shows that there must be another irreducible G-submodule
H2 ⊂ H such that an irreducible submodule of V appears in H∗1⊗H2.

In each case, we can construct a sequence of irreducible sub-G̃-modules
Hk of H satisfying very restrictive conditions. This allows us to get our lower
bounds.

8.12.3. Regular determinantal representations of the determinant.
In this subsection E,F ' Cm.

Proposition 8.12.3.1. [LR15] The following is a regular determinantal

representation of detm that respects GL(E). Let Cn =
⊕m−1

j=0 ΛjE, so n =

2m − 1 and End(Cn) = ⊕0≤i,j≤m−1 Hom(ΛjE,ΛiE). Fix an identification
ΛmE ' Λ0E. Set

Λ0 =
m−1∑
k=1

IdΛkE ,

and

(8.12.1) Ã = Λ0 +

m−1∑
k=0

exk⊗fk+1.
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Then detm = detn ◦Ã if m ≡ 1, 2 mod 4 and detm = −detn ◦Ã if m ≡
0, 3 mod 4. In bases respecting the direct sum, the linear part, other than
the last term which lies in the upper right block, lies just below the diagonal
blocks, and all blocks other than the upper right, the diagonal and sub-
diagonal are zero.

A linear map u : F → E induces linear maps

u∧k : ΛkF → ΛkE(8.12.2)

v1 ∧ · · · ∧ vk 7→ u(v1) ∧ · · · ∧ u(vk).

In the case k = m, u∧m is called the determinant of u and we denote it
Det(u) ∈ ΛmF ∗⊗ΛmE. The map

E ⊗ F ∗ = Hom(F,E) −→ ΛmF ∗⊗ΛmE

u 7−→ Det(u)

is polynomial, homogeneous of degree m, and equivariant for the natural
action of GL(E)×GL(F ).

The transpose of u is

uT : E∗ −→ F ∗,

ϕ 7−→ ϕ ◦ u.

Hence uT ∈ F ∗⊗E is obtained from u by switching E and F ∗, andDet(uT ) ∈
ΛmE⊗ΛmF ∗. Moreover, Det(uT ) = Det(u)T .

Proof of Proposition 8.12.3.1. Set P = detn ◦Ã. To analyze the action
of GL(E) on Ã, reinterpret Cn∗⊗Cn without the identification Λ0E ' ΛmE
as (⊕m−1

j=0 ΛjE)∗⊗(⊕mi=1ΛiE).

For each u ∈ E⊗F ∗, associate to Ã(u) a linear map ã(u) : ⊕m−1
j=0 ΛjE →

⊕mi=1ΛiE. Then Det(ã(u)) ∈ Λn(⊕m−1
j=0 ΛjE∗)⊗Λn(⊕mi=1ΛiE). This space

may be canonically identified as a GL(E)-module with Λ0E∗⊗ΛmE ' ΛmE.
(The identification Λ0E ' ΛmE allows one to identify this space with C.)
Using the maps (8.12.2), we get a GL(E)-equivariant map Det◦ã : E⊗F ∗ →
ΛmE.

Hence for all u ∈ E ⊗ F ∗ and all g ∈ GL(E),

Det(ã(g−1u)) = (g · Det)(ã(u))
= det(g)−1Det(ã(u)).

(8.12.3)

Equation (8.12.3) shows that GL(E) is contained in the image of ρ̄A.

Equation (8.12.3) also proves that P is a scalar (possibly zero) multiple

of the determinant. Consider P (Idm) = detn(Ã(Idm)). Perform a Laplace
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expansion of this large determinant: there is only one non-zero expansion
term, so P is the determinant up to a sign.

See [LR15] for the verification that the sign is correct as stated. �

Theorem 8.12.3.2. [LR15] The smallest size regular equivariant determi-

nantal expression for detm is
(

2m
m

)
− 1 ∼ 4m.

As in the case of the permanent, we can get an exponential lower bound
using only about half the symmetries of the determinant.

Theorem 8.12.3.3. [LR15] Let Ãm : Mm(C) −→Mn(C) be a regular
determinantal representation of detm that respectsGL(E). Then n ≥ 2m−1.

Moreover, there exists a regular determinantal representation of detm
equivariant with respect to GL(E) of size 2m − 1.

I give the proof of Theorem 8.12.3.3, the proof of Theorem 8.12.3.2 is
similar.

Proof of Theorem 8.12.3.3. Let Ã = Λn−1 + A : Matm(C) → Matn(C)
be a regular determinantal representation of detm that is equivariant with
respect to GL(E). It remains to prove that n ≥ 2m − 1.

After possibly conjugating Ã, we construct a connected reductive sub-
group L of GL(`2)×GL(H) mapping onto GL(E) by ρ̄A.

We have an action of L on Matn(C), but we would like to work with

GL(E). Towards this end, there exists a finite cover τ : L̃ −→ L that
is isomorphic to the product of a torus and a product of simple simply
connected groups. In particular there exists a subgroup of L̃ isomorphic
to C∗ × SL(E) such that ρ̄A ◦ τ(C∗ × SL(E)) = GL(E). The group C∗ ×
SL(E) acts trivially on `1, on `2 (by some character) and on H. It acts on
Matn(C) = (`∗1 ⊕H)⊗(`2 ⊕H) accordingly.

The C∗ × SL(E)-module A(V ) is isomorphic to the sum of m copies of
E, and E is an irreducible C∗×SL(E)-module. In particular its equivariant
projection on `∗1⊗`2 is zero, which implies that the (1, 1) entry of the matrix

of Ã (in adapted bases) is zero. Consider the equivariant projection of
A(V ) on `∗1⊗H. This projection in bases goes to the remainder of the first

column. It must be non-zero or detn ◦Ã will be identically zero. Since it is
equivariant, `∗1⊗H ' H must contain E as a C∗×SL(E)-module. Similarly,
examining the first row, H∗⊗`2 has to contain E as a C∗ × SL(E)-module.

If m = 2, it is possible that H ' E and H⊗ `2 ' E∗. In this case, det2

is a quadratic form, and we obtain a determinantal representation of size 3.

Assume now that m ≥ 3, in particular that E and E∗ are not isomor-
phic as SL(E)-modules. We just proved that H must contain a subspace
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isomorphic to E, say H1. Since H∗1⊗`2 is an irreducible SL(E)-module and
not isomorphic to E, the projection of A(V ) on this factor is zero.

Choose a C∗×SL(E)-stable complement S1 to H1 in H. If the projection
of A(V ) to the block H∗1⊗S1 is zero, by expanding the columns corresponding
to H∗1, one sees that detm is equal to the determinant in (`1⊕S1)∗⊗(`2⊗S1),
and we can restart the proof with S1 in place of H.

So assume that the projection of A(V ) onto the block H∗1⊗S1 is non-zero.
Then there must be some irreducible (C∗×SL(E))-submodule H2 such that
H∗1⊗H2 contains E as a submodule. Continuing, we get a sequence of simple
(C∗ × SL(E))-submodules H1, . . . ,Hk of H such that E is a submodule of
H∗i⊗Hi+1 and of `2⊗H∗k.

The situation is easy to visualize with Young diagrams. As an SL(E)-
module, E (resp. E∗) corresponds the class of to a single box (resp. a
column of m−1 boxes). (As a GL(E)-module, E∗ corresponds to a diagram
with −1 boxes.) The Pieri formula 8.1.3.1 implies that E ⊂ SπE

∗⊗SµE if
and only if the diagram of µ is obtained from the diagram of π by adding
a box. Thus the sequence of Young diagrams associated to the irreducible
SL(E) modules Hi start with one box, and increases by one box at each
step. Thus we must have Hk associated to π = (cm−1, c − 1) for some c.
To have the proper C∗-action, we choose the action on `2 to cancel the (c−
1)×m box inside the Young diagram of π. We deduce that (H1, · · · ,Hk) =
(Λ1E,Λ2E, . . . ,Λm−1E ' E∗) is the unique minimal sequence of modules.

In particular the dimension of H is at least
∑m−1

k=1

(
m
k

)
= 2m − 2. �

8.12.4. Proofs of results on determinantal representations of permm.
Recall Theorem 7.4.7.1 giving a lower bound for ΓEm-equivariant representa-
tions for permm and the notation (SkE)reg from §6.6.3.

Proof of Proposition 6.6.3.3. The maps sk(v) : (SkE)reg → (Sk+1E)reg
are related to the maps exk(v) : ΛkE → Λk+1E as follows. The sources of
both maps have bases indexed by multi-indices I = (i1, . . . , ik) with 1 ≤ i1 <
· · · < ik ≤ m, and similarly for the targets. The maps are the same on these
basis vectors except for with sk(v) all the coefficients are positive whereas
with exk(v) there are signs. Thus the polynomial computed by (6.6.7) is
the same as the polynomial computed by (8.12.1) except all the yij appear
positively. Reviewing the sign calculation, we get the result. �

Outline of proof of Theorem 7.4.7.1. Write E,F = Cm. Let Ã be a
determinantal representation of permm such that Ã(0) = Λn−1. Embed ΓEm
in GL(Hom(F,E)) by g 7−→ {M 7→ gM}. We assume the image of ρ̄A
contains ΓEm. Set T = TGL(E).
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As in the proof of Theorem 8.12.3.3, we get a reductive subgroup L of
(GL(`2)×GL(H)) o Z2 mapping onto ΓEm by ρ̄A. In the determinant case,
at this point we dealt with the universal cover of the connected reductive
group GL(E). Here the situation is more complicated for two reasons. First,
there is no “finite universal cover” of Sm (see e.g. [Ste89, Józ89]). Second,
since our group is not connected, we will have to deal with the factor Z2

coming from transposition, which will force us to work with a subgroup of
ΓEm. Fortunately this will be enough for our purposes.

We first deal with the Z2: Since L/(L∩G◦detn,Λn−1
) embeds inGdetn,Λn−1/G

◦
detn,Λn−1

'
Z2, the subgroup L∩G◦detn,Λn−1

has index 1 or 2 in L. Since the alternating

group Am is the only index 2 subgroup of Sm, ρ̄A(L ∩G◦detn,Λn−1
) contains

T oAm ⊂ ΓEm. In any case, there exists a reductive subgroup L′ of L such
that ρ̄A(L′) = T oAm ⊂ ΓEm.

To get around the lack of a lift, one proves that irreducible L′ modules
can be labeled only using labels from ρ̄A(L′) = TGL(E) o Am, see [LR15].
One than argues as in the proof of Theorem 8.12.3.3. The difference is that
each Hs must be a Am-module that contains an irreducible Am-module act-
ing transitively on size s subsets of [m], so dimHs ≥

(
m
s

)
, and one concludes

as before. �

8.13. Symmetries of other polynomials relevant for
complexity theory

A central insight from GCT is that polynomials that are determined by
their symmetry groups should be considered preferred representatives of
their complexity classes. Although the motivation for this statement is the
program discussed in §8.8, which is not viable, the idea has already guided
several positive results: the symmetries of the matrix multiplication tensor
have given deep insight into its decompositions, and were critical for proving
its border rank lower bounds. We have already determined the symmetry
groups of the determinant and permanent. In this section I present the
symmetry groups of a few additional polynomials. These auxiliary results
may be skipped on a first reading.

Throughout this section G = GL(V ), dimV = n, and I use index ranges
1 ≤ i, j, k ≤ n.

8.13.1. Techniques. One technique for determining GP is to form auxil-
iary objects from P which have a symmetry group H that one can compute,
and by construction H contains GP . Usually it is easy to find a group H ′

that clearly is contained in GP , so if H = H ′, we are done.
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One can determine the connected component of the stabilizer by a Lie
algebra calculation: If we are concerned with p ∈ SdV , the connected com-
ponent of the identity of the stabilizer of p in GL(V ) is the connected Lie
group associated to the Lie subalgebra of gl(V ) that annihilates p. (The
analogous statement holds for tensors.) To see this, let h ⊂ gl(V ) de-
note the annihilator of p and let H = exp(h) ⊂ GL(V ) the correspond-
ing Lie group. Then it is clear that H is contained in the stabilizer as
h · p = exp(X) · p = (Id + X + 1

2XX + ...)p the first term preserves p
and the remaining terms annihilate it. Similarly, if H is the group preserv-
ing p, taking the derivative of any curve in H through Id at t = 0 give
d
dt |t=0h(t) · p = 0.

To recover the full stabilizer from knowledge of the connected component
of the identity, we have the following observation, the first part was exploited
in [BGL14]:

Proposition 8.13.1.1. Let V be an irreducible GL(W )-module. Let G0
v

be the identity component of the stabilizer Gv of some v ∈ V in GL(W ).
Then Gv is contained in the normalizer N(G0

v) of G0
v in GL(W ). If G0

v is
semi-simple and [v] is determined by G0

v, then equality holds up to scalar
multiples of the identity in GL(W ).

Proof. First note that for any group H, the full group H normalizes H0.
(If h ∈ H0, take a curve ht with h0 = Id and h1 = h, then take any g ∈ H,
the curve ghtg

−1 connects gh1g
−1 to the identity.) So Gv is contained in

the normalizer of G0 in GL(W ).

For the second assertion, let h ∈ N(G0) be in the normalizer. We have
h−1ghv = g′v = v for some g′ ∈ G0, and thus g(hv) = (hv). But since [v] is
the unique line preserved by G0 we conclude hv = λv for some λ ∈ C∗. �

For those familiar with representation theory, we have the following
lemma:

Lemma 8.13.1.2. [BGL14, Prop. 2.2] Let G0 be semi-simple and act ir-
reducibly on V . Then its normalizer N(G0) is generated by G0, the scalar
matrices, and a finite group constructed as follows: Assume we have cho-
sen a Borel for G0, and thus have distinguished a set of simple roots ∆
and a group homomorphism Aut(∆)→ GL(V ). Assume V = Vλ is the irre-
ducible representation with highest weight λ ofG0 and consider the subgroup
Aut(∆, λ) ⊂ Aut(∆) that fixes λ. Then N(G0) = ((C∗×G0)/Z)oAut(∆, λ).

For the proof, see [BGL14].

Further techniques come from geometry. Consider the hypersurface
Z(P ) := {[v] ∈ PV ∗ | P (v) = 0} ⊂ PV ∗. If all the irreducible compo-
nents of P are reduced, then GZ(P ) = G[P ], as a reduced polynomial may
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be recovered up to scale from its zero set, and in general GZ(P ) ⊇ G[P ].
Consider its singular set Z(P )sing **Ref where defined*** , which may be
described as the zero set of the image of P1,d−1 (which is essentially the exte-

rior derivative dP ). If P =
∑

I aIx
I , where ai1,...,id is symmetric in its lower

indices, then Z(P )sing = {[v] ∈ PV ∗ | ai1,i2,...,idxi2(v) · · ·xid(v) = 0 ∀i1}.
While we could consider the singular locus of the singular locus etc.., it
turns out to be easier to work with what I will call the Jacobian loci. For an
arbitrary variety X ⊂ PV , define XJac,1 := {x ∈ PV | dPx = 0∀P ∈ I(X)}.
If X is a hypersurface, then XJac,1 = Xsing but in general they can be
different. Define XJac,k := (XJac,k−1)Jac,1. Algebraically, if X = Z(P )

for some P ∈ SdV , then the ideal of Z(P )Jac,k is generated by the image of

Pk,d−k : SkV ∗ → Sd−kV . The symmetry groups of these varieties all contain
GP .

8.13.2. The Fermat. This example follows [CKW10]. Let fermatdn :=

xd1 + · · ·+ xdn ∈ SdCn. The GLn-orbit closure of [fermatdn] is the n-th secant
variety of the Veronese variety σn(vd(Pn−1)) ⊂ PSdCn. It is clear Sn ⊂
Gfermat, as well as the diagonal matrices whose entries are d-th roots of
unity. We need to see if there is anything else. The first idea, to look at
the singular locus, does not work, as the zero set is smooth, so we consider
fermat2,d−2 = x2

1⊗xd−2 + · · · + x2
n⊗xd−2. Write the further polarization

P1,1,d−2 as a symmetric matrix whose entries are homogeneous polynomials
of degree d− 2 (the Hessian matrix). We getx

d−2
1

. . .

xd−2
n

 .

Were the determinant of this matrix GL(V )-invariant, we could proceed as
we did with en,n, using unique factorization. Although it is not, it is close
enough as follows:

***following is out of place - refer back to it*** Recall that for a linear
map f : W → V , where dimW = dimV = n, we have f∧n ∈ ΛnW ∗⊗ΛnV
and an element (h, g) ∈ GL(W ) × GL(V ) acts on f∧n by (h, g) · f∧n =
(det(h))−1(det(g))f∧n. In our case W = V ∗ so P∧n2,d−2(x) = det(g)2P∧n2,d−2(g ·
x), and the polynomial obtained by the determinant of the Hessian matrix
is invariant up to scale.

Arguing as in ****,
∑

j(g
j1
1 xj1)d−2 · · · (gjnn xjn)d−2 = xd−2

1 · · ·xd−2
n and

we conclude again by unique factorization that g is in Snn Tn. Composing
with a permutation matrix to make g ∈ T , we see that, by acting on the
Fermat itself, that the entries on the diagonal are d-th roots of unity.

In summary:
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Proposition 8.13.2.1. Gxd1+···+xdn = Sn n (Zd)×n.

Exercise 8.13.2.2: (2) Show that the Fermat is characterized by its sym-
metries.

8.13.3. The sum-product polynomial. The following polynomial, called
the sum-product polynomial, will be important when studying depth-3 cir-
cuits:

SPnr :=

r∑
i=1

Πn
j=1xij ∈ Sn(Cnr).

