Math 323 Exam 2 Answers, 3/6/14

J.M. Landsberg

You may use up to 5 pages of handwritten notes - no photocopies, no calculators. For all questions on the test, no credit will be given without work/justification.

Special 3 point bonus question: What is your favorite radio station in town?
Landsberg's answer: KEOS 89.1 (For the class there was a wide range of answers with "candy 95 " and "the fox" getting the most)

1. Let $C[0,1]$ denote the vector space of continuous functions on the unit interval, and \mathbb{R} the one dimensional vector space. Which of the following maps L : $C[0,1] \rightarrow \mathbb{R}$ are linear? (Be sure to give proofs.)
(a) $L(f)=\frac{1}{2}\left(f\left(\frac{3}{4}\right)-f\left(\frac{1}{4}\right)\right)$.
(b) $L(f)=\int_{0}^{1} f(x)^{2} d x$.

Answer a) yes:

$$
\begin{aligned}
L\left(f_{1}+c f_{2}\right) & =\frac{1}{2}\left(\left(f_{1}+c f_{2}\right)\left(\frac{3}{4}\right)-\left(f_{1}+c f_{2}\right)\left(\frac{1}{4}\right)\right. \\
& =\frac{1}{2}\left(f_{1}\left(\frac{3}{4}\right)+c f_{2}\left(\frac{3}{4}\right)-f_{1}\left(\frac{1}{4}\right)-c f_{2}\left(\frac{1}{4}\right)\right) \\
& =\frac{1}{2}\left(f_{1}\left(\frac{3}{4}\right)-f_{1}\left(\frac{1}{4}\right)\right)+c \frac{1}{2}\left(f_{2}\left(\frac{3}{4}\right)-f_{2}\left(\frac{1}{4}\right)\right) \\
& =L\left(f_{1}\right)+c L\left(f_{2}\right)
\end{aligned}
$$

b) no: Let $f(x)$ be the constant function $f(x)=1$ and let $c=2 . \quad L(c f)=$ $\int_{0}^{1}(2(1))^{2} d x=\int_{0}^{1} 4 d x=4$, while $2 L(f)=2 \int_{0}^{1} 1 d x=2$.
2. Let P_{k} denote the vector space of polynomials in one variable of degree at most $k-1$. Let $L: P_{3} \rightarrow P_{3}$ be the linear map $f(x) \mapsto f^{\prime}(x)-f(0)$.
(a) Give P_{3} the basis $v_{1}=1, v_{2}=x, v_{3}=x^{2}$ and write down the matrix representing L in this basis.
Answer: Note that $L\left(v_{1}\right)=(-1) v_{1}+0 v_{2}+0 v_{3}, L\left(v_{2}\right)=(1) v_{1}+0 v_{2}+0 v_{3}$, $L\left(v_{3}\right)=0 v_{1}+2 v_{2}+0 v_{3}$ so the matrix is

$$
\left(\begin{array}{ccc}
-1 & 1 & 0 \\
0 & 0 & 2 \\
0 & 0 & 0
\end{array}\right)
$$

(b) What is the rank of L ?

Answer: Since the matrix is already in reduced form, we see the rank equals 2.
(c) What is the kernel of L ?

Answer: The kernel is one dimensional by the previous part and the rank nullity theorem, and $v_{1}+v_{2}$ is clearly in the kernel so $\operatorname{ker}(L)=\operatorname{span}\left\{v_{1}+v_{2}\right\}$.
3. Which of the following are spanning sets for P_{4} (the polynomials of degree at most three)? (Be sure to furnish proofs.)
(a) $\left\{v_{1}=1, v_{2}=x, v_{3}=x^{2}, v_{4}=x^{3}, v_{5}=2 x-7\right\}$.
(b) $\left\{v_{1}=x, v_{2}=x^{2}, v_{3}=x^{3}, v_{4}=2 x-7\right\}$.
(c) $\left\{v_{1}=1, v_{2}=x, v_{3}=x^{3}-x^{2}\right\}$.

Answers

a. yes, already $v_{1}, v_{2}, v_{3}, v_{4}$ span (in fact they are the standard basis).
b. yes. We can write $a+b x+c x^{2}+d x^{3}=-\frac{a}{7} v_{4}+\left(b+\frac{2 a}{7}\right) v_{1}+c v_{2}+d v_{3}$.
c. No, the dimension of the vector space is four, but only three vectors are given.
4. Find the transition matrix representing the change of basis on P_{3} from the basis $E=\left\{v_{1}=1, v_{2}=x, v_{3}=x^{2}\right\}$ to the basis $F=\left\{w_{1}=1, w_{2}=1+x, w_{3}=\right.$ $\left.1+x+x^{2}\right\}$.
Answer: Since $w_{1}=v_{1}, w_{2}=v_{1}+v_{2}, w_{3}=v_{1}+v_{2}+v_{3}$, and the columns of the change of basis matrix are the coefficients of this expression, we obtain

$$
S_{F}^{E}=\left(\begin{array}{ccc}
1 & 1 & 1 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right)
$$

Since $v_{1}=w_{1}, v_{2}=w_{2}-w_{1}, v_{3}=w_{3}-w_{2}$, and the columns of the change of basis matrix are the coefficients of this expression, we obtain

$$
S_{E}^{F}=\left(\begin{array}{ccc}
1 & -1 & 0 \\
0 & 1 & -1 \\
0 & 0 & 1
\end{array}\right)
$$

