Name \qquad .
ID

Math 323 Exam 3, 4/8/14 Answers

J.M. Landsberg

1. Let P_{k} denote the vector space of polynomials of degree at most $k-1$. Define a linear map $L: P_{4} \rightarrow P_{3}$ by $L(p(x))=p^{\prime}(x)+3 p^{\prime \prime}(x)$. Determine $\operatorname{ker}(L)$ and Image (L).

Answer: Every element of P_{4} is of the form $p(x)=a+b x+c x^{2}+d x^{3}$ for some constants a, b, c, d. We compute $L(p(x))=(6 c+b) 1+(18 d+2 c) x+(3 d) x^{2}$. To have $L(p(x))=\overline{0}$, i.e., $p(x) \in \operatorname{ker} L$, we need all the coefficients to be zero, which implies $b=c=d=0$. Thus $\operatorname{ker} L=\{(a) 1 \mid a \in \mathbb{R}\}$.
By the rank nullity theorem $\operatorname{dim}(\operatorname{Image}(L))=\operatorname{dim} P_{4}-\operatorname{dim} \operatorname{ker}(L)=4-1=3$, but $\operatorname{dim} P_{3}=3$ so $\operatorname{Image}(L)=P_{3}$.
2. Let $V=\operatorname{span}\left\{v_{1}:=1, v_{2}:=e^{x}, v_{3}=e^{-x}\right\} \subset C(\mathbb{R})$, the subspace of the continuous functions on the real line spanned by the functions $1, e^{x}, e^{-x}$. Let $L(f(x))=f^{\prime}(x)$ and observe that $L(V) \subseteq V$. Find the matrix of $L: V \rightarrow V$ with respect to the basis v_{1}, v_{2}, v_{3}.

Answer: The columns of the matrix of L are the coefficients of the images of the basis vectors. We compute $L\left(v_{1}\right)=0, L\left(v_{2}\right)=v_{2}, L\left(v_{3}\right)=-v_{3}$, so the matrix is $\left(\begin{array}{ccc}0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1\end{array}\right)$.
3. Let $A=\left(\begin{array}{cc}0 & 1 \\ \frac{1}{2} & \frac{1}{2}\end{array}\right)$. Let $v=\binom{a}{b} \in \mathbb{R}^{2}$ be a vector not in the span of $\binom{2}{-1}$. Determine $\lim _{k \rightarrow \infty} A^{k} v$.
What is the limit for vectors in the span of $\binom{2}{-1}$?
Answer: This is a problem about eigenvalues and eigenvectors. First compute that the eigenvalues are $\lambda_{1}=1, \lambda_{2}=-\frac{1}{2}$, and a choice of associated eigenvectors is $v_{1}=\binom{1}{1}, v_{2}=\binom{2}{-1}$. If we write $v=\alpha v_{1}+\beta v_{2}$ then $A^{k} v=\left(1^{k}\right) \alpha v_{1}+$ $\left(\frac{1}{2}\right)^{k} \beta v_{2}$, so $\lim _{k \rightarrow \infty} A^{k} v=\alpha v_{1}$. This shows that the limit is the zero vector for any vector in the span of $\binom{2}{-1}$. To answer the first question, write

$$
\binom{a}{b}=\frac{a+2 b}{3} v_{1}+\frac{a-b}{3} v_{2}
$$

so we conclude the limit for any other vector is $\frac{a+2 b}{3} v_{1}$.
4. Let $A=\left(\begin{array}{ccc}1 & 0 & 0 \\ -2 & 1 & 3 \\ 1 & 1 & -1\end{array}\right)$.
(a) What are the eigenvalues and a set of eigenvectors for A.
(b) Factor A into a product $A=X D X^{-1}$ where X is diagonal.

Answer:Compute the roots of $\operatorname{det}(A-\lambda I d)$ to obtain $\lambda_{1}=1, \lambda_{2}=2, \lambda_{3}=-2$, then compute the null spaces of $A-\lambda_{j} I d$ to get eigenvectors

$$
\begin{gathered}
v_{1}=\left(\begin{array}{l}
3 \\
1 \\
2
\end{array}\right), v_{2}=\left(\begin{array}{l}
0 \\
3 \\
1
\end{array}\right), v_{3}=\left(\begin{array}{c}
0 \\
1 \\
-1
\end{array}\right) \\
\text { thus } X=\left(\begin{array}{ccc}
3 & 0 & 0 \\
1 & 3 & 1 \\
2 & 1 & -1
\end{array}\right), D=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & -2
\end{array}\right), \text { and we compute } X^{-1}=\left(\begin{array}{ccc}
\frac{1}{3} & 0 & 0 \\
-\frac{1}{4} & \frac{1}{4} & \frac{1}{4} \\
\frac{5}{12} & \frac{1}{4} & -\frac{3}{4}
\end{array}\right),
\end{gathered}
$$

5. Let A be a 3×3 matrix such that $A^{2}=I d$. What are the possible eigenvalues of A ?

Answer: If A has eigenvalues $\lambda_{1}, \lambda_{2}, \lambda_{3}$, then A^{2} has eigenvalues $\lambda_{1}^{2}, \lambda_{2}^{2}, \lambda_{3}^{2}$, but the eigenvalues of A^{2} are all 1 , we conclude $\lambda_{j}= \pm 1$.

