Programming Part of the last assignment.

The goal of this program is to investigate the stability properties of Backward and Forward Euler time-stepping for the parabolic problem

$$u_t - \frac{1}{50} \Delta u = 0 \quad (x,t) \in \Omega \times (0,T)$$

$$\frac{\partial u}{\partial n} (x,t) = 0 \quad \text{on } \partial \Omega \times [0,T]$$

$$u(x) = u_0(x) \quad x \in \Omega.$$

Here Ω is the L shaped domain of Assignment 7. We will reuse much of the code of assignment 7.
Problem (P) differs from that studied in class in that we have a homogeneous Neumann condition. Thus, the variational formulation is: Find $U(t) : [0, T] \rightarrow H'(\Omega)$ satisfying
\[(u_t, \phi) + \frac{1}{50} D(u, \phi) = 0 \quad \text{for each} \ t \in (0, T) \text{ and } \phi \in H'(\Omega).\]

As in Assignment 7, we use an approximation space V of continuous piecewise linear functions defined from triangulation coming from TRIANGLE.
(Functions in \(V \), do not satisfy any boundary conditions).

For Assignment 1, you developed routines for

1. Assembling the mass matrix denoted by \(M \) in that assignment.
2. Assembling the stiffness matrix for the Galerkin form

\[
\mathbf{C}(u,v) = \int \left(\varepsilon(u) : \varepsilon(v) \right) + \int \phi \nabla u \cdot \nabla v.
\]

For this assignment, we use the stiffness matrix denoted by \(A \) coming from \(c^2 = 1/50 \) and \(q = 0 \).
For this assignment, we take a fixed time step size, $\Delta t = 1/N$ and implement Backward and Forward Euler time stepping. In both cases, consider

\[(IV)\]

$U_0(x,y) = 1 + \cos \pi x \cos 2\pi y$

and define C^0_j to be the coefficient corresponding to $I_k(u_j)$, i.e. $C^0_j = U_0(x_j)$ where x_j is the jth node of the mesh (enumerated by TRIANGLE).

The solution of (P) with initial value (IV) is

$u(x,y,t) = 1 + e^{-t/(10)} \cos \pi x \cos 2\pi y$
(Check it).

In all runs, we shall compute the approximation to \(u(t=1) \),

i.e.,

\[
W^N = \sum_{i=1}^{m} c_i \phi_i \quad (h = 1/N)
\]

and report the error

\[
E_N := \| W^N - I_h u(1) \|_{L^2(\Omega)} = \sqrt{\int_{\Omega} (c^n + d) \cdot (c^n + d)}
\]

Here \(d \) is the vector of coefficients for the interpolant of \(u(1) \),

i.e., \(d_i = u(x_i, 1) \). If you compute \(\nabla W \) for \(W^N \), then report \(\infty \) for \(E_N \).
Problem 1: Run forward Euler

for \(N = 2, 4, \ldots \) and report \(\| e_N \| \)
until you reach an \(N \) where \(\| e_N \| < 0.01 \). Do this for each of the first four meshes of assignment 7. (The forward Euler recurrence is)

\[
C^{n+1} = C^n + k \, M^{-1} A \, C^n
\]

Problem 2: Repeat Problem 1 but use Backward Euler, i.e.,

\[
C^{n+1} = \left(I + k \, M^{-1} A \right)^{-1} C^n
\]

Do not use this formula!
\[M \left(\frac{c^{n+1} - c^n}{k} \right) + A c^{n+1} = 0 \]

\[(M + \frac{k}{\epsilon} A) c^{n+1} = MC^n \]

Algorithm:

1. Startup (compute \(M + kA \))
2. Compute \(y = MC^n \)
3. Compute \(c^{n+1} = (M + kA) \backslash y \).