Math 323 Exam 1, 2/13/13

J.M. Landsberg

You may use one page of handwritten notes - no photocopies, no calculators.

1. Let $A=\left(\begin{array}{lll}1 & 7 & 0 \\ 2 & 5 & 1 \\ 3 & 1 & 2\end{array}\right)$. Find elementary matrices E_{1}, E_{2}, E_{3} such that $E_{1} E_{2} E_{3} A$ is upper triangular, compute $E_{1} E_{2} E_{3} A$ and $\operatorname{det} A$. Write your answers here

$$
\begin{aligned}
& E_{3}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
-2 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) . \\
& E_{2}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
-3 & 0 & 1
\end{array}\right) . \\
& E_{1}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & -\frac{20}{9} & 1
\end{array}\right) . \\
& E_{1} E_{2} E_{3} A=\left(\begin{array}{ccc}
1 & 7 & 0 \\
0 & -9 & 1 \\
0 & 0 & -\frac{2}{9}
\end{array}\right) . \\
& \operatorname{det} A=1 *(-9) *\left(-\frac{2}{9}\right)=2 .
\end{aligned}
$$

2. Let A, B be $n \times n$ matrices and let $C=A B$. Prove that if B is singular then C is singular.

Proof. First proof: C is singular iff $\operatorname{det}(C)=0$, but $\operatorname{det}(C)=\operatorname{det}(A B)=$ $\operatorname{det}(A) \operatorname{det}(B)$ so if $\operatorname{det}(B)=0$, then $\operatorname{det}(C)=0$.
Second proof: C is singular iff $C \mathbf{x}=0$ fails to have a unique solution. If $B \mathbf{x}=0$ fails to have a unique solution, e.g., say $B \mathbf{y}=0$, then $C \mathbf{y}=A B \mathbf{y}=0$ as well.
3. Solve the following system for $\mathbf{x} \in \mathbb{R}^{4}$. (Hint: think before you start working.)

$$
\left(\begin{array}{cccc}
11 & 2 & 3 & 4 \\
15 & 6 & 7 & 8 \\
9 & 110 & 11 & 12 \\
13 & 14 & 15 & 33
\end{array}\right) \mathbf{x}=\left(\begin{array}{c}
3 \\
7 \\
11 \\
15
\end{array}\right)
$$

This is the system

$$
x^{1}\left(\begin{array}{c}
11 \\
15 \\
9 \\
13
\end{array}\right)+x^{2}\left(\begin{array}{c}
2 \\
6 \\
110 \\
14
\end{array}\right)+x^{3}\left(\begin{array}{c}
3 \\
7 \\
11 \\
15
\end{array}\right)+x^{4}\left(\begin{array}{c}
4 \\
8 \\
12 \\
33
\end{array}\right)+=\left(\begin{array}{c}
3 \\
7 \\
11 \\
15
\end{array}\right)
$$

so it clearly has the solution $x^{1}=x^{2}=x^{4}=0, x^{3}=1$.
4. Let

$$
A=\left(\begin{array}{cccc}
1 & 7 & 0 & 4 \\
2 & 5 & 1 & 8 \\
3 & 1 & 2 & 12 \\
13 & 14 & 15 & 33
\end{array}\right)
$$

Given that $\operatorname{det}(A)=-38$, compute the value of x^{4} in the solution of the equation

$$
\left(\begin{array}{cccc}
1 & 7 & 0 & 4 \\
2 & 5 & 1 & 8 \\
3 & 1 & 2 & 12 \\
13 & 14 & 15 & 33
\end{array}\right)\left(\begin{array}{l}
x^{1} \\
x^{2} \\
x^{3} \\
x^{4}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right) .
$$

Using Cramer's rule, we have

$$
x^{4}=\frac{\operatorname{det}\left(\begin{array}{cccc}
1 & 7 & 0 & 0 \\
2 & 5 & 1 & 0 \\
3 & 1 & 2 & 0 \\
13 & 14 & 15 & 1
\end{array}\right)}{\operatorname{det} A}=\frac{\operatorname{det}\left(\begin{array}{ccc}
1 & 7 & 0 \\
2 & 5 & 1 \\
3 & 1 & 2
\end{array}\right)}{\operatorname{det} A} .
$$

But we already calculated det $\left(\begin{array}{lll}1 & 7 & 0 \\ 2 & 5 & 1 \\ 3 & 1 & 2\end{array}\right)=2$, so $x^{4}=\frac{2}{-38}=-\frac{1}{19}$.

