Week in Review #4

1. \(x + y > 20 \)
 \(x + 2y \geq 24 \)
 \(3x - 2y > 0 \)

2. The corner points are labeled in the picture.

 \[
 \begin{array}{c|c|c}
 \text{c.p.} & F = 4x + 2y \\
 \hline
 A\left(\frac{8}{5}, \frac{70}{9}\right) & \frac{172}{9} \approx 19.1111 \\
 B(32,0) & 128 \\
 C(8,0) & 32 \\
 D(3,2.5) & 17 \\
 \end{array}
 \]

 The maximum value of \(F \) is 128 and occurs at point \(B \).

3. Corner points are \(D, E, \) and \(F \). Since the region is unbounded create two imaginary corner points: \(L(0,20) \) and \(K(10,7) \).

<table>
<thead>
<tr>
<th>c.p.</th>
<th>(F = 4x + 2y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>(\frac{172}{9} \approx 19.1111)</td>
</tr>
<tr>
<td>B</td>
<td>128</td>
</tr>
<tr>
<td>C</td>
<td>32</td>
</tr>
<tr>
<td>D</td>
<td>17</td>
</tr>
</tbody>
</table>

 min value of 15

 location of minimum: point \(D \) and \(E \) and all points between them on a straight line. ie. \(DE \) or \(ED \)

4. Corner points are \(A, B, \) and \(C \). Since the region is unbounded create two imaginary corner points: \(J(0,25) \) and \(K(13,25) \)

 (a) Values:
 \[
 \begin{array}{|c|c|c|c|c|c|}
 \hline
 \text{A} & \text{B} & \text{C} & \text{J} & \text{K} \\
 \hline
 -72 & 22 & 125.5 & -75 & 55 \\
 \hline
 \end{array}
 \]

 maximum value is 125.5

 location of the maximum is \(C \).

 (b) Values:
 \[
 \begin{array}{|c|c|c|c|c|c|}
 \hline
 \text{A} & \text{B} & \text{C} & \text{J} & \text{K} \\
 \hline
 96 & 36 & 45 & 100 & 139 \\
 \hline
 \end{array}
 \]

 Since the maximum value is at the imaginary point \(K \), there is no solution for this problem.

5. \{E, N, C, Y, L, O, P, D, I, A\}

6. (a) \(n(A) = 4 \)

(b) \(A \cup B = \{0, 2, 3, 4, 6, 8, 9\} \)
 \(n(A \cup B) = 7 \)

(c) \(C^C = \{0, 2, 4, 6, 8\} \)
 \(A \cup C^C = \{0, 2, 3, 4, 6, 8, 9\} \)

(d) \(A \cap B \cap C = \phi \)

(e) \(A \cap C = \{3, 9\} \)
 \((A \cap C)^C = \{0, 1, 2, 4, 5, 6, 7, 8\} \)
 \((A \cap C)^C \cap B = \{0, 2, 4, 6, 8\} \)

(f) \(2^5 = 32 \)

(g) \(2^5 - 1 = 31 \)

(h) no, they have 0 and 6 in common.

(i) yes

7. (a) \(A \cup B \cup C \)

(b) \((B \cup C)^C \)

(c) \((A^C \cap B) \cup C \)

8. (a) i. The A&M students that drink sprite or do not drink coffee.

ii. The male students at A&M that drink Dr. Pepper or Sprite.

(b) i. \(F \cap S \cap C^C \)

ii. \(C \cup D^C \)