Its GL(rn)-orbit closure is the r-th secant variety of the Chow variety
σr(Chn(Cnr)).
Exercise 8.13.3.1: (2)Determine GSPnr and show that SPnr is characterized
by its symmetries.

8.13.4. Iterated matrix multiplication. Let IMMk
n ∈ Sn(Ck2n) denote

the iterated matrix multiplication operator for k×k matrices, (X1, . . . , Xn) 7→
trace(X1 · · ·Xn). Letting Vj = Ck, invariantly

IMMk
n = IdV1 ⊗ · · ·⊗ IdVn ∈(V1⊗V ∗2 )⊗(V2⊗V ∗3 )⊗ · · ·⊗ (Vn−1⊗V ∗n )⊗(Vn⊗V ∗1 )

⊂ Sn((V1⊗V ∗2 )⊕ (V2⊗V ∗3 )⊕ · · · ⊕ (Vn−1⊗V ∗n )⊕ (Vn⊗V ∗1 )),

and the connected component of the identity of GIMMk
n
⊂ GL(Ck2n) is clear.

The case of IMM3
n is important as this sequence is complete for the

complexity class VPe, of sequences of polynomials admitting small formulas,
see [BOC92]. Moreover IMMn

n is complete for the same complexity class
as the determinant, namely VQP, see [Blä01].

***add symmetry group in here from Fulvio***

Problem 8.13.4.1. Find equations in the ideal of GL9n · IMM3
n. Deter-

mine lower bounds for the inclusions Permm ⊂ GL9n · IMM3
n and study

common geometric properties (and differences) of Detn and GL9n · IMM3
n.

8.13.5. The Pascal determinant. Let k be even, and let Aj = Cn. De-
fine the k-factor Pascal determinant PDk,n to be the unique up to scale
element of ΛnA1⊗ · · ·⊗ ΛnAk ⊂ Sn(A1⊗ · · ·⊗ Ak). Choose the scale such
that if X =

∑
xi1,...,ika1,i1⊗ · · ·⊗ ak,ik with aα,j a basis of Aα, then

PDk,n(X) =
∑

σ2,...,σk∈Sn

sgn(σ2 · · ·σk)x1,σ2(1),...,σk(1) · · ·xn,σ2(n),...,σk(n)

By this expression we see, fixing k, that (PDk,n) ∈ VNP.

Proposition 8.13.5.1 (Gurvits). The sequence (PD4,n) is VNP complete.
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Proof. Set xijkl = 0 unless i = j and k = l. Then xi,σ2(i),σ3(i),σ4(i) = 0
unless σ2(i) = i and σ3(i) = σ4(i) so the only nonzero monomials are those
where σ2 = Id and σ3 = σ4, since the sign of σ3 is squared, the result is the
permanent. �

Thus we could just as well work with the sequence PD4,n as the perma-
nent. Since ΠSL(Aj) ⊂ GPD4,n , it resembles Gdetn = GPD2,n.

It is clear the identity component of the stabilizer includes SL×kn /µn,k
where µn is as in §6.6.1, and a straight-forward Lie algebra calculation con-
firms this is the entire identity component. (Alternatively, one can use
Dynkin’s classification [Dyn52] of maximal subalgebras.) It is also clear
that Sk preserves PDn,k by permuting the factors.

Theorem 8.13.5.2 (Garibaldi, personal communication). For all k even

GPDk,n = SL×···×kn /µn,k oSk

Note that this includes the case of the determinant, and gives a new
proof.

The result will follow from the following Lemma and Proposition 8.13.1.1.

Lemma 8.13.5.3. [Garibaldi, personal communication] Let V = A1⊗ · · ·⊗ Ak.
The normalizer of SL×kn /µn in GL(V ) is GL×kn /Z o Sk, where Z denotes
the kernel of the product map (C∗)×k → C∗.

Proof of Lemma 8.13.5.3. We use Lemma 8.13.1.2. In our case, the
Dynkin diagram for (∆, λ) is

...

...

...

...

.

.

.

Figure 8.13.1. Marked Dynkin diagram for V

and Aut(∆, λ) is clearly Sk. �

The theorem follows.



Chapter 9

The Chow variety of
products of linear
forms

In the GCT approach to Valiant’s conjecture, one wants to understand the
GLn2-module structure of C[GLn2 · detn] via C[GLn2 ·detn]. In this chapter I
discuss a “toy” problem that turns out to be deep, subtle and have surprising
connections with several different areas of mathematices. Moreover, the
orbit and orbit closures in question: GLn · x1 · · ·xn and GLn · x1 · · ·xn =
Chn(Cn) are degenerations of the corresponding objects for the determinant,
so information about them gives information about the determinant orbit
closure.

This subject has a remarkable history beginning over 100 years ago,
beginning with Brill, Gordan, Hermite and Hadamard. The history is rife
with rediscoveries and errors that only make the subject more intriguing.

**overview of chap here***

In this chapter I present two (possibly more) results that require a more
advanced background in algebraic geometry. In §9.3 I present M. Brion’s
proof of the asymptotic surjectivity of the Hermite-Hadamard-Howe map.
In §10.1 I present S. Kumar’s proof of the non-normality of the determinant
orbit closure.

9.1. The coordinate ring

I begin in with the GCT perspective:

251
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9.1.1. Application of the algebraic Peter-Weyl theorem. Let x1, . . . , xn ∈
V ∗ be a basis. Recall the symmetry group of x1 · · ·xn from §4.2 is Γn :=
TSLn oSn. Also recall that for any orbit, G/H, the algebraic Peter-Weyl
theorem discussed in §8.6 implies C[G/H] = ⊕λ∈Λ+

G
Vλ⊗(V ∗λ )H , so we obtain

C[GL(V ) · (x1 · · ·xn)] =
⊕
`(π)≤n

(SπV )⊕ dim(SπV ∗)Γn
,

where here π = (p1, . . . , pn) with pj ∈ Z satisfying p1 ≥ p2 ≥ · · · ≥ pn
(i.e., π is not required to be a partition). We break up the determination
of (SπV

∗)Γn into two problems: first determine the T = TSLn-invariants.
By Exercise 8.1.5.4, these are the weight (s, . . . , s) = (sn) subspaces, so in
particular |π| = sn for some s ∈ Z. Write this as (SπV

∗)0, as these are the
sl(V )-weight zero subspaces.

It remains to determine (SπV
∗)Sn0 . This is not known. In the next

subsection, I relate it to another quantity we don’t know. Remarkably, this
will enable us to get a satisfactory answer.

9.1.2. Plethysm and the double commutant theorem. Let Sn oSd ⊂
Sdn denote the wreath product, which, by definition, is the normalizer of
S×dn in Sdn. It is the semi-direct product of S×dn with Sd, where Sd acts
by permuting the factors of S×dn , see e.g., [Mac95, p 158]. The group
Sn oSd acts on V ⊗dn by considering it as (V ⊗n)⊗d, d blocks of n-copies of
V , permuting the n copies of V within each block as well as permuting the
blocks. Thus Sd(SnV ) = (V ⊗dn)SnoSd .

Since

(V ⊗dn)SnoSd = (
⊕
|π|=dn

[π]⊗SπV )SnoSd =
⊕
|π|=dn

[π]SnoSd⊗SπV

we see, as long as dimV is sufficently large,

mult(SπV, S
d(SnV )) = dim[π]SnoSd .

Unfortunately the action of Sn oSd is difficult to analyze.

Theorem 9.1.2.1. [Gay76] Let µ be a partition of vδ (so that (SµV )0 6=
0). Suppose that the decomposition of (SµV )0 into irreducible WV = Sv-
modules is

(SµV )0 =
⊕
|π|=v

[π]⊕sµ,π .

Then one has the decomposition of GL(V )-modules

Sπ(SδV ) =
⊕
|µ|=δv

(SµV )⊕sµ,π .

In particular, for δ = 1, i.e., |µ| = v, (SµV )0 = [µ].
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Corollary 9.1.2.2. Assume dimV ≥ d. Then

mult(SπV, S
d(SnV )) = mult([d], (SπCd)0).

I prove the Corollary.

Proof of Cor. 9.1.2.2. Without loss of generality, assume dimV = d.

The WV -module decomposition of Sd(SnV )0 is Sd(SnV )0 = IndSdn
SnoSd triv,

where triv denotes the trivial Sn oSd-module.

We have

multGL(V )(SπV, S
d(SnV )) = multW((SπV )0, (S

d(SnV ))0)

= multW((SπV )0, IndSdn
SnoSd triv))

= dim(SπV )SnoSd0

the last line by Frobenius reciprocity: for finite groups H ⊂ G, an H-module
W and a G-module U , HomC[H](W,U) = HomC[G](C[G]⊗C[H]W,U), i.e., the

multiplicity of U in IndGH(W ) is the multiplicity of W in ResGH(U). See, e.g.
[FH91, §3.3]. **rest of proof???*** �

For a recent example of the state of the art, see [CIM15].

9.1.3. Back to the coordinate ring. Now specialize to the case of mod-
ules appearing in Sym(SnV ). Corollary 9.1.2.2 says dim(SπV )Sn0 = mult(SπV, S

n(SsV )).
If we consider all the π’s together, we conclude

C[GL(V ) · (x1 · · ·xn)]poly =
⊕
s

Sn(SsV ∗).

In particular,
⊕

s S
n(SsV ∗) inherits a ring structure. We’ll return to

this in §9.3.1.

9.1.4. The Hermite-Hadamard-Howe map and the ideal of the
Chow variety. After the modern perspective presented above, I now go
back to the classical perspective of the nineteenth century. The two taken
together give an interesting picture. The following linear map was first de-
fined when dimV = 2 by Hermite (1854), and in general independently by
Hadamard (1897), Howe (1988), and Brion (1993).

Definition 9.1.4.1. The Hermite-Hadamard-Howe map hd,n : Sd(SnV )→
Sn(SdV ) is defined as follows: First include Sd(SnV ) ⊂ V ⊗nd. Next, reorder
the copies of V from d blocks of n to n blocks of d and symmetrize the blocks
of d to obtain an element of (SdV )⊗n. Finally, thinking of SdV as a single
vector space, symmetrize the n blocks.
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For example, putting subscripts on V to indicate position:

S2(S3V ) ⊂ V ⊗6 = V1⊗V2⊗V3⊗V4⊗V5⊗V6

→ (V1⊗V4)⊗(V2⊗V5)⊗(V3⊗V6)

→ S2V⊗S2V⊗S2V

→ S3(S2V )

Note that hd,n is a GL(V )-module map.

Example 9.1.4.2. Here is h2,2((xy)2):

(xy)2 =
1

4
[(x⊗y + y⊗x)⊗(x⊗y + y⊗x)]

=
1

4
[x⊗y⊗x⊗y + x⊗y⊗y⊗x+ y⊗x⊗x⊗y + y⊗x⊗y⊗x]

7→ 1

4
[x⊗x⊗y⊗y + x⊗y⊗y⊗x+ y⊗x⊗x⊗y + y⊗y⊗x⊗x]

7→ 1

4
[2(x2)⊗(y2) + 2(xy)⊗(xy)]

7→ 1

2
[(x2)(y2) + (xy)(xy)].

Exercise 9.1.4.3: (1!) Show that hd,n((x1)n · · · (xd)n) = (x1 · · ·xd)n.

Exercise 9.1.4.4: (2) Show that hd,n : Sd(SnV )→ Sn(SdV ) is “self-dual”

in the sense that hTd,n = hn,d : Sn(SdV ∗) → Sd(SnV ∗). Conclude that hd,n
surjective if and only if hn,d is injective.

Theorem 9.1.4.5 (Hadamard [Had97]). kerhd,n = Id(Chn(V ∗)).

Proof. Let P ∈ Sd(SnV ). Since Seg(vn(PV )×· · ·×vn(PV )) spans (SnV )⊗d,
its projection to Sd(SnV ) also spans, so we may write P =

∑
j(x1j)

n · · · (xdj)n

for some xα,j ∈ V . Let `1, . . . , `n ∈ V ∗. Recall P is P considered as a linear

form on V ∗⊗dn.

P (`1 · · · `n) = 〈P , (`1 · · · `n)d〉

=
∑
j

〈(x1j)
n · · · (xdj)n, (`1 · · · `n)d〉

=
∑
j

〈(x1j)
n, (`1 · · · `n)〉 · · · 〈(xdj)n, (`1 · · · `n)〉

=
∑
j

Πn
s=1Πd

i=1xij(`s)

=
∑
j

〈x1j · · ·xdj , (`1)d〉 · · · 〈x1j · · ·xdj , (`n)d〉

= 〈hd,n(P ), (`1)d · · · (`n)d〉
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If hd,n(P ) is nonzero, there will be some monomial of the form (`1)d · · · (`n)d

it will pair with to be nonzero (again, using the spanning property). On the
other hand, if hd,n(P ) = 0, then P annihilates all points of Chn(V ∗). �

Exercise 9.1.4.6: (1) Show that if hd,n : Sd(SnCm) → Sn(SdCm) is not

surjective, then hd,n : Sd(SnCk)→ Sn(SdCk) is not surjective for all k > m,
and that the partitions describing the kernel are the same in both cases if
d ≤ m. }

Exercise 9.1.4.7: (1) Show that if hd,n : Sd(SnCm)→ Sn(SdCm) is surjec-

tive, then hd,n : Sd(SnCk)→ Sn(SdCk) is surjective for all k < m.

Example 9.1.4.8 (The case dimV = 2). When dimV = 2, every polyno-
mial decomposes as a product of linear factors, so the ideal of Chn(C2) is
zero. We recover the following theorem of Hermite:

Theorem 9.1.4.9 (Hermite reciprocity). The map hd,n : Sd(SnC2) →
Sn(SdC2) is an isomorphism for all d, n. In particular Sd(SnC2) and Sn(SdC2)
are isomorphic GL2-modules.

Often in modern textbooks (e.g., [FH91]) only the “In particular” is
stated.

Originally Hadamard thought the maps hd,n were always of maximal
rank, but later he realized he did not have a proof. In [Had99] he did
prove:

Theorem 9.1.4.10 (Hadamard [Had99]). The map h3,3 : S3(S3V ) →
S3(S3V ) is an isomorphism.

In the same paper, he posed the question:

Question 9.1.4.11. Is hd,n always of maximal rank?

Howe [How87] also investigated the map hd,n and wrote “it is reasonable
to expect” that hd,n is always of maximal rank.

Proof of Theorem 9.1.4.10. Without loss of generality, assume w = 3
and x1, x2, x3 ∈ V ∗ are a basis. Say we had P ∈ I3(Ch3(V ∗)). Consider P
restricted to the line in S3V ∗ spanned by x3

1 + x3
2 + x3

3 and x1x2x3. Write
P (µ(x3

1 +x3
2 +x3

3)−λx1x2x3) as a cubic polynomial on P1 with coordinates
[µ, λ]. Note that P (µ, ν) vanishes at the four points [0, 1], [1, 3], [1, 3ω], [1, 3ω2]
where ω is a primitive third root of unity. A cubic polynomial on P1 vanish-
ing at four points is identically zero, so the whole line is contained in Z(P ).
In particular, P (1, 0) = 0, i.e., P vanishes on x3

1 + x3
2 + x3

3. Hence it must
vanish identically on σ3(v3(P2)). But I3(σ3(v3(P2))) = 0, see, e.g., Corollary
8.3.4.3, (In fact σ3(v3(P2)) ⊂ PS3C3 is a hypersurface of degree four.) �
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Remark 9.1.4.12. The above proof is due to A. Abdesselam (personal
communication). It is a variant of Hadamard’s original proof, where instead
of x3

1 + x3
2 + x3

3 one uses an arbitrary cubic f , and generalizing x1x2x3 one
uses the Hessian H(f). Then the curves f = 0 and H(f) = 0 intersect in
9 points (the nine flexes of f = 0) and there are four groups of three lines
going through these points, i.e. four places where the polynomial becomes
a product of linear forms.

Theorem 9.1.4.13. [BL89] (also see [McK08, Thm. 8.1] and [Ike15]) If
hd,n is surjective, then hd′,n is surjective for all d′ > d. In other words, if
hn,d is injective, then hn,d′ is injective for all d′ > d.

Outline of proof. I follow the proof in [Ike15]. Write V = E ⊕ F with
dimE = d and dimF = n. Give E a basis e1, . . . , ed and F a basis f1, . . . , fn
inducing a basis of V ordered (e1, e2, . . . , fn). Write (V ⊗dn)(α,β) for the α =
(a1, . . . , ad), β = (b1, . . . , bn)GL(E)×GL(F )-weight space. Define the lower-
ing map φi,j : (V ⊗dn)(α,β) → (V ⊗dn)(a1,...,ai−1,(ai−1),ai+1,...,ad),β=(b1,...,(bj+1),...,bn)

induced from the map V → V that sends ei to fj and maps all other basis
vectors to themselves. It is straight-forward to see the φi,j commute. Let

φd×n : (V ⊗dn)(nd,(0)) → (V ⊗dn)((0),dn) denote the composition of φ1,1 · · ·φd,b
restricted to (V ⊗dn)(nd,(0)). To see hd,n : Sd(SnCN ) → Sn(SdCN ) is injec-
tive, it is sufficient to see it is injective on each irreducible submodule, in
fact on the weight zero subspace of each irreducible submodule when N = d.

By Gay’s theorem 9.1.2.2 this is (V ⊗dn)WE

(nd,(0))
= (E⊗dn)WE

0 , whereW = Sd

is the Weyl group. ???*** proof**??? We need to show φd×(n−1) injective
implies φd×n is injective.

