Week in Review # 8

1. \(x \) = the number of senior tickets sold.
 \(y \) = the number of adult tickets sold.
 \(z \) = the number of children tickets sold.
 \[x + y + z = 700 \]
 \[6x + 8y + 3.5z = 3512.5 \]
 \[3y = z \]

2. \(x \) = the number of Boeing 747s bought.
 \(y \) = the number of Boeing 777s bought.
 \(z \) = the number of Airbus A321s bought.
 \[x + y + z = 11400 \]
 \[400x + 300y + 200z = 3200 \]
 \[200x + 160y + 60z = 1540 \]

3. \(x \) = the amount invested in low-risk stocks.
 \(y \) = the amount invested in high-risk stocks.
 \(z \) = the amount invested in bonds.
 \[x + y + z = 82000 \]
 \[y = x + z \]
 \[0.08x + 0.15y + 0.04z = 9050 \]

4. (a) no solution
 (b) \(x = 9, \ y = 10, \) and \(z = 6 \)
 (c) \(x = 2 - 4z \)
 \[y = 9 - 5z \]
 \[z = \text{any number} \]
 (d) \(x = 7 - 2y - 2w \)
 \[z = 3 - 4w \]
 \[y = \text{any number} \]
 \[w = \text{any number} \]
 (e) \(x = 4, \ y = 2, \) and \(z = 8 \)

5. The row operations that need to be performed are: \(R_2 + 5R_1 \rightarrow R_2 \) and \(R_3 + (-4)R_1 \rightarrow R_3 \)

\[
\begin{bmatrix}
1 & 0 & 9 & | & 12 \\
0 & 2 & 46 & | & 63 \\
0 & 2 & -39 & | & -40 \\
\end{bmatrix}
\]

6. \[
\begin{bmatrix}
3 & 0 & 23 & | & 17 \\
7 & 11 & 39 & | & 25 \\
10 & 0 & 1 & | & 16 \\
0 & 5 & 6 & | & 1 \\
\end{bmatrix}
\]

7. (a) first rewrite the equations as shown.
 \[3x + y = 9 \]
 \[x - y + z = 4 \]
 \[3x + z = 11 \]
 \[4x - y + 2z = 15 \]

\[
\begin{bmatrix}
3 & 1 & 0 & 9 \\
1 & -1 & 1 & 4 \\
3 & 0 & 1 & 11 \\
4 & -1 & 2 & 15 \\
\end{bmatrix}
\rightarrow
\begin{bmatrix}
1 & 0 & 0 & 2 \\
0 & 1 & 0 & 3 \\
0 & 0 & 1 & 5 \\
0 & 0 & 0 & 0 \\
\end{bmatrix}
\]

Answer: \(x = 2, \ y = 3, \) and \(z = 5 \)

(b) \[
\begin{bmatrix}
1 & 3 & 1 & 10 \\
2 & 7 & -1 & 21 \\
4 & 13 & 1 & 41 \\
\end{bmatrix}
\rightarrow
\begin{bmatrix}
1 & 0 & 10 & 7 \\
0 & 1 & -3 & 1 \\
0 & 0 & 0 & 0 \\
\end{bmatrix}
\]

Answer: \(x = 7 - 10z \)
\[y = 1 + 3z \]
\[z = \text{any number} \]

Note: no restrictions can be placed on the parameter since this was not a word problem.

(c) \[
\begin{bmatrix}
3 & 2 & 5 & 7 \\
1 & 4 & 1 & 13 \\
4 & -5 & 2 & -9 \\
5 & 10 & 7 & 32 \\
\end{bmatrix}
\rightarrow
\begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
\end{bmatrix}
\]

Answer: no solution.

8. (a) Set up of the problem:
 \(x \) = the number of old dvds bought
 \(y \) = the number of new dvds bought
 \(z \) = the number of semi-new dvds bought

\[x + y + z = 60 \]
\[10x + 16y + 22z = 840 \]

Solution:
\[x = 20 + z \]
\[y = 40 - 2z \]
\[z = \text{any number} \]

Now place restrictions on the parameter \(z \). This is the mathematical process. You could also do this by inspecting the parametric solution for what values of \(z \) will make sense.

We know that the number of dvds bought must be greater than or equal to zero.
\[x \geq 0 \quad y \geq 0 \quad z \geq 0 \]
\[20 + z \geq 0 \quad 40 - 2z \geq 0 \]
\[z \geq -20 \quad 40 \geq 2z \]
\[20 \geq z \]

We also know that the number of dvds bought must be less than 60.
\[x \leq 60 \quad y \leq 60 \quad z \leq 60 \]
\[20 + z \leq 60 \quad 40 - 2z \leq 60 \]
\[z \leq 40 \quad -2z \leq 20 \]
\[z \geq -10 \]

Thus we get that \(0 \leq z \leq 20 \) and \(z \) must be an integer or in other words \(z = 0, 1, 2, 3, \ldots, 20 \)

(b) 21 different solutions.

9. (a) \[3d_{2,2} + 2c_{2,1} = 3(5) + 2(-2) = 11\]

(b) \[
\begin{bmatrix}
21 & 6 & 12 \\
18 & 15 & 0
\end{bmatrix}
\]

(c) \[
\begin{bmatrix}
1 & -2 & 2 \\
3 & 5 & 0
\end{bmatrix}
\]

(d) \[
\begin{bmatrix}
25 & 8 & 4 \\
4 & 9 & 16
\end{bmatrix}
\]

(e) \[
\begin{bmatrix}
-15 & -6 & 12 \\
22 & 7 & -32
\end{bmatrix}
\]

(f) not possible, wrong sizes.

(g) \[
\begin{bmatrix}
-9 & 3 \\
14 & 15 \\
2 & 0
\end{bmatrix}
\]

10. simplify the left and right side.
\[
\begin{bmatrix}
19 & 8x-3y \\
4y-18 & 10
\end{bmatrix} = \begin{bmatrix}
19 & -28 \\
x & 10
\end{bmatrix}
\]

Now solve
\[8x - 3y = -28\]
\[4y - 18 = x\]

Answer: \(x = -2, \ y = 4 \)