A Schauder basis for $L_1(0, \infty)$ consisting of non-negative functions*

William B. Johnson[†] and Gideon Schechtman[‡]

Abstract

We construct a Schauder basis for L_1 consisting of non-negative functions and investigate unconditionally basic and quasibasic sequences of non-negative functions in L_p .

1 Introduction

In [5], Powell and Spaeth investigate non-negative sequences of functions in L_p , $1 \leq p < \infty$, that satisfy some kind of basis condition, with a view to determining whether such a sequence can span all of L_p . They prove, for example, that there is no unconditional basis or even unconditional quasibasis (frame) for L_p consisting of non-negative functions. On the other hand, they prove that there are non-negative quasibases and non-negative M-bases for L_p . The most important question left open by their investigation is whether there is a (Schauder) basis for L_p consisting of non-negative functions. In section 2 we show that there is basis for L_1 consisting of non-negative functions.

In section 3 we discuss the structure of unconditionally basic non-negative normalized sequences in L_p . The main result is that such a sequence is equivalent to the unit vector basis of ℓ_p . We also prove that the closed span

^{*2010} AMS subject classification: 46B03, 46B15, 46E30. Key words: L_p , Schauder basis

 $^{^\}dagger Supported$ in part by NSF DMS-1301604 and the U.S.-Israel Binational Science Foundation

[‡]Supported in part by the U.S.-Israel Binational Science Foundation. Participant, NSF Workshop in Analysis and Probability, Texas A&M University

in L_p of any unconditional quasibasic sequence embeds isomorphically into ℓ_p .

We use standard Banach space theory, as can be found in [4] or [1]. Let us just mention that L_p is $L_p(0,\infty)$, but inasmuch as this space is isometrically isomorphic under an order preserving operator to $L_p(\mu)$ for any separable purely non-atomic measure μ , our choice of $L(0,\infty)$ rather than e.g. $L_p(0,1)$ is a matter of convenience. Again as a matter of convenience, in the last part of Section 3 we revert to using $L_p(0,1)$ as a model for L_p .

2 A Schauder basis for $L_1(0,\infty)$ consisting of non-negative functions

For j = 1, 2, ... let $\{h_{n,i}^j\}_{n=0,i=1}^{\infty}$ be the mean zero L_1 normalized Haar functions on the interval (j-1,j). That is, for $n=0,1,...,i=1,2,...,2^n$,

$$h_{n,i}^{j}(t) = \begin{cases} 2^{n} & j - 1 + \frac{2i-2}{2^{n+1}} < t < j - 1 + \frac{2i-1}{2^{n+1}} \\ -2^{n} & j - 1 + \frac{2i-1}{2^{n+1}} < t < j - 1 + \frac{2i}{2^{n+1}} \\ 0 & otherwise \end{cases}$$

The system $\{h_{n,i}^j\}_{n=0,i=1,j=1}^{\infty}$, in any order which preserves the lexicographic order of $\{h_{n,i}^j\}_{n=0,i=1}^{\infty}$ for each j, constitutes a basis for the subspace of $L_1(0,\infty)$ consisting of all functions whose restriction to each interval (j-1,j) have mean zero. To simplify notation, for each j we shall denote by $\{h_i^j\}_{i=1}^{\infty}$ the system $\{h_{n,i}^j\}_{n=0,i=1}^{\infty}$ in its lexicographic order. We shall also denote by $\{h_i\}_{i=1}^{\infty}$ the union of the systems $\{h_i^j\}_{i=1}^{\infty}$, $j=1,2,\ldots$, in any order that respects the individual orders of each of the $\{h_i^j\}_{i=1}^{\infty}$.

Let π be any permutation of the natural numbers and for each $i \in \mathbb{N}$ let F_i be the two dimensional space spanned by $2\mathbf{1}_{(\pi(i)-1,\pi(i))} + |h_i|$ and h_i .

Proposition 1 $\sum_{i=1}^{\infty} F_i$ is an FDD of $\overline{\text{span}}^{L_1} \{F_i\}_{i=1}^{\infty}$.

Proof: The assertion will follow from the following inequality, which holds for all scalars $\{a_i\}_{i=1}^{\infty}$ and $\{b_i\}_{i=1}^{\infty}$,

$$\frac{1}{2} \sum_{i=1}^{\infty} |a_i| + \frac{1}{8} \| \sum_{i=1}^{\infty} b_i h_i \| \leq \| \sum_{i=1}^{\infty} a_i (2\mathbf{1}_{(\pi(i)-1,\pi(i))} + |h_i|) + \sum_{i=1}^{\infty} b_i h_i \| \\
\leq 3 \sum_{i=1}^{\infty} |a_i| + \| \sum_{i=1}^{\infty} b_i h_i \|. \tag{1}$$