Reorder and decompose

φd×n = [φ1,1 · · ·φ1,n−1φ2,1 · · ·φd,n−1][φ1,n · · ·φd,n]

and call the first term the left factor and the second the right factor. The
injectivity of each term in the left factor follows from a straight-forward
induction argument. It remains to show injectivity of each φi,n, in fact

injectivity of φi,n restricted to each (((n− 1)i−1, nd−i), (0n−1, i− 1)) weight
space. Each of these restrictions just deals with a rasing operator in the C2

with basis ei, fn, so we need to see the lowering map ((C2)⊗n+i−1)(n,i−1) →
((C2)⊗n+i−1)(n−1,i) is injective. Decompose

(C2)⊗n+i−1 = ⊕b
n+i−1

2
c

λ2=0 Sn+i−1−λ2,λ2C
2.

The weight (n−1, i) vector in each space may be written as (ei∧fn)⊗λ2⊗(en−λ2
i f i−1−λ2

n ).
The lowering operator is zero on the first factor so this vector maps to
(ei ∧ fn)⊗λ2⊗(en−λ2−1

i f i−λ2
n ) which is nonzero.

�
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Remark 9.1.4.14. The statements and proofs in [BL89, McK08] were
regarding the map hd,n:0 defined in §9.1.5 below.

Theorem 9.1.4.15. [MN05] The map h5,5 is not surjective.

Remark 9.1.4.16. In [MN05] they showed the map h5,5:0 defined in §9.1.5
below is not injective. A. Abdessalem realized their computation showed the
map h5,5 is not injective and pointed this out to them. Evidently there was
some miscommunication because in [MN05] they mistakenly say the result
comes from [Bri02] rather than their own paper.

The GL(V )-module structure of the kernel of h5,5 was determined by
M-W Cheung, C. Ikenmeyer and S. Mkrtchyan as part of a 2012 AMS MRC
program:

Proposition 9.1.4.17. [CIM15] The kernel of h5,5 : S5(S5C5)→ S5(S5C5)
consists of irreducible modules corresponding to the following partitions:

{(14, 7, 2, 2), (13, 7, 2, 2, 1), (12, 7, 3, 2, 1), (12, 6, 3, 2, 2),

(12, 5, 4, 3, 1), (11, 5, 4, 4, 1), (10, 8, 4, 2, 1), (9, 7, 6, 3)}.
All these occur with multiplicity one in the kernel, but not all occur with
multiplicity one in S5(S5C5). In particular, the kernel is not an isotypic
component.

The Young diagrams of the kernel of h5,5 are:

, ,

, ,

, ,

, .



258 9. The Chow variety of products of linear forms

While the Hermite-Hadamard-Howe map is not always of maximal rank,
it is “eventually” of maximal rank:

Theorem 9.1.4.18. [Bri93, Bri97] The Hermite-Hadamard-Howe map

hd,n : Sd(SnV ∗)→ Sn(SdV ∗)

is surjective for d sufficiently large, in fact for d ∼≥ n2
(
n+d
d

)
I present the proof of Theorem 9.1.4.18 in §9.3.1.

Problem 9.1.4.19 (The Hadamard-Howe Problem). Determine the func-
tion d(n) such that hd,n is surjective for all d ≥ d(n).

A more ambitious problem would be:

Problem 9.1.4.20. Determine the kernel of hd,n.

A less ambitious problem is as follows: when n is even, the module
SndCn occurs in Sd(SnCn) with multiplicity one.

Conjecture 9.1.4.21 (Kumar [Kum]). Let n be even, then for all d ≤ n,
SndCn 6⊂ kerhd,n, i.e., SndCn ⊂ C[Chn(Cn)].

I discuss Conjecture 9.1.4.21 in §9.2. It turns out to be equivalent to a
famous conjecture in combinatorics.

9.1.5. Sdn-formulation of the Hadamard-Howe problem. The di-
mension of V , as long as it is at least d, is irrelevant for the GL(V )-module
structure of the kernel of hd,n. In this section assume dimV = dn.

If one restricts hd,n to the sl(V )-weight zero subspace, one obtains a
WV -module map

(9.1.1) hd,n:0 : Sd(SnV )0 → Sn(SdV )0.

In other words, recalling the discussion in §9.1.2, as aWV = Sdn-module
map, (9.1.1) is

(9.1.2) hd,n:0 : IndSdn
SnoSd triv→ IndSdn

SdoSn triv .

Call hd,n:0 the Black-List map. Moreover, since every irreducible module

appearing in Sd(SnV ) has a non-zero weight zero subspace, hd,n is the unique
GL(V )-module extension of hd,n:0.

The above discussion shows that one can deduce the kernel of hd,n from
that of hd,n:0 and vice versa. In particular, one is injective if and only if the
other is.

The map hd,n:0 was defined purely in terms of combinatorics in [BL89]
as a path to try to prove the following conjecture of Foulkes:
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Conjecture 9.1.5.1. [Fou50] Let d > n, let π be a partition of dn and let
[π] denote the corresponding Sdn-module. Then,

mult([π], IndSdn
SnoSd triv) ≥ mult([π], IndSdn

SdoSn triv).

Equivalently,

(9.1.3) mult(SπV, S
d(SnV )) ≥ mult(SπV, S

n(SdV )).

Theorem 8.10.1.1 shows that equality holds asymptotically in (9.1.3).
Conjecture 9.1.5.1 is still open in general.

9.1.6. Brill’s equations. Set theoretic equations of Chd(V ) have been
known since 1894. Here is a modern presentation elaborating the presenta-
tion in [Lan12, §8.6], which was suggested by E. Briand.

Our goal is a polynomial test to see if f ∈ SdV is a product of linear
factors. We can first try to see just if P is divisible by a power of a linear
form. The discussion in §8.4.2 will not be helpful as the conditions there
are vacuous when n −m = 1. We could proceed as in §6.5.1 and check if
`xI1 ∧ · · · ∧ `xID ∧ f = 0 where the xIj are a basis of Sd−1V , but in this case
there is a simpler test to see if a given linear form ` divides f :

Consider the map πd,d : SdV⊗SdV → Sd,dV obtained by projection.

(By the Pieri rule 8.1.3.1, Sd,dV ⊂ SdV⊗SdV with multiplicity one.)

Lemma 9.1.6.1. Let ` ∈ V , f ∈ SdV . Then f = `h for some h ∈ Sd−1V if
and only if πd,d(f⊗`d) = 0.

Proof. Since πd,d, is linear, it suffices to prove the lemma when f = `1 · · · `d.
In that case πd,d(f⊗`d), up to a constant, is (`1 ∧ `) · · · (`d ∧ `). �

We would like a map that sends `1 · · · `d to
∑

j `
d
j⊗stuffj , as then we

could apply πd,d⊗ Idstuff to f tensored with the result of our desired map
to obtain our equations.

While it is not obvious how to obtain such a map for powers, there
is an easy way to get elementary symmetric functions, namely the maps
f 7→ fj,d−j because (`1 · · · `d)j,d−j =

∑
|K|=j `K⊗`Kc where `K = `k1 · · · `kj

and Kc denotes the complementary index set in [d]. We can try to convert
this to power sums by the conversion formula obtained from the relation
between generating functions (6.1.5):

(9.1.4) pd = Pd(e1, . . . , ed) := det


e1 1 0 · · · 0
2e2 e1 1 · · · 0

...
...

...
...

ded ed−1 ed−2 · · · e1

 .
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The desired term comes from the diagonal ed1 and the rest of the terms kill off
the unwanted terms of ed1. This idea almost works- the only problem is that
our näıve correction terms have the wrong degree on the right hand side.
For example, when d = 3, näıvely using p3 = e3

1 − 3e1e2 + 3e3 would give,
for the first term, degree 6 = 2 + 2 + 2 on the right hand side of the tensor
product, the second degree 3 = 2 + 1 and the third degree zero. In general,
the right hand side of the ed1 term would have degree (d− 1)d, whereas the
ded term would have degree zero. In addition to fixing the degree mismatch,
we need to formalize how we will treat the right hand sides.

To these ends, recall that for any two algebras A,B, one can give A⊗B
the structure of an algebra by defining (α⊗β) · (α′⊗β′) := αα′⊗ββ′ and
extending linearly. Give Sym(V )⊗Sym(V ) this algebra structure. Define
maps

Ej : SδV → SjV⊗Sδ−1V(9.1.5)

f 7→ fj,δ−j · (1⊗f j−1).

The (1⊗f j−1) fixes our degree problem. If j > δ define Ej(f) = 0.

Our desired map is

Qd : SdV → SdV⊗Sd(d−1)V(9.1.6)

f 7→ Pd(E1(f), . . . , Ed(f)).

Theorem 9.1.6.2 (Brill [Bri93], Gordan [Gor94], Gelfand-Kapranov-Zelevin-
ski [GKZ94], Briand [Bri10]). Consider the map

B : SdV → Sd,dV⊗Sd
2−dV(9.1.7)

f 7→ (πd,d⊗ Id
Sd2−dV )[f⊗Qd(f)].(9.1.8)

Then [f ] ∈ Chd(V ) if and only if B(f) = 0.

The proof will be by induction, that will require a generalization of Qd.
Define

Qd,δ : SδV → SdV⊗Sd(δ−1)V(9.1.9)

f 7→ Pd(E1(f), . . . , Ed(f)).

Lemma 9.1.6.3. If f1 ∈ SδV and f2 ∈ Sd
′−δV , then

Qd,d′(f1f2) = (1⊗fd1 ) ·Qd,d′−δ(f2) + (1⊗fd2 ) ·Qd,δ(f1).

Assume Lemma 9.1.6.3 for the moment.

Proof of Theorem 9.1.6.2. Say f = `1 · · · `d. First note that for ` ∈ V ,
Ej(`

j) = `j⊗`j−1 and Qd,1(`) = `d⊗1. Next, compute E1(`1`2) = `1⊗`2 +
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`2⊗`1 and E2(`1`2) = `1`2⊗`1`2, so Q2,2(`1`2) = `21⊗`22 + `22⊗`21. By induc-
tion and Lemma 9.1.6.3,

Qd,δ(`1 · · · `δ) =
∑
j

`dj⊗(`d1 · · · `dj−1`
d
j+1 · · · `dδ).

We conclude Qd(f) =
∑

j `
d
j⊗(`d1 · · · `dj−1`

d
j+1 · · · `dd) and πd,d(`1 · · · `d, `dj ) = 0

for each j by Lemma 9.1.6.1.

For the other direction, first assume f is reduced, i.e., has no repeated
factors. Let z ∈ Zeros(f)smooth, then Qd(f) = (E1(f))d +

∑
µj⊗ψj where

ψj ∈ Sd
2−dV , µj ∈ SdV and f divides ψj for each j because E1(f)d occurs

as a monomial in the determinant (9.1.4) and all the other terms contain an
Ej(f) with j > 1, and so are divisible by f .

Thus B(f)(·, z) = πd,d(f⊗(dfz)
d) because E1(f)d = (f1,d−1)d and f1,d−1(·, z) =

dfz, and all the ψj(z) are zero. By Lemma 9.1.6.1, dfz divides f for all
z ∈ Zeros(f). But this implies the tangent space to f is constant in a neigh-
borhood of z, i.e., that the component containing z is a linear space, and
since every component of Zeros(f) contains a smooth point, Zeros(f) is a
union of hyperplanes, which is what we set out to prove.

Finally, say f = gkh where g is irreducible of degree q and h is of degree
d− qk and is relatively prime to g. Apply Lemma 9.1.6.3:

Qd(g(gk−1h)) = (1⊗gd) ·Qd,d−q(gk−1h) + (1⊗(gk−1h)d) ·Qd,q(g).

A second application gives

Qd(g
kh) = (1⊗gd)·[(1⊗gd)·Qd,d−2q(g

k−2h)+(1⊗(gk−2h)d)·Qd,q(g)+(1⊗(gk−2h)d)·Qd,q(g)].

After k − 1 applications one obtains:

Qd(g
kh) = (1⊗gd(k−1)) · [k(1⊗hd) ·Qd,q(g) + (1⊗gd) ·Qd,d−qk(h)]

and (1⊗gd(k−1)) will also factor out of B(f). Since B(f) is identically zero

but gd(k−1) is not, we conclude

0 = πd,d⊗ Id
Sd2−dV f⊗[k(1⊗hd) ·Qd,q(g) + (1⊗gd) ·Qd,d−qk(h)]

Let w ∈ Zeros(g) be a general point, so in particular h(w) 6= 0. Evaluating
at (z, w) with z arbitrary gives zero on the second term and the first implies
πd,d⊗ Id

Sd2−dV (f⊗Qd,q(g)) = 0 which implies dgw divides g, so g is a linear
form. �

Proof of Lemma 9.1.6.3. Define, for u ∈ Sym(V )⊗Sym(V ),

∆u : Sym(V )→ Sym(V )⊗Sym(V )

f 7→
∑
j

uj · fj,deg(f)−j .
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Exercise 9.1.6.4: Show that ∆u(fg) = (∆uf) · (∆ug), and that the gener-
ating series for the Ej(f) may be written as

Ef (t) =
1

1⊗f
·∆t(1⊗f)f.

Note that (1⊗f)·s = 1⊗fs and (1⊗fg) = (1⊗f) · (1⊗g). Thus

Efg(t) = [
1

1⊗f
·∆[t(1⊗g)](1⊗f)(f)] · [ 1

1⊗g
·∆[t(1⊗f)](1⊗g)(g)],

and taking the logarithmic derivative (recalling Equation (6.1.5)) we con-
clude. �

Remark 9.1.6.5. There was a gap in the argument in [Gor94], repeated in
[GKZ94], when proving the “only if” part of the argument. They assumed
that the zero set of f contains a smooth point, i.e., that the differential of
f is not identically zero. This gap was fixed in [Bri10]. In [GKZ94] they
use G0(d,dimV ) to denote Chd(V ).

9.1.7. Brill’s equations as modules. Brill’s equations are of degree d+1

on SdV ∗. (The total degree of Sd,dV⊗Sd
2−dV is d(d+ 1) which is the total

degree of Sd+1(SdV ).) Consider the GL(V )-module map

SddV⊗Sd
2−dV → Sd+1(SdV )

given by Brill’s equations. The components of the target are not known in
general and the set of modules present grows extremely fast. One can use
the Pieri formula 8.1.3.1 to get the components of the first. Using the Pieri
formula, we conclude:

Proposition 9.1.7.1. As a GL(V )-module, Brill’s equations are multiplic-
ity free.

Exercise 9.1.7.2: Write out the decomposition and show that only parti-
tions with three parts appear as modules in Brill’s equations. }

Remark 9.1.7.3. If d < v = dimV , then Chd(V ) ⊂ Subd(SdV ) so I(Chd(V )) ⊃
Λd+1V ∗⊗Λd+1(Sd−1V ∗). J. Weyman (in unpublished notes from 1994) ob-
served that these equations are not in the ideal generated by Brill’s equa-
tions. More precisely, the ideal generated by Brill’s equations does not
include modules SπV

∗ with `(π) > 3, so it does not cut out Chd(V ) scheme
theoretically when d < v. By Theorem 9.1.4.15 the same holds for Ch5(C5)
and almost certainly holds for all Chn(Cn) with n ≥ 5.

Problem 9.1.7.4. What is the kernel ofBrill : Sn,nV⊗Sn
2−nV → Sn+1(SnV )?
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9.2. Conjecture 9.1.4.21 and a conjecture in combinatorics

Let P ∈ Snd(Cd) ⊂ Sd(SnCd) be non-zero. Conjecture 9.1.4.21 may be
stated as P ((x1 · · ·xn)d) 6= 0. Our first task is to obtain an expression for
P .

9.2.1. Realization of the module. Let V = Cd. For any even n, the
one-dimensional module S(nd)V occurs with multiplicity one in Sd(SnV )

(cf. [How87, Prop. 4.3]). Fix a volume form on V so that detd ∈ SdV is
well defined.

Proposition 9.2.1.1. [?] Let n be even. The unique (up to scale) polyno-
mial P ∈ S(nd)V ⊂ Sd(SnV ) evaluates on

x = (v1
1 · · · v1

n)(v2
1 · · · v2

n) · · · (vd1 · · · vdn) ∈ Sd(SnV ∗), for any vij ∈ V ∗,

to give
(9.2.1)

〈P, x〉 =
∑

σ1,...,σd∈Sn

detd(v
1
σ1(1), . . . , v

d
σd(1)) · · · detd(v

1
σ1(n), . . . , v

d
σd(n)).

Proof. Let P̄ ∈ (V )⊗nd be defined by the identity (9.2.1) (with P replaced
by P̄ ). It suffices to check that

(i) P̄ ∈ Sd(SnV ),

(ii) P̄ is SL(V ) invariant, and

(iii) P̄ is not identically zero.

Observe that (iii) follows from the identity (9.2.1) by taking vij = xi
where x1, . . . , xd is a basis of V ∗, and (ii) follows because SL(V ) acts trivially
on detd.

