1. Let \(A \subseteq \mathbb{R} \). Define a function, \(g(x) := \inf \{|x - y| : y \in A\} \).

(a) Prove that \(g(x) = 0 \) iff \(x \) is a limit point of a sequence from \(A \).
(b) Prove that \(g : \mathbb{R} \rightarrow \mathbb{R} \) is continuous.

2. If \(f : (X, d) \rightarrow (Y, e) \) is continuous, then, for every closed set, \(F \subseteq Y, f^{-1}(F) \) is closed.

3. Give an example of a metric space, \((X, d)\), and sets, \(\{E_n\} \), with the finite intersection property, and, yet, \(\bigcap_{n=1}^{\infty} E_n = \emptyset \).

4. Let \(f : [a, b] \rightarrow \mathbb{R} \) be continuous. Assume also that for every \(x \in [a, b] \), \(f(x) > 0 \). Show \(\inf \{f(x) : x \in [a, b]\} > 0 \).

5. Let \(f(x) = x^4 + 2x^3 + 5x^2 - 6x - 10 \). Show there exist a point, \(x \), for which \(f(x) = 0 \).

6. If \((X, d)\) is a metric space, \(F \) is a closed subset and \(E \subseteq F \). Prove that \(\bar{E} \subseteq F \), where \(\bar{E} \) denotes the closure of \(E \).

7. Let \((X, d)\) be a metric space, \(K \) a compact subset and \(U \) an open subset. If \(K \subseteq U \), then there exists a \(\delta > 0 \) such that for every point, \(y \) for which there is an \(x \in K \) with \(d(x, y) < \delta \) (that is, those points in \(X \) which are within \(\delta \) of some point in \(K \)), we have \(y \in U \).

8. Let \(f(x) = \begin{cases} x \sin 1/x & \text{if } x \neq 0 \\ 0 & \text{if } x = 0. \end{cases} \)

 Prove that \(f \) is continuous at \(x = 0 \).

9. Let \(\{x_n\} \) be a sequence such that \(x_1 \leq x_2 \) and \(x_{n+1} \) is between \(x_n \) and \(x_{n-1} \).

 (a) Prove that \(\{x_{2n+1}\} \) is an non-decreasing sequence and (similarly) \(\{x_{2n}\} \) is an non-increasing sequence.
 (b) Prove that the sequence \(\{x_{2n+1}\} \) converges.

10. If \(\{a^3_n - \frac{1}{a^3_n}\} \) is bounded, then \(\{a_n\} \) is bounded.

11. Prove that \(\lim_{x \to 1} x^4 = 1 \) using and \(\epsilon, \delta \) proof.

12. Using and \(\epsilon, N \) proof, show that \(\lim_{n \to \infty} \frac{n^3 - n + 10}{n^3 - 5n + 17} = 1. \)

14. Let \(\{a_n\} \) be a sequence such that \(|a_n - a_m| \geq 1 \) if \(m \neq n \). Prove that no subsequence converges. Why does this show that the sequence is unbounded?

15. State the intermediate value theorem. If \(f(x) \) and \(g(x) \) are continuous on \([0, 1]\) and

 \(f(0) > g(0), \ f(1) < g(1), \)

 prove that there is a point \(c \in (0, 1) \) where \(f(c) - g(c) = 0. \)
16. Show that for any increasing sequence of real numbers, the limit is the sup.

17. Let \(b_n = \frac{1}{\ln(1 + n)} \). Show that the series \(\sum_{n=1}^{\infty} (-1)^n b_n \) converges.

18. Let \(a_1 = 2 \) and for \(n \geq 1 \), \(a_{n+1} = a_n + 6 \). Find the limit and show that the sequence converges to that limit.

19. If \(s_n = \sum_{j=1}^{n} \frac{1}{j^2} \), show that \(\{s_n\} \) is a Cauchy sequence.

20. If \(f : \mathbb{R} \to \mathbb{R} \) and \(g : \mathbb{R} \to \mathbb{R} \) are both continuous, prove that

 (a) \(f + g \) is continuous.

 (b) \(f \cdot g \) is continuous.

 (c) \(f \circ g \) is continuous, where the circle denotes composition.

 (d) \(f/g \) is continuous if \(g(x) > 0 \) for every \(x \in \mathbb{R} \).