To see (i), we show (ia) P̄ ∈ Sd((V )⊗n) and (ib) P̄ ∈ (SnV )⊗d to con-
clude. To see (ia), it is sufficient to show that exchanging two adjacent
factors in parentheses in the expression of x will not change (9.2.1). Ex-
change v1

j with v2
j in the expression for j = 1, . . . , n. Then, each individual

determinant will change sign, but there are an even number of determinants,
so the right hand side of (9.2.1) is unchanged. To see (ib), it is sufficient
to show the expression is unchanged if we swap v1

1 with v1
2 in (9.2.1). If we

multiply by n!, we may assume σ1 = Id, i.e.,

〈P̄ , x〉 =

n!
∑

σ2,...,σd∈Sn

detd(v
1
1, v

2
σ2(1), . . . , v

d
σd(1)) detd(v

1
2, v

2
σ2(2), . . . , v

d
σd(2)) · · · detd(v

1
n, v

2
σ2(n), . . . , v

d
σd(n)).
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With the two elements v1
1 and v1

2 swapped, we get
(9.2.2)

n!
∑

σ2,...,σd∈Sn

detd(v
1
2, v

2
σ2(1), . . . , v

d
σd(1)) detd(v

1
1, v

2
σ2(2), . . . , v

d
σd(2)) · · · detd(v

1
n, v

2
σ2(n), . . . , v

d
σd(n)).

Now right compose each σs in (9.2.2) by the transposition (1, 2). The ex-
pressions become the same. �

Corollary 9.2.1.2. The unique (up to scale) polynomial P ∈ S(nd)V ⊂
Sd(SnV ) when n is even, is nonzero on (y1)n + · · · + (yd)

n if the yj are
linearly independent. In particular, SndV ⊂ C[σd(vn(PCN ))] for all N ≥ d.

Proof. The monomial (y1)n · · · (yd)n appears in ((y1)n+ · · ·+(yd)
n) and all

other monomials appearing pair with P to be zero. �

Now specialize to the case d = n (this is the critical case) and evaluate
on (x1 · · ·xn)n, where x1, . . . , xn is a uni-modular basis of V ∗.
(9.2.3)

〈P, (x1 · · ·xn)n〉 =
∑

σ1,...,σn∈Sn

detd(xσ1(1), . . . , xσn(1)) · · · detd(xσ1(n), . . . , xσn(n)).

For a fixed (σ1, . . . , σn) the contribution will either be 0, 1 or −1. The
contribution is zero unless for each j, the indices σ1(j), . . . , σn(j) are distinct.
Arrange these numbers in an array:σ1(1) · · · σn(1)

...
σ1(n) · · · σn(n)


The contribution is zero unless the array is a Latin square, i.e., an n×n ma-
trix such that each row and column consists of the integers {1, . . . , n}. If it is
a Latin square, the rows correspond to permutations, and the contribution
of the term is the product of the signs of these permutations. Call this the
row sign of the Latin square. There is a famous conjecture in combinatorics
regarding the products of both the signs of the row permutations and the
column permutations, called the sign of the Latin square:

Conjecture 9.2.1.3 (Alon-Tarsi [AT92]). Let n be even. The number of
sign −1 Latin squares of size n is not equal to the number of sign +1 Latin
squares of size n.

Conjecture 9.2.1.3 is known to be true when n = p±1, where p is an odd
prime; in particular, it is known to be true up to n = 24 [Gly10, Dri97].

On the other hand, in [Alp14, CW16] they show that the ratio of the
number of sign −1 Latin squares of size n to the number of sign +1 Latin
squares of size n tends to one as n goes to infinity.



9.3. Asymptotic surjectivity of the Hadamard-Howe map 265

In [HR94], Huang and Rota showed:

Theorem 9.2.1.4. [HR94, Identities 8,9] The difference between the num-
ber of column even Latin squares of size n and the number of column odd
Latin squares of size n equals the difference between the number of even
Latin squares of size n and the number of odd Latin squares of size n, up to
sign. In particular, the Alon-Tarsi conjecture holds for n if and only if the
column-sign Latin square conjecture holds for n.

Thus

Theorem 9.2.1.5. [?] The Alon-Tarsi conjecture holds for n if and only if
Snn(Cn) ∈ C[Chn(Cn)].

In [?] several additional statements equivalent to the conjecture were
given. In particular, for those familiar with integration over compact Lie
groups, the conjecture holds for n if and only if∫

(gij)∈SU(n)
Π1≤i,j≤ng

i
jdµ 6= 0

where dµ is Haar measure.

9.3. Asymptotic surjectivity of the Hadamard-Howe map

*This section is still in rough form*****

9.3.1. Coordinate ring of the normalization of the Chow variety.
*** introduction about normalization, and normal varieties to be added***

In this section I follow [Bri93]. There is another variety whose coordi-
nate ring is as computable as the coordinate ring of the orbit, the normal-
ization of the Chow variety. We work in affine space.

An affine variety Z is normal if C[Z] is integrally closed, that is if every
element of C(Z), the field of fractions of C[Z], that is integral over C[Z]
(i.e., that satisfies a monic polynomial with coefficients in C[Z]) is in C[Z].
To every affine variety Z one may associate a unique normal affine variety
Nor(Z), called the normalization of Z, such that there is a finite map π :
Nor(Z) → Z (i.e. C[Nor(Z)] is integral over C[Z]), in particular it is
generically one to one and one to one over the smooth points of Z. For
details see [Sha94, Chap II.5].

In particular, there is an inclusion C[Z]→ C[Nor(Z)] given by pullback

of functions, e.g., given f ∈ C[Z], define f̃ ∈ C[Nor(Z)] by f̃(z) = f(π(x)).
If the non-normal points of Z form a finite set, then the cokernel is finite
dimensional. If Z is a G-variety, then Nor(Z) will be too.

Recall that Chn(V ) is the projection of the Segre variety, but since we
want to deal with affine varieties, we will deal with the cone over it. Consider
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the product map

φn : V ×n → SnV

(u1, . . . , un) 7→ u1 · · ·un

Note that i) the image of φn is Ĉhn(V ), ii) φn is Γn = TV nSn equivariant.

For any affine algebraic group Γ and any Γ-variety Z, define the GIT
quotient Z//Γ to be the affine algebraic variety whose coordinate ring is
C[Z]Γ. (When Γ is finite, this is just the usual set-theoretic quotient. In the
general case, Γ-orbits will be identified in the quotient when there is no Γ-
invariant regular function that can distinguish them.) If Z is normal, then so
is Z//Γ (see, e.g. [Dol03, Prop 3.1]). In our case V ×n is an affine Γn-variety
and φn factors through the GIT quotient because it is Γn-equivariant, so a
map

ψn : V ×n//Γn → SnV

whose image is Ĉhn(V ). By unique factorization, ψn is generically one
to one. Elements of V ×n of the form (0, u2, . . . , un) cannot be distin-
guished from (0, . . . , 0) by Γn invariant functions, so they are identified with
(0, . . . , 0) in the quotient, which is consistent with the fact that φn(0, u2, . . . , un) =
0. Observe that φn and ψn are GL(V ) = SL(V )× C∗ equivariant.

Consider the induced map on coordinate rings:

ψ∗n : C[SnV ]→ C[V ×n//Γn] = C[V ×n]Γn .

For affine varieties, C[Y × Z] = C[Y ]⊗C[Z] (see, e.g. [Sha94, §2.2]), so

C[V ×n] = C[V ]⊗n

= Sym(V ∗)⊗ · · ·⊗ Sym(V ∗)

=
⊕

i1,...,in∈Z≥0

Si1V ∗⊗ · · ·⊗ SinV ∗.

Taking torus invariants gives

C[V ×n]T
SL
n =

⊕
i

SiV ∗⊗ · · ·⊗ SiV ∗,

and finally

(C[V ×n]T
SL
n )Sn =

⊕
i

Sn(SiV ∗).

In summary,

ψ∗n : Sym(SnV ∗)→ ⊕i(Sn(SiV ∗)),

and this map respects GL-degree, so it gives rise to maps h̃d,n : Sd(SnV ∗)→
Sn(SdV ∗).

Proposition 9.3.1.1. h̃d,n = hd,n.
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Proof. Since elements of the form xn1 · · ·xnd span Sd(SnV ) it will be suf-
ficient to prove the maps agree on such elements. By Exercise 9.1.4.3,
hd,n(xn1 · · ·xnd ) = (x1 · · ·xd)n. On the other hand, in the algebra C[V ]⊗n,
the multiplication is (f1⊗ · · ·⊗ fn)} (g1⊗ · · ·⊗ gn) = f1g1⊗ · · ·⊗ fngn and
this descends to the algebra (C[V ]⊗n)Γn which is the target of the algebra
map ψ∗n, i.e.,

h̃d,n(xn1 · · ·xnd ) = ψ∗n(xn1 · · ·xnd )

= ψ∗n(xn1 )} · · ·} ψ∗n(xnd )

= xn1 } · · ·} xnd
= (x1 · · ·xd)n.

�

Proposition 9.3.1.2. ψn : V ×n//Γn → Ĉhn(V ) is the normalization of

Ĉhn(V ).

9.3.2. Brion’s asymptotic surjectivity result. A regular (see, e.g. [Sha94,
p.27] for the definition of regular) map between affine varieties f : X → Y
such that f(X) is dense in Y is defined to be finite if C[X] is integral over
C[Y ] (see, e.g. [Sha94, p. 61]). To prove the proposition, we will need a
lemma:

Lemma 9.3.2.1. Let X,Y be affine varieties equipped with polynomial C∗-
actions with unique fixed points 0X ∈ X, 0Y ∈ Y , and let f : X → Y be
a C∗-equivariant morphism such that as sets, f−1(0Y ) = {0X}. Then f is
finite.

Proof of Proposition 9.3.1.2. Since V ×n//Γn is normal and ψn is regu-
lar and generically one to one, it just remains to show ψn is finite.

Write [0] = [0, . . . , 0]. To show finiteness, by Lemma 9.3.2.1, it is suf-
ficient to show ψn

−1(0) = [0] as a set, as [0] is the unique C∗ fixed point
in V ×n//Γn, and every C∗ orbit closure contains [0]. Now u1 · · ·un = 0 if
and only if some uj = 0, say u1 = 0. The T -orbit closure of (0, u2, . . . , un)
contains the origin so [0, u2, . . . , un] = [0]. �

Proof of Lemma 9.3.2.1. C[X],C[Y ] are Z≥0-graded, and the hypothesis
f−1(0Y ) = {0X} states that C[X]/f∗(C[Y ]>0)C[X] is a finite dimensional
vector space. We want to show that C[X] is integral over C[Y ]. This is a
graded version of Nakayama’s Lemma (the algebraic implicit function theo-
rem). �

In more detail (see, e.g. [Kum13, Lemmas 3.1,3.2], or [Eis95, p136,
Ex. 4.6a]):
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Lemma 9.3.2.2. Let R,S be Z≥0-graded, finitely generated domains over
C such that R0 = S0 = C, and let f∗ : R → S be an injective graded
algebra homomorphism. If f−1(R>0) = {S>0} as sets, where f : Spec(S)→
Spec(R) is the induced map on the associated schemes, then S is a finitely
generated R-module. In particular, it is integral over R.

Proof. The hypotheses on the sets says that S>0 is the only maximal ideal
of S containing the ideal m generated by f∗(R>0), so the radical of m must
equal S>0, and in particular Sd>0 must be contained in it for all d > d0,
for some d0. So S/m is a finite dimensional vector space, and by the next
lemma, S is a finitely generated R-module. �

Lemma 9.3.2.3. Let S be as above, and let M be a Z≥0-graded S-module.
Assume M/(S>0 ·M) is a finite dimensional vector space over S/S>0 ' C.
Then M is a finitely generated S-module.

Proof. Choose a set of homogeneous generators {x1, . . . , xn} ⊂M/(S>0·M)
and let xj ∈ M be a homogeneous lift of xj . Let N ⊂ M be the graded
S-submodule Sx1 + · · · + Sxn. Then M = S>0M + N , as let a ∈ M ,
consider a ∈ M/(S>0M) and lift it to some b ∈ N , so a − b ∈ S>0M , and
a = (a− b) + b. Now quotient by N to obtain

(9.3.1) S>0 · (M/N) = M/N.

If M/N 6= 0, let d0 be the smallest degree such that (M/N)d0 6= 0. But
S>0 · (M/N)≥d0 ⊂ (M/N)≥d0+1 so there is no way to obtain (M/N)d0 on
the right hand side. Contradiction. �

Theorem 9.3.2.4. [Bri93] For all n ≥ 1, ψn restricts to a map

(9.3.2) ψon : (V ×n//Γn)\[0]→ SnV \0

such that ψo∗n : C[SnV \0]→ C[(V ×n//Γn)\[0]] is surjective.

Corollary 9.3.2.5. [Bri93] The Hermite-Hadamard-Howe map

hd,n : Sd(SnV ∗)→ Sn(SdV ∗)

is surjective for d sufficiently large.

Proof of Corollary. Theorem 9.3.2.4 implies (ψ∗n)d is surjective for d suf-
ficiently large, because the cokernel of ψ∗n is supported at a point and thus
must vanish in large degree. �

The proof of Theorem 9.3.2.4 will give a second proof that the kernel of
ψ∗n equals the ideal of Chn(V ).
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Proof of Theorem. Since ψn is C∗-equivariant, we can consider the quo-
tient to projective space

ψ
n

: ((V ×n//Γn)\[0])/C∗ → (SnV \0)/C∗ = PSnV

and show that ψ∗
n

is surjective. Note that ((V ×n//Γn)\[0])/C∗ is GL(V )-

isomorphic to (PV )×n/Sn, as

(V ×n//Γn)\[0] = (V \0)×n/Γn

and Γn × C∗ = (C∗)×n oSn. So

ψ
n

: (PV )×n/Sn → PSnV.

It will be sufficient to show ψ∗
n

is surjective on affine open subsets that
cover the spaces. Let w1, . . . , ww be a basis of V and consider the affine
open subset of PV given by elements where the coordinate on w1 is nonzero,
and the corresponding induced affine open subsets of (PV )×n and PSnV ,
call these (PV )×n1 and (PSnV )1. We will show that the algebra of Sn-
invariant functions on (PV )×n1 is in the image of (PSnV )1. The restriction
of the quotient by Sn of (PV )×n composed with ψ

n
to these open subsets

in coordinates is

((w1 +

w∑
s=2

x1
sws), . . . , (w1 +

w∑
s=2

xws ws) 7→ Πn
i=1(w1 +

w∑
s=2

xisws).

Finally, by e.g., [Wey97, §II.3], the coordinates on the right hand side
generate the algebra of Sn-invariant functions in the n sets of variables
(xis)i=1,...,n. �

With more work, in [Bri97, Thm 3.3], Brion obtains an explicit (but
enormous) function d0(n,w) which is

(9.3.3) d0(n,w) = (n− 1)(w − 1)((n− 1)

⌊(
n+w−1
w−1

)
w

⌋
− n)

for which the hd,n is surjective for all d > d0 where dimV = v.

Problem 9.3.2.6. Improve Brion’s bound to say, a polynomial bound in n
when n = w.

Problem 9.3.2.7. Note that C[Nor(Chn(V ))] = C[GL(V ) · (x1 · · ·xn)]≥0

and that the the boundary of the orbit closure is irreducible. Under what
conditions will a GL(V )-orbit closure with reductive stabilizer that has an
irreducible boundary will be such that the coordinate ring of the normal-
ization of the orbit closure equals the positive part of the coordinate ring of
the orbit?
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9.3.3. Brion’s qualitative theorem. We have a ring map

(9.3.4) hn : Sym(SnV )→
⊕
i

Sn(SiV )

The proof has three steps:

(1) Show C[Nor(Chn(V ))] is generated in degree at most (n−1)(v−1)
via vanishing of cohomology (Castelnuovo-Mumford regularity).

(2) Show that hn((vn)d(n−1) · C[Nor(Chn(V ))] ⊂ C[Chn(V )] via a lo-
calization argument to reduce to a question about multi-symmetric
functions.

(3) Use that Zariski open subset of the polynomials of degree n in v
variables can be written as a sum of r0 n-th powers, where r0 ∼
1
n

(
v+n−1

n

)
(The Alexander-Hirschowitz theorem [AH95]).

Then we conclude that for d ≥ (n− 1)(v− 1)(r0(n− 1) +n) that hd,n is
surjective.

Proof of Step 1. We saw *** that C[Nor(Chn(V ))] = (C[V ∗×n]Tn)Sn so
it will be sufficient to show that C[V ∗×n]Tn is generated in degree at most
(n− 1)(v − 1). We translate this into a sheaf cohomology problem:

C[V ∗×n]Tn =
∞⊕
d=0

H0(PV ∗×n,OPV ∗(d)×n)

=

∞⊕
d=0

H0(PSnV ∗, proj∗OPV ∗(d)×n)

i.e., we want to know about the generators of the graded Sym(SnV )-module
associated to the sheaf proj∗O×nPV ∗ . Castelnuovo-Mumford regularity [Mum66,
Lect. 14] gives a bound in terms of vanishg of sheaf cohomology groups. Here
we are dealing with groups we can compute: Hj(PV ∗×n,O(d − j)×n), and
the result follows from this computation. �

Proof of Step 2. Let v = vv ∈ V \0, and let v1, . . . , vv be a basis of V . Set
xi = vi

v . Consider the localization of the coordinate ring of the normalization
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at vn (the degree zero elements in the localization of C[Nor(Chn(V ))][ 1
vn ]:

C[Nor(Chn(V ))]vn : =
⋃
d≥0

Sn(SdV )(vn)−d

= Sn(
⋃
d≥0

(SdV )(vn)−d

= SnC[x1, . . . , xv−1] =: SnC[x]

= [(C[x])⊗n]Sn

= (C[x1, . . . , xn])Sn

where xj = (x1,j , . . . , xv−1,j).

Similarly

Sym(SnV )vn =
⋃
d≥0

Sd(SnV )(vn)−d

= Sym(SnV/vn)

= Sym(
n⊕
i=1

C[x]i)

We get a localized graded algebra map hn,vn between these spaces. Hence
it is determined in degree one:

n⊕
i=1

C[x]i → C[x1, . . . , xn]Sn

that takes the degree at most n monomial xa1
1 · · ·x

ad1
d−1 to the coefficient of

ta1
1 · · · t

ad−1

d−1 in the expansion of

Πn
i=1(1 + xi1t1 + · · ·+ xid−1td−1)

These are the elementary multi-symmetric functions. They generate the
ring of multi-symmetric functions C[x1, . . . , xn]Sn [AK81]. Thus hn,vn is
surjective.

Moreover, if f ∈ C[x1, . . . , xn]Sn has all its partial degrees at most d,
then the total degree of f is at most dn in the xj ’s, so it is a polynomial
of degree at most dn in the elementary multi-symmetric functions. In other
words, the map

Sdn(SnV )(vn)−dn → Sn(SdV )(vn)−d

is surjective, so hn((vn)d(n−1)C[Nor(Chn(V ))] ⊂ C[Chn(V )]. �

We conclude by appeal to the Alexander-Hirschowitz theorem [AH95].





Chapter 10

Valiant’s conjecture
III: Results using
algebraic geometry

Warning: this chapter is in rough form

10.1. Non-normality of Detn

**give context** be sure to include how SL-orbits are closed*** I follow
[Kum13] in this section. Throughout this section I make the following
assumptions and adopt the following notation:

Set up:

• V is a GL(W )-module,

• Let P0 := GL(W ) · P and P := GL(W ) · P denote its orbit and
orbit closure, and let ∂P = P\P0 denote its boundary, which we
assume to be more than zero (otherwise [P] is homogeneous).

(10.1.1) Assumptions :

(1) P ∈ V is such that the SL(W )-orbit of P is closed.

(2) The stabilizer GP ⊂ GL(W ) is reductive, which is equivalent (by a
theorem of Matsushima [Mat60]) to requiring that P0 is an affine
variety.

273
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This situation holds when V = SnW , dimW = n2 and P = detn or

permn as well as when dimW = rn and P = Srn :=
∑r

j=1 x
j
1 · · ·x

j
n, the

sum-product polynomial, in which case P = σ̂r(Chn(W )).

Lemma 10.1.0.1. [Kum13] Assumptions as in (10.1.1). Let M ⊂ C[P] be
a nonzero GL(W )-module, and let Z(M) = {y ∈ P | f(y) = 0 ∀f ∈ M}
denote its zero set. Then 0 ⊆ Z(M) ⊆ ∂P.

If moreover M ⊂ I(∂P), then as sets, Z(M) = ∂P.

Proof. Since Z(M) is a GL(W )-stable subset, if it contains a point of P0 it
must contain all of P0 and thus M vanishes identically on P, which cannot
happen as M is nonzero. Thus Z(M) ⊆ ∂P. For the second assertion, since
M ⊂ I(∂P), we also have Z(M) ⊇ ∂P. �

Proposition 10.1.0.2. [Kum13] Assumptions as in (10.1.1). The space of

SL(W )-invariants of positive degree in the coordinate ring of P, C[P]
SL(W )
>0 ,

is non-empty and contained in I(∂P). Moreover,

(1) any element of C[P]
SL(W )
>0 cuts out ∂P set-theoretically, and

(2) the components of ∂P all have codimension one in P.

Proof. To study C[P]SL(W ), consider the GIT quotient P//SL(W ) whose

coordinate ring, by definition, is C[P]SL(W ). It parametrizes the closed

SL(W )-orbits in P, so it is non-empty. Thus C[P]SL(W ) is nontrivial.

Claim: every SL(W )-orbit in ∂P contains {0} in its closure, i.e., ∂P
maps to zero in the GIT quotient. This will imply any SL(W )-invariant
of positive degree is in I(∂P) because any non-constant function on the
GIT quotient vanishes on the inverse image of [0]. Thus (1) follows from
Lemma 10.1.0.1. The zero set of a single polynomial, if it is not empty, has
codimension one, which implies the components of ∂P are all of codimension
one, proving (2).

It remains to show ∂P maps to zero in P//SL(W ), where ρ : GL(W )→
GL(V ) is the representation. This GIT quotient inherits a C∗ action via
ρ(λId), for λ ∈ C∗. Its normalization is just the affine line A1 = C. To see
this, consider the C∗-equivariant map σ : C → P given by z 7→ ρ(zId) · P ,
which descends to a map σ : C→ P//SL(W ). Since the SL(W )-orbit of P
is closed, for any λ ∈ C∗, ρ(λId)P does not map to zero in the GIT quotient,
so we have σ−1([0]) = {0} as a set. Lemma 9.3.2.1 applies so σ is finite and
gives the normalization. Finally, were there a closed nonzero orbit in ∂P,
it would have to equal SL(W ) · σ(λ) for some λ ∈ C∗ since σ is surjective.
But SL(W ) · σ(λ) ⊂ P0. �
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Remark 10.1.0.3. That each irreducible component of ∂P is of codimen-
sion one in P is due to Matsushima [Mat60]. It is a consequence of his
result mentioned above.

The key to proving non-normality of D̂etn and ˆPermn
n is to find an

SL(W )-invariant in the coordinate ring of the normalization (which has a
GL(W )-grading), which does not occur in the corresponding graded com-
ponent of the coordinate ring of SnW , so it cannot occur in the coordinate
ring of any GL(W )-subvariety.

Lemma 10.1.0.4. Assumptions as in (10.1.1). Let P ∈ SnW be such that
SL(W ) · P is closed and GP is reductive. Let d be the smallest positive

GL(W )-degree such that C[P0]
SL(W )
d 6= 0. If n is even and d < nw (resp. n

is odd and d < 2nw) then P is not normal.

Proof. Since P0 ⊂ P is a Zariski open subset, we have the equality of
GL(W )-modules C(P) = C(P0). By restriction of functions C[P] ⊂ C[P0]

and thus C[P]SL(W ) ⊂ C[P0]SL(W ). Now P0//SL(W ) = P0/SL(W ) ' C∗,
so C[P0]SL(W ) ' ⊕k∈ZC{zk}. Under this identification, z has GL(W )-

degree d. By Proposition 10.1.0.2, C[P]SL(W ) 6= 0. Let h ∈ C[P]SL(W ) be
the smallest element in positive degree. Then h = zk for some k. Were P
normal, we would have k = 1.

But now we also have a surjection C[SnW ]→ C[P], and by Exercise ??
the smallest possible GL(W )-degree of an SL(W )-invariant in C[SnW ] when
n is even (resp. odd) is wn (resp. 2wn) which would occur in Sw(SnW )
(resp. S2w(SnW )). We obtain a contradiction. �

Theorem 10.1.0.5 (Kumar [Kum13]). For all n ≥ 3, Detn and Permn
n are

not normal. For all n ≥ 2m (the range of interest), Permm
n is not normal.

I give the proof for Detn, the case of Permn
n is an easy exercise. Despite

the variety being much more singular, the proof for Permm
n is more difficult,

see [Kum13].

Proof. We will show that when n is congruent to 0 or 1 mod 4, C[Det0n]
SL(W )
n−GL 6=

0 and when n is congruent to 2 or 3 mod 4, C[Det0n]
SL(W )
2n−GL 6= 0. Since

n, 2n < (n2)n Lemma 10.1.0.4 applies.

The SL(W )-trivial modules are (Λn
2
W )⊗s = S

sn2W . Write W = E⊗F .
We want to determine the lowest degree trivial SL(W )-module that has
a Gdetn = (SL(E) × SL(F )/µn) o Z2 invariant. We have the decompo-

sition (Λn
2
W )⊗s = (⊕|π|=n2SπE⊗Sπ′F )⊗s, where π′ is the conjugate par-

tition to π. Thus (Λn
2
W )⊗s contains the trivial SL(E) × SL(F ) mod-

ule (ΛnE)⊗ns⊗(ΛnF )⊗ns with multiplicity one. (In the language of §8.9.2,
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k
sn2 ,(sn)n,(sn)n

= 1.) Now we consider the effect of the Z2 ⊂ Gdetn with

generator τ ∈ GL(W ). It sends ei⊗fj to ej⊗fi, so acting on W it has +1
eigenspace ei⊗fj + ej⊗fi for i ≤ j and −1 eigenspace ei⊗fj − ej⊗fi for

1 ≤ i < j ≤ n. Thus it acts on the one-dimensional vector space (Λn
2
W )⊗s

by ((−1)(
n
2))s, i.e., by −1 if n ≡ 2, 3 mod 4 and s is odd and by 1 otherwise.

We conclude that there is an invariant as asserted above. (In the language

of §8.9.2, sks
n2

(sn)n,(sn)n = 1 for all s when
(
n
2

)
is even, and sks

n2

(sn)n,(sn)n = 1

for even s when
(
n
2

)
is odd and is zero for odd s.) �

Exercise 10.1.0.6: Write out the proof of the non-normality of Permn
n.

Exercise 10.1.0.7: Show the same method gives another proof that Chn(W )
is not normal, but that it fails (with good reason) to show σn(vd(Pn−1)) is
not normal.

Exercise 10.1.0.8: Show a variant of the above holds for any reductive
group with a nontrivial center (one gets a Zk-grading of modules if the center
is k-dimensional), in particular it holds for G = GL(A)×GL(B)×GL(C).
Use this to show that σr(Seg(PA×PB×PC)) is not normal when dimA =
dimB = dimC = r > 2.

10.2. The minimal free resolution of the ideal generated by
minors of size κ

This section follows the exposition in [?], which is based on the presentation
in [Wey03]. The results are due to Lascoux [Las78].

10.2.1. Statement of the result. Let E,F = Cn, give E⊗F coordinates
(xij), with 1 ≤ i, j ≤ n. Set r = κ − 1. Let σ̂r = σ̂r(Seg(Pn−1 × Pn−1)) ⊂
Cn⊗Cn = E∗⊗F ∗ denote the variety of n × n matrices of rank at most r.
By “degree SπE”, we mean |π| = p1 + · · ·+ pn. Write `(π) for the largest j
such that pj > 0. Write π + π′ = (p1 + p′1, . . . , pn + p′n).

The weight (underGL(E)×GL(F )) of a monomial xi1j1 · · ·x
iq
jq
∈ Sq(E⊗F )

is given by a pair of n-tuples ((wE1 , . . . , w
E
n ), (wF1 , . . . , w

F
n )) where wEs is the

number of iα’s equal to s and wFt is the number of jα’s equal to t. A vector
is a weight vector of weight ((wE1 , . . . , w

E
n ), (wF1 , . . . , w

F
n )) if it can be writ-

ten as a sum of monomials of weight ((wE1 , . . . , w
E
n ), (wF1 , . . . , w

F
n )). Any

GL(E) × GL(F )-module has a basis of weight vectors, and any irreducible
module has a unique highest weight which (if the representation is polyno-
mial) is a pair of partitions, (π, µ) = ((p1, . . . , pn), (m1, . . . ,mn)), where we
allow a string of zeros to be added to a partition to make it of length n. The
corresponding GL(E)×GL(F )-module is denoted SπE⊗SµF .
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Theorem 10.2.1.1. [Las78] Let 0 → FN → · · · → F1 → Sym(E⊗F ) =
F0 → C[σ̂r]→ 0 denote the minimal free resolution of σ̂r. Then

(1) N = (n− r)2, i.e., σ̂r is arithmetically Cohen-Macaulay.

(2) σ̂r is Gorenstein, i.e., FN = Sym(E⊗F ), generated by S(n−r)nE⊗S(n−r)nF .
In particular FN−j ' Fj as SL(E)×SL(F )- modules, although they
are not isomorphic as GL(E)×GL(F )-modules.

(3) For 1 ≤ j ≤ N − 1, the space Fj has generating modules of degree
sr + j where 1 ≤ s ≤ b

√
jc. The modules of degree r + j form the

generators of the linear strand of the minimal free resolution.

(4) The generating module of Fj is multiplicity free.

(5) Let α, β be (possibly zero) partitions such that `(α), `(β) ≤ s.
Independent of the lengths (even if they are zero), write α =
(α1, . . . , αs), β = (β1, . . . , βs). The degree sr + j generators of
Fj , for 1 ≤ j ≤ N are

(10.2.1) Mj,rs+j =
⊕
s≥1

⊕
|α|+|β|=j−s2
`(α),`(β)≤s

S(s)r+s+(α,0r,β′)E⊗S(s)r+s+(β,0r,α′)F.

The Young diagrams of the modules are depicted in Figure 1 below.

α

β

s

r+s

β

α ’

’

r+s

π

π

w

’’

s

r+s

s

β

α

original partition π

Figure 10.2.1. Partition π and pairs of partitions (s)r+s +
(α, 0r, β′) = w · π and (s)r+s + (β, 0r, α′) = π′ it gives rise to
in the resolution (see §10.2.4 for explanations).
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(6) In particular the generator of the linear component of Fj is

(10.2.2) Mj,j+r =
⊕

a+b=j−1

= Sa+1,1r+bE⊗Sb+1,1r+aF.

This module admits a basis as follows: form a size r+ j submatrix
using r + b+ 1 distinct rows, repeating a subset of a rows to have
the correct number of rows and r+ a+ 1 distinct columns, repeat-
ing a subset of b columns, and then performing a “tensor Laplace
expansion” as described below.

10.2.2. The Koszul resolution. If I = Sym(V ), the minimal free reso-
lution is given by the exact complex

(10.2.3) · · · → Sq−1V⊗Λp+2V → SqV⊗Λp+1V → Sq+1V⊗ΛpV → · · ·

The maps are given by the transpose of exterior derivative (Koszul) map
dp,q : SqV ∗⊗Λp+1V ∗ → Sq−1V ∗⊗Λp+2V ∗. Write dTp,q : Sq−1V⊗Λp+2V →
SqV⊗Λp+1V . We have theGL(V )-decomposition SqV⊗Λp+1V = Sq,1p+1V⊕
Sq+1,1pV , so the kernel of dTp,q is the first module, which also is the image of

dTp+1,q−1.

Explicitly, dTp,q is the composition of polarization (Λp+2V → Λp+1V⊗V )
and multiplication:

Sq−1V⊗Λp+2V → Sq−1V⊗Λp+1V⊗V → SqV⊗Λp+1V.

For the minimal free resolution of any ideal, the linear strand will embed
inside (10.2.3).

Throughout this article, we will view Sq+1,1pV as a submodule of SqV⊗Λp−1V ,
GL(V )-complementary to dTp,q(S

q−1,1pV ).

For T ∈ SκV⊗V ⊗j , and P ∈ S`V , introduce notation for multiplication
on the first factor, T · P ∈ Sκ+`V⊗V ⊗j . Write Fj = Mj · Sym(V ). As
always, M0 = C.

10.2.3. Geometric interpretations of the terms in the linear strand
(10.2.2). First note that F1 = M1 · Sym(E⊗F ), where M1 = M1,r+1 =
Λr+1E⊗Λr+1F , the size r+1 minors which generate the ideal. The syzygies
among these equations are generated by

M2,r+2 := S1r+2E⊗S21rF ⊕ S21rE⊗S1r+2F ⊂ Iσrr+2⊗V

(i.e., F2 = M2 · Sym(E⊗F )), where elements in the first module may be
obtained by choosing r + 1 rows and r + 2 columns, forming a size r + 2
square matrix by repeating one of the rows, then doing a ‘tensor Laplace
expansion” that we now describe:
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In the case r = 1 we have highest weight vector

S
1|12
123 : = (x1

2x
2
3 − x2

2x
1
3)⊗x1

1 − (x1
1x

2
3 − x2

1x
1
3)⊗x1

2 + (x1
1x

2
2 − x1

2x
2
1)⊗x1

3

(10.2.4)

= M12
23⊗x1

1 −M12
13⊗x1

2 +M12
12⊗x1

3

where in general M I
J will denote the minor obtained from the submatrix with

indices I, J . The expression (10.2.4) corresponds to the Young tableaux pair:

1 1
2 ,

1
2
3 .

To see (10.2.4) is indeed a highest weight vector, first observe that it has
the correct weights in both E and F , and that in the F -indices {1, 2, 3} it
is skew and that in the first two E indices it is also skew. Finally to see it
is a highest weight vector note that any raising operator sends it to zero.
Also note that under the multiplication map S2V⊗V → S3V the element
maps to zero, because the map corresponds to converting a tensor Laplace
expansion to an actual one, but the determinant of a matrix with a repeated
row is zero.

In general, a basis of SπE⊗SµF is indexed by pairs of semi-standard
Young tableau in π and µ. In the linear strand, all partitions appearing are
hooks, a basis of Sa,1bE is given by two sequences of integers taken from
[n], one weakly increasing of length a and one strictly increasing of length
b, where the first integer in the first sequence is at least the first integer in
the second sequence.

A highest weight vector in S21rE⊗S1r+2F is

S
1|1,...,r+1
1,...,r+2 = M1,...,r+1

2,...,r+2⊗x
1
1 −M

1,...,r+1
1,3,...,r+1⊗x

1
2 + · · ·+ (−1)rM1,...,r+1

1,...,r+1⊗x
1
r+2,

and the same argument as above shows it has the desired properties. Other
basis vectors are obtained by applying lowering operators to the highest
weight vector, so their expressions will be more complicated.

Remark 10.2.3.1. If we chose a size r+2 submatrix, and perform a tensor
Laplace expansion of its determinant about two different rows, the differ-
ence of the two expressions corresponds to a linear syzygy, but these are in
the span of M2. These expressions are important for comparison with the
permanent, as they are the only linear syzygies for the ideal generated by
the size r + 1 sub-permanents, where one takes the permanental Laplace
expansion.

Continuing, F3 is generated by the module

M3,r+3 = S1r+3E⊗S3,1rF ⊕ S2,1r+1E⊗S2,1r+1F ⊕ S3,1rE⊗S1r+3F ⊂M2⊗V.
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These modules admit bases of double tensor Laplace type expansions of a
square submatrix of size r + 3. In the first case, the highest weight vector
is obtained from the submatrix whose rows are the first r + 3 rows of the
original matrix, and whose columns are the first r-columns with the first
column repeated three times. For the second module, the highest weight
vector is obtained from the submatrix whose rows and columns are the first
r + 2 such, with the first row/column repeated twice. A highest weight
vector for S3,1rE⊗S1r+3F is

S
11|1,...,r+1
1,...,r+3 =

∑
1≤β1<β2≤r+3

(−1)β1+β2M1,...,r+1

1,...,β̂1,...,β̂2,...,r+3
⊗(x1

β1
∧ x1

β2
)

=
r+3∑
β=1

(−1)β+1S
1|1,...,ir+1

1,...,β̂,...,r+3
⊗x1

β.

Here S
1|1,...,ir+1

1,...,β̂,...,r+3
is defined in the same way as the highest weight vector.

A highest weight vector for S2,1r+1E⊗S2,1r+1F is

S
1|1,...,r+3
1|1,...,r+2 =

r+3∑
α,β=1

(−1)α+βM1,...,α̂,...,r+2

1,...,β̂,...,i+2
⊗(xα1 ∧ x1

β)

=
r+3∑
β=1

(−1)β+1S1,...,r+2

1|1,...,β̂,...,r+2
⊗x1

β −
r+3∑
α=1

(−1)α+1S
1|1,...,α̂,...,r+3
1,...,r+2 ⊗xα1 .

Here S1,...,r+2

1|1,...,β̂,...,r+2
, S

1|1,...,α̂,...,r+3
1,...,r+2 are defined in the same way as the cor-

responding highest weight vectors.

Proposition 10.2.3.2. The highest weight vector of Sp+1,1r+qE⊗Sq+1,1r+pF ⊂
Mp+q+1,r+p+q+1 is

S
1p|1,...,r+q+1
1q |1,...,r+p+1 =∑
I⊂[r+q+1],|I|=q,
J⊂[r+p+1],|J|=p

(−1)|I|+|J |M
1,...,̂i1,...,̂iq ,...,(r+q+1)

1,...,ĵ1,...,ĵp,...,(r+p+1)
⊗(x1

j1 ∧ · · · ∧ x
1
jp ∧ x

i1
1 ∧ · · · ∧ x

iq
1 ).

A hatted index is one that is omitted from the summation.

Proof. It is clear the expression has the correct weight and is a highest
weight vector, and that it lies in Sr+1V⊗Λp+qV . We now show it maps to
zero under the differential.
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Under the map dT : Sr+1V⊗Λp+qV → SrV⊗Λp+q+1V , the element

S
1p|1,...,r+q+1
1q |1,...,r+p+1 maps to:∑

I⊂[r+q+1],|I|=q,
J⊂[r+p+1],|J|=p

(−1)|I|+|J |[
∑
α∈I

(−1)p+αM
1,...,̂i1,...,̂iq ,...,(r+q+1)

1,...,ĵ1,...,ĵp,...,(r+p+1)
xiα1 ⊗(x1

j1 ∧ · · · ∧ x
1
jp ∧ x

i1
1 ∧ · · · ∧ x̂

iα
1 ∧ · · · ∧ x

iq
1 )

+
∑
β∈J

(−1)βM
1,...,̂i1,...,̂iq ,...,(r+q+1)

1,...,ĵ1,...,ĵp,...,(r+p+1)
x1
jβ
⊗(x1

j1 ∧ · · · ∧ x̂
1
jβ
∧ · · · ∧ x1

jp ∧ x
i1
1 ∧ · · · ∧ x

iq
1 )]

Fix I and all indices in J but one, call the resulting index set J ′, and consider
the resulting term∑
β∈[r+p+1]\J ′

(−1)f(β,J ′)M
1,...,̂i1,...,̂iq ,...,(r+q+1)

1,...,ĵ′1,...,ĵ
′
p−1,...,(r+p+1)

x1
β⊗(x1

j′1
∧· · ·∧x1

j′p−1
∧xi11 ∧· · ·∧x

iq
1 )

where f(β, J ′) equals the number of j′ ∈ J less than β. This term is the
Laplace expansion of the determinant of a matrix of size r+ 1 which has its
first row appearing twice, and is thus zero. �

Notice that if q, p > 0, then S
1p|1,...,r+q+1
1q |1,...,r+p+1 is the sum of terms includ-

ing S
1p|1,...,r+q
1q−1|1,...,r+p+1

⊗xr+q+1
1 and S

1p−1|1,...,r+q+1
1q |1,...,r+p ⊗x1

r+p+1. This implies the

following corollary:

Corollary 10.2.3.3 (Roberts [?]). Each module Sa,1r+bE⊗Sb,1r+aF , where
a + b = j that appears with multiplicity one in Fj,j+r, appears with multi-
plicity two in Fj−1,j+r if a, b > 0, and multiplicity one if a or b is zero. The
map Fj,j+r+1 → Fj−1,j+r+1 restricted to Sa,1r+bE⊗Sb,1r+aF , maps non-zero
to both (Sa−1,1r+bE⊗Sb,1r+a−1F )·E⊗F and (Sa,1r+b−1E⊗Sb−1,1r+aF )·E⊗F .

Proof. The multiplicities and realizations come from applying the Pieri
rule. (Note that if a is zero the first module does not exist and if b is
zero the second module does not exist.) That the maps to each of these is
non-zero follows from the remark above. �

Remark 10.2.3.4. In [?] it is proven more generally that all the natural
realizations of the irreducible modules in Mj have non-zero maps onto every
natural realization of the module in Fj−1. Moreover, the constants in all
the maps are determined explicitly. The description of the maps is different
than the one presented here.

10.2.4. Proof of Theorem 10.2.1.1. This subsection is less elementary
and can be safely skipped. The variety σ̂r admits a desingularization by the
geometric method of [Wey03], namely consider the Grassmannian G(r, E∗)
and the vector bundle p : S⊗F → G(r, E∗) whose fiber over x ∈ G(r, E∗) is
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x⊗F . (Although we are breaking symmetry here, it will be restored in the
end.) The total space admits the interpretation as the incidence variety

{(x, φ) ∈ G(r, E∗)×Hom(F,E∗) | φ(F ) ⊆ x},

and the projection to Hom(F,E∗) = E∗⊗F ∗ has image σ̂r. One also has the
exact sequence

0→ S⊗F ∗ → E∗⊗F ∗ → Q⊗F ∗ → 0

where E∗⊗F ∗ denotes the trivial bundle with fiber E∗⊗F ∗ and Q = E∗/S is
the quotient bundle. As explained in [Wey03], letting q : S⊗F ∗ → E∗⊗F ∗
denote the projection, q is a desingularization of σ̂r, the higher direct images
Riq∗(OS⊗F ∗) are zero for i > 0, and so by [Wey03, Thm. 5.12,5.13] one
concludes Fi = Mi · Sym(E⊗F ) where

Mi = ⊕j≥0H
j(G(r, E∗),Λi+j(Q∗⊗F ))

= ⊕j≥0 ⊕|π|=i+j Hj(G(r, E∗), SπQ)⊗Sπ′F

One now uses the Bott-Borel-Weil theorem to compute these cohomology
groups. An algorithm for this is given in [Wey03, Rem. 4.1.5]: If π =
(p1, . . . , pq) (where we must have p1 ≤ n to have Sπ′F non-zero, and q ≤ n−r
as rankQ = n − r), then SπQ

∗ is the vector bundle corresponding to the
sequence

(10.2.5) (0r, p1, . . . , pn−r).

The dotted Weyl action by σi = (i, i+ 1) ∈ Sn is

σi · (α1, . . . , αn) = (α1, . . . , αi−1, αi+1 − 1, αi + 1, αi+2, . . . , αn)

and one applies simple reflections to try to transform α to a partition until
one either gets a partition after u simple reflections, in which case Hu is
equal to the module associated to the partition one ends up with and all
other cohomology groups are zero, or one ends up on a wall of the Weyl
chamber, i.e., at one step one has (β1, . . . , βn) with some βi+1 = βi + 1, in
which case there is no cohomology.

In our case, we need to move p1 over to the first position in order to
obtain a partition, which means we need p1 ≥ r + 1, and then if p2 < 2
we are done, otherwise we need to move it etc... The upshot is we can get
cohomology only if there is an s such that ps ≥ r + s and ps+1 < s + 1, in
which case we get

S(p1−r,...,ps−r,sr,ps+1,...,pn−r)E⊗Sπ′F

contributing to Hrs. Say we are in this situation, then write (p1 − r −
s, . . . , ps − r − s) = α, (ps+1, . . . , pn−r) = β′, so

(p1 − r, . . . , ps − r, sr, ps+1, . . . , pn−r) = (sr+s) + (α, 0r, β′)
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and moreover we may write

π′ = (sr+s) + (β, 0r, α′)

proving Theorem 10.2.1.1. The case s = 1 gives the linear strand of the
resolution.

10.3. On the minimal free resolution of the ideal generated
by sub-permanents

Let E,F = Cn, V = E⊗F , and let Ipermn,κ
κ ⊂ Sκ(E⊗F ) denote the span of

the sub-permanents of size κ and let Ipermκ ⊂ Sym(E⊗F ) denote the ideal

it generates. Note that dim Ipermκκ =
(
n
κ

)2
. Fix complete flags 0 ⊂ E1 ⊂

· · · ⊂ En = E and 0 ⊂ F1 ⊂ · · · ⊂ Fn = F . Write SEj for the copy of Sj

acting on Ej and similarly for F .

Write TE ⊂ SL(E) for the maximal torus (diagonal matrices). By
[MM62], the subgroup Gpermn

of GL(E⊗F ) preserving the permanent is
[(TE × SE) × (TF × SF )] n Z2, divided by the image of the n-th roots of
unity.

As an SEn ×SFn-module the space Ipermn,κ
κ decomposes as

(10.3.1)

Ind
SEn×SFn
S̃Eκ×S̃Fκ

[̃κ]Eκ⊗[̃κ]Fκ = ([n]E⊕[n−1, 1]E⊕· · ·⊕[n−κ, κ]E)⊗([n]F⊕[n−1, 1]F⊕· · ·⊕[n−κ, κ]F ).

10.3.1. The linear strand.

Example 10.3.1.1. The space of linear syzygiesM2,κ+1 := ker(Ipermn,κ
κ ⊗V →

Sκ+1V ) is the SEn ×SFn-module

M2,κ+1 = Ind
SEn×SFn
S̃Eκ+1

×S̃Fκ+1

( ˜[κ+ 1]Eκ+1
⊗[̃κ, 1]Fκ+1

⊕ [̃κ, 1]Eκ+1
⊗˜[κ+ 1]Fκ+1

).

This module has dimension 2κ
(
n
κ+1

)2
. A spanning set for it may be obtained

geometrically as follows: for each size κ+ 1 sub-matrix, perform the perma-
nental “tensor Laplace expansion” along a row or column, then perform a
second tensor Laplace expansion about a row or column and take the differ-
ence. An independent set of such for a given size κ+ 1 sub-matrix may be
obtained from the expansions along the first row minus the expansion along
the j-th for j = 2, . . . , κ + 1, and then from the expansion along the first
column minus the expansion along the j-th, for j = 2, . . . , κ+ 1.

Remark 10.3.1.2. Compare this with the space of linear syzygies for the

determinant, which has dimension 2κ(n+1)
n−κ

(
n
κ+1

)2
. The ratio of their sizes is

n+1
n−κ , so, e.g., when κ ∼ n

2 , the determinant has about twice as many linear
syzygies, and if κ is close to n, one gets nearly n times as many.
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Theorem 10.3.1.3. dimMj+1,κ+j =
(
n
κ+j

)2(2(κ+j−1)
j

)
. As an Sn × Sn-

module,
(10.3.2)

Mj+1,κ+j = Ind
SEn×SFn
S̃Eκ+j

×S̃Fκ+j

(
⊕
a+b=j

˜[κ+ b, 1a]Eκ+j
⊗ ˜[κ+ a, 1b]Fκ+j

).

The
(
n
κ+j

)2
is just the choice of a size κ + j submatrix, the

(
2(κ+j−1)

j

)
comes from choosing a set of j elements from the set of rows union columns.

Näıvely there are
(

2(κ+j)
j

)
choices but there is redundancy as with the choices

in the description of M2.

Proof. The proof proceeds in two steps. We first get “for free” the minimal
free resolution of the ideal generated by SκE⊗SκF . Write the generating
modules of this resolution as M̃j . We then locate the generators of the
linear strand of the minimal free resolution of our ideal, whose generators
we denote Mj+1,κ+j , inside M̃j+1,κ+j and prove the assertion.

To obtain M̃j+1, we use the involution ω on the space of symmetric
functions (see, e.g. [Mac95, §I.2]) that takes the Schur function sπ to sπ′ .
This involution extends to an endofunctor of GL(V )-modules and hence of
GL(E) × GL(F )-modules, taking SλE⊗SµF to Sλ′E⊗Sµ′F (see [AW07,
§2.4]). This is only true as long as the dimensions of the vector spaces are
sufficiently large, so to properly define it one passes to countably infinite
dimensional vector spaces.

Applying this functor to the resolution (10.2.1), one obtains the resolu-
tion of the ideal generated by SκE⊗SκF ⊂ Sκ(E⊗F ). The GL(E)×GL(F )-
modules generating the linear component of the j-th term in this resolution
are:

M̃j,j+κ−1 =
⊕

a+b=j−1

S(a,1κ+b)′E⊗S(b,1κ+a)′F(10.3.3)

=
⊕

a+b=j−1

S(κ+b+1,1a−1)E⊗S(κ+a+1,1b−1)F.

Moreover, by Corollary 10.2.3.3 and functoriality, the map from S(κ+b+1,1a−1)E⊗S(κ+a+1,1b−1)F

into M̃j−1,j+κ−1 is non-zero to the copies of S(κ+b+1,1a−1)E⊗S(κ+a+1,1b−1)F
in

(Sκ+b,1a−1E⊗Sκ+a+1,1b−2F )·(E⊗F ) and (Sκ+b+1,1a−2E⊗Sκ+a,1b−1F )·(E⊗F ),

when a, b > 0.

Inside SκE⊗SκF is the ideal generated by the sub-permanents (10.3.1)
which consists of the weight spaces (p1, . . . , pn)×(q1, . . . , qn), where all pi, qj
are either zero or one. (Each sub-permanent has such a weight, and, given
such a weight, there is a unique sub-permanent to which it corresponds.)
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Call such a weight space regular. Note that the set of regular vectors in any
E⊗m⊗F⊗m (where m ≤ n to have any) spans a SE ×SF -submodule.

The linear strand of the j-the term in the minimal free resolution of the
ideal generated by (10.3.1) is thus a SE ×SF -submodule of M̃j,j+κ−1. We
claim this sub-module is the span of the regular vectors. In other words:

Lemma 10.3.1.4. Mj+1,κ+j = (M̃j+1,κ+j)reg.

Assuming Lemma 10.3.1.4, Theorem 10.3.1.3 follows because if π is a
partition of κ+ j then the weight (1, . . . , 1) subspace of SπEκ+j , considered
as an SEκ+j -module, is [π] (see, e.g., [Gay76]), and the space of regular

vectors in SπE⊗SµF is IndSE×SF
S̃Eκ+j

×S̃Fκ+j

[̃π]E⊗[̃µ]F . �

Before proving Lemma 10.3.1.4 we establish conventions for the inclu-
sions Sq+1,1pE ⊂ Sq+1,1p−1E⊗E and Sq+1,1pE ⊂ Sq,1pE⊗E.

Let Θ(p, q) : Sq+1,1pE → Sq+1,1p−1E⊗E be the GL(E)-module map
defined such that the following diagram commutes:

SqE⊗Λp+1E → Sq+1,1pE
↓ ↓ Θ(p, q)

SqE⊗E⊗ΛpE → Sq+1,1p−1E⊗E
,

where the left vertical map is the identity tensored with the polarization
Λp+1E → ΛpE⊗E.

We define two GL(E)-module maps SqE⊗Λp+1E → Sq−1E⊗E⊗Λp+1E:
σ1, which is the identity on the second component and polarization on the
first, i.e. SqE → Sq−1E⊗E, and σ2, which is defined to be the composition
of

SqE⊗Λp+1E → (Sq−1E⊗E)⊗(ΛpE⊗E)→ (Sq−1E⊗E)⊗(ΛpE⊗E)→ Sq−1E⊗E⊗Λp+1E

where the first map is two polarizations, the second map swaps the two copies
of E and the last is the identity times skew-symmetrization. Let Σ(p, q) :
Sq+1,1pE → Sq+1,1p−1E⊗E denote the unique (up to scale) GL(E)-module
inclusion (unique because Sq+1,1pE has multiplicity one in Sq+1,1p−1E⊗E).
A short calculation shows that the following diagram is commutative:

SqE⊗Λp+1E → Sq+1,1pE
σ2 − pσ1 ↓ ↓ Σ(p, q)

Sq−1E⊗E⊗Λp+1E → Sq,1pE⊗E.

Proof of Lemma 10.3.1.4. We work by induction, the case j = 1 was
discussed above. Assume the result has been proven up to Mj,κ+j−1 and
consider Mj+1,κ+j . It must be contained in Mj,κ+j−1⊗(E⊗F ), so all its
weights are either regular, or such that one of the pi’s is 2, and/or one of the
qi’s is 2, and all other pu, qu are zero or 1. Call such a weight sub-regular. It
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remains to show that no linear syzygy with a sub-regular weight can appear.
To do this we show that no sub-regular weight vector in (Mj,κ+j)subreg maps
to zero in (Mj−1,κ+j−1)reg · (E⊗F ).

First consider the case where both the E and F weights are sub-regular,
then (because the space is a SE×SF -module), the weight (2, 1, . . . , 1, 0, . . . , 0)×
(2, 1, . . . , 1, 0, . . . , 0) must appear in the syzygy. But the only way for this
to appear is to have a term of the form T · x1

1, which cannot map to zero
because, since x1

1 is a non-zero-divisor in Sym(V ), our syzygy is a syzygy of
degree zero multiplied by x1

1. But by minimality no such syzygy exists.

Finally consider the case where there is a vector of weight (2, 1j+κ−2)×
(1j+κ) appearing. Consider the set of vectors of this weight as a module for
Sj+κ−2 ×Sj+κ. This module is

(10.3.4)
⊕
a+b=j

[κ+ a, 1b]/[2]⊗[κ+ b, 1a].

Here

[κ+ a, 1b]/[2] = [κ+ a− 2, 1b]⊕ [κ+ a− 1, 1b−1]

is called a skew Specht module.

By Howe-Young duality and Corollary 10.2.3.3 if a, b > 0, Sκ+a,1bE⊗Sκ+b,1aF ⊂
Ma+b+1,κ+a+b maps non-zero to the two distinguished copies of the same
module inMa+b,κ+a+b. This in turn implies that the two distinguished copies
of Sκ+a,1bE⊗Sκ+b,1aF ⊂Ma+b,κ+a+b, each map non-zero to Ma+b−1,κ+a+b.

The module (10.3.4) will take image inside⊕
c+d=j−1

Ind
Sj+κ−1×Sj+κ+1

(Sj+κ−2×S1)×(Sj+κ×S1)([κ+ c, 1d]/[2]⊗[1])⊗([κ+ d, 1c]⊗[1]).

Fix a term [κ + b, 1a] on the right hand side and examine the map on the
left hand side. It is a map

[κ+a, 1b]/[2]→ Ind
Sj+κ−1

Sj+κ−2×S1
([κ+a, 1b−1]/[2]⊗[1])⊕IndSj+κ−1

Sj+κ−2×S1
([κ+a−1, 1b]/[2]⊗[1]).

If b > 0, the map to the first summand is the restriction of the map Θ(b, κ+
a) : Sκ+a+1,1bE → Sκ+a+1,1b−1E⊗E, and, due to the fact that it has to map
to a sub-regular weight, there is no polarization because the basis vector e1

has to stay on the left hand side. So the map is the identity, thus injective.

It remains to show that for b = 0, the map corresponding to the sum-
mand b = 0, a = j which is the restriction of the injective map Σ(0, κ+j−2) :
Sκ+j−1E → Sκ+j−2E⊗E tensored with the map Θ(j − 1, κ) injects into the
cokernel of the summand corresponding to c = 0, d = j − 1 modulo the
image of the map coming from the summand a = 1, b = j − 1. Both mod-
ules consist of just two irreducible SEj+κ−1 × SFj+κ−1-modules and, using
formulas for Σ and Θ, the map is injective. This concludes the proof. �
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Example 10.3.1.5. For small n and κ, computer computations show no
additional first syzygies on the κ × κ sub-permanents of a generic n × n
matrix (besides the linear syzygies) in degree less than the Koszul degree
2κ. For example, for κ = 3 and n = 5, there are 100 cubic generators for the
ideal and 5200 minimal first syzygies of degree six. There can be at most(

100
2

)
= 4950 Koszul syzygies, so there must be additional non-Koszul first

syzygies.

10.4. Young-flattenings and the cactus variety

10.5. The Hilbert scheme of points

10.6. Lower rank bounds

To go from border rank lower bounds to rank lower bounds, we examine not
just the rank of flattenings, but the nature of the kernel.

For f ∈ SdV , define the apolar ideal of f , fann ⊂ Sym(V ∗), the set of
P ∈ Sym(V ∗) such that P (f) = 0. In other words, fann = ⊕dj=1 ker fj,d−j⊕∞k=d+1

SkV ∗.

The following lemma is critical:

Lemma 10.6.0.1 (Apolarity Lemma). f ∈ span{`d1, . . . , `dr} ⊂ SdV if and
only if fann ⊇ I([`d1] t · · · t [`dr ]).

Note that fann ⊇ I([`d1] t · · · t [`dr ]) says that for all j, ker fj,d−j ⊇
Sj(`1

⊥ ∩ · · · ∩ `r⊥).

Exercise 10.6.0.2: Prove the apolarity lemma.

For ideals I, J ⊂ Sym(V ∗), introduce the ideal I : J := {P ∈ Sym(V ∗) |
PJ ⊆ I}.
Exercise 10.6.0.3: Prove that if X = Zeros(I) and Y = Zeros(J) are
reduced, then I : J is the ideal of polynomials vanishing on the set X\(X ∩
Y ).

Theorem 10.6.0.4. [CCC+15a] For f ∈ SdV , and L ∈ V ∗\{0},

RS(f) ≥
∑
s

Hilbs

(
Sym(V ∗)

(fann : (L)) + (L)

)
.

Remark 10.6.0.5. In [CCC+15a] they prove a more general statement
allowing arbitrary ideals generated in a single degree instead of just the
linear form L.
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Proof. For J ⊂ Sym(V ∗) a homogeneous ideal and L ∈ V ∗ that is not a
zero divisor in Sym(V ∗)/J , we have an exact sequence

0→ Sym(V ∗)/J → Sym(V ∗)/J → Sym(V ∗)/[J + (L)]→ 0

where the first map is multiplication by L. In degree i we have

0→ Si−1V ∗/Ji−1 → SiV ∗/Ji → SiV ∗/[J + (L)]i → 0.

Thus for all s,

dim(SsV ∗/Js) =
s∑
i=0

dim(SiV ∗/[J + (L)]i).

If Zeros(J) is zero-dimensional and reduced, and s >> 0, then the
Hilbert function of Sym(V ∗)/J will equal the number of points in Zeros(J).

In our setting RS(f) = r, f = `d1 + · · · + `dr , X = {[`1], . . . , [`r]} ⊂ PV .
For any L, choose J = I(X) : L, so that by Exercise 10.6.0.3 J is the ideal
of points on X not on the hyperplane determined by L.

Claim: L is not a zero divisor in Sym(V ∗)/J . To see this, say t 6∈ J and
t · L ∈ J . Then t · L2 ∈ I(X), but I(X) is reduced so t · L ∈ I(X) which
means t ∈ J .

Putting it all together, assuming X gives a minimal decomposition of f ,

RS(f) = #X

≥ #Zeros(J) =

s∑
i=0

Hilb(Sym(V ∗)/[I(X) : L+ (L)], i)

≥
s∑
i=0

Hilbi

(
Sym(V ∗)

(fann : (L)) + (L)

)
.

where the last assertion is by the apolarity lemma. �

Returning to the study of elementary symmetric polynomials, take L =
∂
∂xn

. Let V ′ = L⊥ ⊂ V . Then

(eannd,n : L) + (L) = (
∂

∂xn
ed,n)ann + (

∂

∂xn
)

= eann,V
′

d,n−1 + (
∂

∂xn
)(10.6.1)

where eann,V
′

d,n−1 (resp. eann,Vd,n−1 ) is ed,n−1 considered as an element of SdV ′ (resp.

SdV ). On the other hand, ∂
∂xn
∈ eann,Vd,n−1 , so (10.6.1) equals eann,Vd−1,n−1.

Since (SjV ∗/(eannd−1,n−1)j) may be identified with the space square free
monomials in degree j, we conclude:
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Theorem 10.6.0.6. [Lee16] For d odd,

RS(ed,n) =

b d
2
c∑

j=0

(
n

j

)
.

In the case of even degree, one has a similar expression to Theorem

7.1.2.3 for ed,n with 2
d
2 summands. The lower bound was independent of

parity, so we get

Theorem 10.6.0.7. [Lee16] For d even,

b d
2
c∑

j=0

(
n

j

)
−
(
n− 1
d
2

)
≤ RS(ed,n) ≤

b d
2
c∑

j=0

(
n

j

)
.





Hints and Answers to
Selected Exercises

Chapter 1.

1.1.15.1 In general, the trilinear map associated to a bilinear form is (u, v, γ) 7→
γ(T (u, v)). Let z∗uv denote the linear form that eats a matrix and returns

its (u, v)-th entry. Since (XY )ik =
∑

j x
i
jy
j
k, the associated trilinear map is

(X,Y, z∗uv ) 7→
∑

j x
u
j y

j
v. On the other hand, trace(XY Z) =

∑
i,j,k x

i
jy
j
kz
k
i .

Now observe that both these agree, e.g., on basis vectors.

Chapter 2.

2.1.1.1 v ∈ V goes to the map β 7→ β(v).

2.1.1.4 For the second assertion, a generic matrix will have nonzero de-
terminant. In general, the complement to the zero set of any polynomial
over the complex numbers has full measure. For the last assertion, first say
rank(f) = r′ ≤ r and let v1, . . . , vv be a basis of V such that the kernel is
spanned by the last v − r′ vectors. Then the matrix representing f will be
nonzero only in the upper r′ × r′ block and thus all minors of size greater
than r′ will be zero. Next say rank(f) = s > r. Taking basis in the same
manner, we see the upper right size s submatrix will have a nonzero deter-
minant. Taking a Laplace expansion, we see at least one size r+ 1 minor of
it is nonzero. In any other choice of basis minors expressed in the new basis
are linear combinations of minors expressed in the old, so we conclude. If
you need help with the third assertion, use Proposition 3.1.6.1.

2.1.1.7 trace(f).

2.1.2.1 A multi-linear map is determined by its action on bases ofA∗1, . . . , A
∗
n.

291
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2.1.2.4 See [Lan12, §2.4.4]

2.1.5.4 See §3.1.6.

2.1.6.1 For example, take a1⊗b1⊗c2+a1⊗b2⊗c1+a2⊗b1⊗c1+
∑r

j=3 aj⊗bj⊗cj .
2.1.6.2 If T =

∑r
i=1 ai⊗bi⊗ci, then, letting πA : A→ A/(A′)⊥ be the projec-

tion, and similarly for B,C, then TA′⊗B′⊗C′ =
∑r

i=1 πA(ai)⊗πB(bi)⊗π(ci).

2.1.7.2 First assume R(T ) = R(T ) and write T = a1⊗b1⊗c1 + · · · +
ar⊗br⊗cr. Then T (A∗) = span{b1⊗c1, . . . , br⊗cr} so R(T ) ≥ rankTA. Now
use that ranks of linear maps are determined by polynomials (the minors of
the entries) to conclude.

2.2.1.2 Say T =
∑b

j=1 aj⊗bj⊗cj and this is an optimal expression. Since

TA is injective, the aj must be a basis. Let αj be the dual basis, so T (αj) =
bj⊗cj has rank one. These span. In the other direction, say the image is
span{b1⊗c1, . . . , bb⊗cb}. then for each j there must be some αj ∈ A∗ with
T (αj) = bj⊗cj . Since TA is injective, these form a basis of A, so we must

have T =
∑b

j=1 aj⊗bj⊗cj with aj the dual basis vectors.

2.2.2.2 Use Exercise 2.1.7.4, taking three matrices in A∗, e.g. Id, a matrix
with all 1’s just below the diagonal and zero elsewhere and a matrix with
1’s just above the diagonal and zeros elsewhere.

2.6.1.2 It is sufficient to consider the case q = p− 1. Say X ∈ ker(T∧p−1
A ).

Then a ∧X ∈ (T∧pA ) so a ∧X = 0 for all a ∈ A. But this is not possible.

2.6.2.1 Recall that for any vector space V , an element v ∈ V is uniquely
specified from knowning how a basis of V ∗ acts on it. As a bilinear map,
the output is XY ∈ W ∗⊗U , where in bases, (XY )ij =

∑
kX

i
kY

k
i . Let ζst ∈

W⊗U∗ be the element that eats an element of W ∗⊗U in bases and outputs
its (s, t)-entry. The ζst form a basis of W⊗U∗. Let Zst ∈ (W⊗U∗)∗ = W ∗⊗U
denote the dual basis element. Then ζst (XY ) = trace(XY Zst ).

2.6.2.2M〈U,V,W 〉 ∈ (U∗⊗V )⊗(V ∗⊗W )⊗(W ∗⊗U) ' (U∗⊗U)⊗(V ∗⊗V )⊗(W ∗⊗W ).
Now re-arrange IdU ⊗ IdV ⊗ IdW in bases.

2.6.2.4 Use Exercise ??.2.6.2.3.

2.6.3.3 Extend the aj to a basis of A and consider the induced basis of
Λq+1A. Write out Xj ∧ aj with respect to the induced basis and compare
coefficients.

2.6.3.1 Use the variant of the Cartan lemma below the exercise to show it
is the whole kernel.

2.6.3.8 Apply the proof of Theorem 2.6.3.6 to M〈p,p,2〉.
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2.7.2.2 First assume T = eI = ei1 ∧ · · · ∧ eik and take µ = eL and ζ = eJ .
Then

µ T =

{
eI\L if L ⊂ I

0 if L 6⊂ I

ζ T =

{
eJ\I if I ⊂ J

0 if I 6⊂ J

and 〈eJ\I , eI\L〉 = 0, in fact they have no indices in common. By linearity

we get zero for any linear combination of such eJ , eL’s so we see that G(k, V )
is in the zero set of the equations. (Any element of G(k, V ) is equivalent to
[eI ] after a change of basis and our equations are independent of the choice
of basis.)

Now for simplicity assume T = eI1 + eI2 where I1, I2 have at least one index
different. Take ζ = eI1∪F where F ⊂ I2, F 6⊂ I1 and I2 6⊂ I1 ∪ F . Then
ζ T = eF . Take µ = eI2\F so µ T = eF . We conclude.

The general case is similar, just with more bookkeeping.

Chapter 3.

3.1.4.3 The ideal is generated by p2
3 − p2p4, p

2
2 − p0p4. Note that we simply

are throwing away the polynomials with p1. The point p3, corresponding
to the polynomial x3y is on a tangent line to v4(P1), while the point p22,
corresponding to the polynomial x2y2 is not.

3.1.4.5 The ideal is generated by p2
2 − p1p3, p1p2 − p0p3, p

2
1 − p0p2.

3.2.1.4 Recall from Exercise 2.6.2.4 that ⊗jM〈lj ,mj ,nj〉 = M〈Πj lj ,Πkmk,Πlnl〉.
Set N = nml and consider M〈N〉 = M〈m,n,l〉⊗M〈n,l,m〉⊗M〈l,m,n〉.

3.1.4.6 Say f(X) = Z1 ∪ Z2 and note that X = f−1(Z1) ∪ f−1(Z2).

3.2.2.1 Consider ♥ ♥
♥ ♠
♠ ♠


3.3.1.3 Since the border rank of points in GL(A)×GL(B)×GL(C) · T

equals the border rank of T , the border rank of points in the closure cannot
increase.

3.4.9.2 Instead of the curve a0 + ta1 use a0 + ta1 + t2aq+1 and similarly for
b, c.

3.4.6.3 Use Proposition 3.2.1.8.

3.5.3.3 When writing T = limt→0 T (t) we may take t ∈ Zh+1.

3.5.3.4 If we are multiplying polynomials of degrees d1 and d2, then their
product has degree d1d2, so the answer is the same as if we were working
over Zd1d2 .
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Chapter 4.

4.3.2.2 If one uses the images of the standard basis vectors, one gets:

M〈2〉 =

(
0 −1
1 −1

)⊗3

+

(
1 0
0 0

)⊗3

+

(
0 1
0 1

)⊗3

+

(
0 0
−1 1

)⊗3

+〈
(

0 1
0 0

)
⊗
(

0 0
1 0

)
⊗
(

1 −1
1 −1

)
〉Z3 .

?? Note that while for V ⊗3, the kernels of S2V⊗V → S3V and Λ2V⊗V →
Λ3V were isomorphic GL(V )-modules, the kernels of S3V⊗V → S4V and
Λ3V⊗V → Λ4V are not. One can avoid dealing with spaces like S21V⊗V
by using maps like, e.g. the kernel of S2V⊗S2V → S4V and keeping track
of dimensions of spaces uncovered. The answer is given by Theorem 8.7.1.2.

?? If a0 = b0 = c0 = Id then (u1
⊥⊗v3)⊗(v2

⊥⊗w1)⊗(w3
⊥⊗u2) is

mapped to (uT2⊗(w3
⊥)T )⊗(wT1

⊥⊗(v2
⊥)T )⊗(vT3 ⊗(u1

⊥)T ). The general case
is just notationally more cumbersome.

?? See [CHI+]. The calculation is a little more involved than indicated
in the section.

Chapter 5.

5.1.4.4 First note that if x is generic, it is diagonalizable with dis-
tinct eigenvalues so if x is generic, then dimC(x) = b. Then observe that
dim(C(x)) is semi-continuous as the set {y | dimC(y) ≤ p} is an algebraic
variety. Alternatetively, and more painfully, compute the centralizer of ele-
ments in Jordan canonical form.

5.2.1.1 If R(T ) = m, then T is a limit of points Tε with PTε(A∗) ∩
Seg(PB × PC) 6= ∅.

5.3.1.4 For the lower bound use Koszul flattenings, for the upper, write
T as the sum of the first AFT tensor and the remainder and bound the
border rank of each.

5.3.1.8 For the lower bound, use the substitution method. For the up-
per, consider the rank decomposition of the structure tensor of C[Z2m−1],
which, using the DFT, has rank and border rank m. Show that this ten-
sor degenerates to the tensor corresponding to the centralizer of a regular
nilpotent element.

5.4.3.3 Without loss of generality assume 2 ≤ i ≤ j. For j = 2, 3
the inequality is straightforward to check, so assume j ≥ 4. Prove the
inequality 5.4.2 by induction on n. For n = ij the inequality follows from
the combinatorial interpretation of binomial coefficients and the fact that
the middle one is the largest.
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We have
(
n+1−1+ij−1

ij−1

)
=
(
n−1+ij−1

ij−1

)n−1+ij
n ,

(
n+1−j+i−1

i−1

)
=
(
n−j+i−1

i−1

) n−j+i
n−j+1

and
(
n+1−i+j−1

j−1

)
=
(
n−i+j−1
j−1

)n−i+j
n−i+1 . By induction it is enough to prove that:

(10.6.2)
n− 1 + ij

n
≥ n− j + i

n− j + 1

n− i+ j

n− i+ 1
.

This is equivalent to:

ij − 1 ≥ n(i− 1)

n− j + 1
+

n(j − 1)

n− i+ 1
+

n(i− 1)(j − 1)

(n− j + 1)(n− i+ 1)
.

As the left hand side is independent from n and each fraction on the right
hand side decreases with growing n, we may set n = ij in inequality 10.6.2.
Thus it is enough to prove:

2− 1

ij
≥ (1 +

i− 1

ij − j + 1
)(1 +

j − 1

ij − i+ 1
).

Then the inequality is straightforward to check for i = 2, so assume i ≥ 3.

5.4.3.2
(
n+j−2
j−1

)
= dimSj−1Cn−1 so the sum may be thought of as

computing the dimension of Sm−1Cn where each summand represents basis
vectors (monomials) where e.g., x1 appears to the power m− j.

5.6.2.1 Show that if n ∈ Rad(A) is not nilpotent, then there is some
prime ideal of A not containing n.

5.6.1.4 A has basis xJ := xj11 · · ·x
jn
n with 0 ≤ js < as. Let ej be the dual

basis. Then TA =
∑

is+js<as
eI⊗eJ⊗xI+J . Write x∗K = xa1−k1−1

1 · · ·xan−kn−1
n .

Then TA =
∑

is+js+ks<as
eI⊗eJ⊗eK .

Chapter 6.

6.1.4.2 Use that 1
1−λt =

∑
j λ

jtj .

6.2.3.1 N∗Mσ
0
r = kerM⊗(ImageM)⊥ = kerM⊗ kerMT ⊂ U⊗V ∗. The

second equality holds because for a linear map f : V → W , Image(f)⊥ =
ker(fT ).

?? Recall that for a linear map f : V →W , that ker f = (Image fT )⊥.

6.2.2.3 Consider limε→0
1
ε ((x+ εy)n − xn).

6.4.2.3 Parametrize C by a parameter s and τ(C) by s and a parameter
for the line.

6.2.2.6 Respectively, taking k = bn2 c one gets the ranks are
(
n
bn

2
c
)
,
(
n
bn

2
c
)2

,

and
(
n
bn

2
c
)2

.

6.3.2.3 The space of matrices with last two columns equal to zero is
contained in Z(permm)sing.

6.3.3.5 Let Q̂ ∈ S2V be the corresponding quadratic form (defined up
to scale). Take a basis e1, . . . , ev of V such that e1, . . . , ek correspond to a
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linear space on Q, so Q(es, et) = 0 for 0 ≤ s, t ≤ k. But Q being smooth

says Q̂ is non-degenerate, so for each es, there must be some ef(s) with
Q(es, ef(s)) 6= 0.

6.6.1.3 In this case the determinant is a smooth quadric.

6.6.2.1 {perm2 = 0} is a smooth quadric.

6.4.6.1 First note that permm evaluated on a matrix whose entries are
all one is m!. Then perform a permanental Laplace expansion about the
first row.

6.5.2.2 Note that ∂R
∂xi

=
∑

j
∂2R
∂xi∂xj

and now consider the last nonzero

column.

Chapter 7.

7.1.2.6 Consider (where blank entries are zero)

det



0 x1 x2 x3

x1 `
x1 `

x2 `
x2 `

x3 `
x3 `


= `7−3(x3

1 + x2
3 + x3

3).

7.4.1.4 Take xm = xm+1 = · · · = xN = 0.

Chapter 8.

8.1.2.2 Say we have a highest weight vector z ∈ V ⊗d weight (j1, . . . , jv)
with ji < ji+1. Consider the matrix g that is the identity plus a vector with
one non-zero entry in the (i, i + 1) slot. Then gz is a non-zero vector of
weight (j1, . . . , ji−1, ji+1, ji+1 − 1, . . . , jv).

8.2.1.1 By linearity, for any P1, P2, the rank of the linear map U∗ →W
associated to P1 +P2 is at most the sum of the ranks of the maps associated
to P1 and P2.

8.1.5.2 g · e1 ∧ · · · ∧ ev = det(g)e1 ∧ · · · ∧ ev
8.1.4.1 The weight of the one-dimensional representation det−1 is (−1, . . . ,−1).

8.1.4.2 Consider the linear form v 7→ detv(v1, . . . , vv−1, v).

8.4.1.2 A highest weight vector of any copy of SπV
∗ is constructed skew-

symmetrizing over `(π) vectors. For the other direction, the zero set of any
P ∈ Sδ(SdCk) is a proper subvariety of SdCk.

8.6.8.2 We need HomSd([π]∗, [µ]) 6= 0. But [π]∗ ' [π]. By Schur’s
lemma HomSd([π], [µ]) 6= 0 if and only if [π] = [µ].
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8.5.2.5 Under the action of a basis vector in gl(E⊗F ), since it is by
Leibnitz rule, at most one variable in each monomial can be changed. So
whatever highest weight vectors appear in the tangent space, their weight
can differ by at most one in each of E,F from ((1, . . . , n), (1, . . . , n)). But
there is only one partition pair with this property that occurs in Sn(E⊗F ),
namely (12, 2, . . . , n− 1), (12, 2, . . . , n− 1)).

8.7.1.3

Sd(E⊗F ) = [(E⊗F )⊗d]Sd

= (E⊗d⊗F⊗d)Sd

= [(⊕|π|=dSπE⊗[π]))⊗(⊕|µ|=dSµF⊗[µ]))]Sd

= ⊕|µ|,|π|=dSπE⊗SµF⊗([π]⊗[µ])Sd

Now use Exercise 8.6.8.2.

8.6.1.1 Prove an algebra version of Schur’s lemma.

8.6.4.8.6.4.2 If V is an irreducible G-module, then V ∗⊗V is an irre-
ducible G×G-module.)

8.7.2.2 cπ′ =
∑

σ∈Sdef
π′

δσ
∑

σ∈Sdefπ
sgn(σ)δσ. Now show c(1d)cπ = cπ′ .

?? Apply an appropriate lowering operator (i.e., a lower triangular
matrix) to the highest weight vector to bring the weight down to zero. The
result is a (possibly zero) vector of weight zero. To show that some lowering
operator applied to it is non-zero, note that if one reverses indices on a
highest weight vector (sending ej to ev−j) one gets a vector of weight less
than zero in the module. But the module is generated by applying lowering
operators to a highest weight vector.

?? Use the double commutant theorem.

8.7.2.4 The eigenvalues are e
±2πi

3 .

Chapter 9.

9.1.7.2 Chd(C2) = PSdC2.

9.1.4.6 Highest weight vectors here correspond to partitions with at
most d parts.
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Algèbre non commutative, groupes quantiques et invariants (Reims, 1995),
Sémin. Congr., vol. 2, Soc. Math. France, Paris, 1997, pp. 157–183.
MR 1601139 (99e:20054)
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[BS71] Jacek Bochnak and Józef Siciak, Polynomials and multilinear mappings in
topological vector spaces, Studia Math. 39 (1971), 59–76. MR 0313810

[Bsh98] Nader H. Bshouty, On the direct sum conjecture in the straight line model,
J. Complexity 14 (1998), no. 1, 49–62. MR 1617757 (99c:13056)

[BT15] Grigoriy Blekherman and Zach Teitler, On maximum, typical and generic
ranks, Math. Ann. 362 (2015), no. 3-4, 1021–1031. MR 3368091

[Bur14] Vladimir P. Burichenko, On symmetries of the strassen algorithm, CoRR
abs/1408.6273 (2014).

[Bur15] , Symmetries of matrix multiplication algorithms. I, CoRR
abs/1508.01110 (2015).



302 Bibliography

[Cai90] Jin-Yi Cai, A note on the determinant and permanent problem, Inform. and
Comput. 84 (1990), no. 1, 119–127. MR MR1032157 (91d:68028)

[CCC+15a] E. Carlini, M. V. Catalisano, L. Chiantini, A. V. Geramita, and Y. Woo,
Symmetric tensors: rank, Strassen’s conjecture and e-computability, ArXiv
e-prints (2015).

[CCC15b] Enrico Carlini, Maria Virginia Catalisano, and Luca Chiantini, Progress
on the symmetric Strassen conjecture, J. Pure Appl. Algebra 219 (2015),
no. 8, 3149–3157. MR 3320211

[CHI+] Luca Chiantini, Jon Hauenstein, Christian Ikenmeyer, J.M. Landsberg, and
Giorgio Ottaviani, Towards algorithms for matrix multiplication, in prepa-
ration.

[CIM15] M.-W. Cheung, C. Ikenmeyer, and S. Mkrtchyan, Symmetrizing Tableaux
and the 5th case of the Foulkes Conjecture, ArXiv e-prints (2015).

[CKSU05] H. Cohn, R. Kleinberg, B. Szegedy, and C. Umans, Group-theoretic algo-
rithms for matrix multiplication, Proceedings of the 46th annual Sympo-
sium on Foundations of Computer Science (2005), 379–388.

[CKW10] Xi Chen, Neeraj Kayal, and Avi Wigderson, Partial derivatives in arith-
metic complexity and beyond, Found. Trends Theor. Comput. Sci. 6 (2010),
no. 1-2, front matter, 1–138 (2011). MR 2901512

[Com02] P. Comon, Tensor decompositions, state of the art and applications, Math-
ematics in Signal Processing V (J. G. McWhirter and I. K. Proudler, eds.),
Clarendon Press, Oxford, UK, 2002, arXiv:0905.0454v1, pp. 1–24.

[Csa76] L. Csanky, Fast parallel matrix inversion algorithms, SIAM J. Comput. 5
(1976), no. 4, 618–623. MR 0455310 (56 #13549)

[CU03] H Cohn and C. Umans, A group theoretic approach to fast matrix multi-
plication, Proceedings of the 44th annual Symposium on Foundations of
Computer Science (2003), no. 2, 438–449.

[CU13] , Fast matrix multiplication using coherent configurations, Proceed-
ings of the Twenty-Fourth Annual ACM-SIAM Symposium on Discrete
Algorithms (2013), no. 2, 1074–1087.

[CW82] D. Coppersmith and S. Winograd, On the asymptotic complexity of matrix
multiplication, SIAM J. Comput. 11 (1982), no. 3, 472–492. MR 664715
(83j:68047b)

[CW90] Don Coppersmith and Shmuel Winograd, Matrix multiplication via arith-
metic progressions, J. Symbolic Comput. 9 (1990), no. 3, 251–280.
MR 91i:68058

[CW16] NICHOLAS J. CAVENAGH and IAN M. WANLESS, There are asymp-
totically the same number of latin squares of each parity, Bulletin of the
Australian Mathematical Society FirstView (2016), 1–8.

[dG78] Hans F. de Groote, On varieties of optimal algorithms for the computation
of bilinear mappings. I. The isotropy group of a bilinear mapping, Theoret.
Comput. Sci. 7 (1978), no. 1, 1–24. MR 0506377 (58 #22132)
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DFT, 69

dimension of variety, 47

Discrete Fourier Transform, 69

discriminant hypersurface, 151

dual variety, 161

reflexivity theorem, 161

dual vector space, 18

easy Coppersmith-Winograd tensor, 64

elementary symmetric function, 142

equivariant map, 28

Euclidean closed, 22

exponent of matrix multiplication, 4

exterior algebra, 28

fanin

unbounded, 174

Fekete’s lemma, 61

flattenings, 145

formula, 144

quasi-polynomial, 144

gate, 140

GCT, 14

GCT useful, 210

general point, 18

generating function

for elementary symmetric polynomials,

143

for power sum symmetric polynomials,

143

Geometric Complexity Theory, 14

Gorenstein, 149

Grassmannian, 39, 46

group

preserving a set, 8

group algebra, 68

hard for complexity class, 142

hay in a haystack problem, 15

Hermite-Hadamard-Howe map, 244

highest weight, 201

highest weight vector, 201

Hilbert flattening, 205

Hilbert function, 195

homogeneous variety, 95
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homogenous circuit, 174

Howe-Young duality functor, 233

hypersurface, 137

ideal

of a set, 8

immanants, 215

incidence correspondence, 127

incidence graph, 87

inheritance, 209

inner degree lifting map, 229

input

to circuit, 140

interlace, 203

invariance under a group action, 8

invariant

under group action, 8

irreducible group action, 7

isomorphic G-modules, 28

isotypic component, 29

Jacobian loci, 240

Jacobian variety, 148

Kempf-Weyman desingularization, 210

Koszul flattening, 31, 205

Kronecker coefficients, 227

symmetric, 228

Latin square, 254

leading monomial, 195

lex-segment ideal, 194

Lie algebra, 201

lifting map

inner degree, 229

outer degree, 229

linear map

rank, 18

rank one, 5

Littlewood Richardson Rule, 203

Malcev’s theorem, 233

matrix coefficient basis

of group algebra, 69

matrix coefficients, 219

maximal torus, 201

maximally compressible tensor, 131

maximally symmetric compressible tensor,

132

membership test, 208

method of partial derivatives, 145

module, 7

completely reducible, 215

semi-simple, 215

simple, 215

module homomorphism, 28

module map, 28

monodromy loops, 208

multi-linear depth 3 circuit, 191

multiplicative join, 179

multiplicity, 193

of irreducible submodule, 29

nilradical, 134

Noether normalization

explicit, 16

normalization

of a curve, 50

objective function, 85

obstruction

occurrence, 230

orbit occurrence, 226

orbit representation-theoretic, 232

representation-theoretic, 232

occurrence obstruction, 230

orbit closure, 15, 52

orbit occurrence obstruction, 226

orbit representation-theoretic obstruction,

232

outer degree lifting map, 229

padded polynomial, 210

padding, 139

pairing graph, 88

parabolic group, 125

Pascal determinant, 241

permanent, 11

permutation group, 7

Peter-Weyl theorem

algebraic, 220

Pieri formula, 203

PIT, 16

polynomial identity testing, 16

polynomial reduction, 142

power sum function, 143

projective variety, 45

pullback, 39

quasi-polynomial size formula, 144

quotient bundle over Grassmannian, 122

radical of an algebra, 134

raising operator, 201

rank

of linear map, 5

of matrix, 5

symmetric, 147

rank decomposition, 76

symmetry group of, 78

rank of linear map, 18

rational map, 49

re-ordering isomorphism, 20

reduction
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polynomial, 142

reflexivity theorem for dual varieties, 161

regular determinantal expression, 233

regular endomorphism, 111

regular map, 49

regular semi-simple, 111

regular weight space, 159

representation-theoretic obstruction, 232

restricted model, 10, 12, 173

restriction value, 62

resultant, 169

scheme, 150

Schur’s lemma, 29

secant variety, 94

Segre variety, 46

semi-simple module, 215

shallow circuit, 174

Shannon entropy, 175

simple module, 215

singular point, 47

of scheme, 150

size

of circuit, 140

skew-symmetric tensor, 27

smooth point, 47

stabilizer

characterizes point, 226

standard basis

of group algebra, 69

Stirling’s formula, 175

Strassen’s tensor, 57

structure tensor of an algebra, 67

subspace variety, 146

substitution method, 38

sum-product polynomial, 241

symmetric algebra, 28

symmetric border rank, 147

symmetric function, 142

symmetric Kronecker coefficients, 228

symmetric polynomial, 142

symmetric product, 27

symmetric rank, 147

symmetric subspace variety

equations of, 210

symmetric tensor, 27

symmetry group

of tensor, 77

tangent cone, 194

tangential variety, 162

tautological quotient bundle, 122

tensor

1-generic, 106

1A-generic, 106

combinatorial restriction, 62

compressible, 127

compression generic, 127

concise, 23
degeneration of, 53

maximally compressible, 131

restricts to, 62
skew-symmetric, 27

symmetric, 27

symmetry group of, 77
tensor algebra, 28

tensor product, 19

tensor rank, 3, 6
Terracini’s lemma, 95

toric degeneration, 59
torus

maximal, 201

trace test, 208
transpose-like invariant decomposition, 84

triple product property, 71

unipotent, 233

unit tensor, 53

value

combinatorial, 63
degeneracy, 61

restriction, 62

variety
algebraic, 9

dimension of, 47

homogeneous, 95
of padded polynomials, 211

Veronese variety, 46

volume
of tensor, 58

Waring decomposition, 78
wedge product, 27

weight space

regular, 159
weight vector, 201
weight, highest, 201

Young diagram, 200

Young flattening, 204

Zarisk closed, 9

Zariski closed, 22
Zariski closure, 9