The right inequality in (1) follows easily from the triangle inequality. As for the left inequality, notice that the conditional expectation projection onto the closed span of $\{\mathbf{1}_{(i-1,i)}\}_{i=1}^{\infty}$ is of norm one and the complementary projection, onto the closed span of $\{h_i\}_{i=1}^{\infty}$, is of norm 2. It follows that

$$\|\sum_{i=1}^{\infty} a_i(2\mathbf{1}_{(\pi(i)-1,\pi(i))}) + \sum_{i=1}^{\infty} b_i h_i\| \ge \max\{2\sum_{i=1}^{\infty} |a_i|, \frac{1}{2}\|\sum_{i=1}^{\infty} b_i h_i\|\}.$$

Since $\|\sum_{i=1}^{\infty} a_i |h_i|\| \le \sum_{i=1}^{\infty} |a_i|$, we get

$$\|\sum_{i=1}^{\infty} a_i (2\mathbf{1}_{(\pi(i)-1,\pi(i))} + |h_i|) + \sum_{i=1}^{\infty} b_i h_i\| \ge \max\{\sum_{i=1}^{\infty} |a_i|, \frac{1}{4} \|\sum_{i=1}^{\infty} b_i h_i\|\}$$

from which the left hand side inequality in (1) follows easily.

Proposition 2 Let π be any permutation of the natural numbers and for each $i \in \mathbb{N}$ let F_i be the two dimensional space spanned by $2\mathbf{1}_{(\pi(i)-1,\pi(i))} + |h_i|$ and h_i . Then $\overline{\operatorname{span}}^{L_1}\{F_i\}_{i=1}^{\infty}$ admits a basis consisting of non-negative functions.

Proof: In view of Proposition 1 it is enough to show that each F_i has a two term basis consisting of non-negative functions and with uniform basis constant. Put $x_i = 2\mathbf{1}_{(\pi(i)-1,\pi(i))} + |h_i| + h_i$ and $y_i = 2\mathbf{1}_{(\pi(i)-1,\pi(i))} + |h_i| - h_i$. Then clearly $x_i, y_i \geq 0$ everywhere and $||x_i|| = ||y_i|| = 3$. We now distinguish two cases: If $\mathbf{1}_{(\pi(i)-1,\pi(i))}$ is disjoint from the support of h_i then, for all scalars a, b,

$$||ax_i + by_i|| \ge ||a(|h_i| + h_i) + b(|h_i| - h_i)|| = |a| + |b|.$$

If the support of h_i is included in $(\pi(i) - 1, \pi(i))$, Let 2^{-s} be the size of that support, $s \ge 0$. Then for all scalars a, b,

$$||ax_i + by_i|| \ge ||a(|h_i| + h_i) + b(|h_i| - h_i) + 2(a+b)\mathbf{1}_{\operatorname{supp}(h_i)}||$$

= $2^{-s-1}(|(2^{s+1} + 2)a + 2b| + |(2^{s+1} + 2)b + 2a| \ge \max\{|a|, |b|\}.$

Theorem 1 $L_1(0,\infty)$, and consequently any separable L_1 space, admits a Schauder basis consisting of non-negative functions.

Proof: When choosing the order on $\{h_i\}$ we can and shall assume that $h_1 = h_{0,1}^1$; i.e., the first mean zero Haar function on the interval (0,1). Let π be any permutation of $\mathbb N$ such that $\pi(1) = 1$ and for i > 1, if $h_i = h_{n,k}^j$ for some n, k, and j then $\pi(i) > j$. It follows that except for i = 1 the support of h_i is disjoint from the interval $(\pi(i) - 1, \pi(i))$. It is easy to see that such a permutation exists. We shall show that under these assumptions $\sum_{i=1}^{\infty} F_i$ spans $L_1(0,\infty)$ and, in view of Proposition 2, this will prove the theorem for $L_1(0,\infty)$. First, since $\pi(1) = 1$ we get that $3\mathbf{1}_{(0,1)} = 2\mathbf{1}_{(\pi(1)-1,\pi(1))} + |h_1| \in F_1$, and since all the mean zero Haar functions on (0,1) are clearly in $\sum_{i=1}^{\infty} F_i$, we get that $L_1(0,1) \subset \sum_{i=1}^{\infty} F_i$.

Assume by induction that $L_1(0,j) \subset \sum_{i=1}^{\infty} F_i$. Let l be such that $\pi(l) = j+1$. By our assumption on π , the support of h_l is included in (0,j), and so by the induction hypothesis, $|h_l| \in \sum_{i=1}^{\infty} F_i$. Since also $2\mathbf{1}_{(j,j+1)} + |h_l| \in \sum_{i=1}^{\infty} F_i$ we get that $\mathbf{1}_{(j,j+1)} \in \sum_{i=1}^{\infty} F_i$. Since the mean zero Haar functions on (j,j+1) are also in $\sum_{i=1}^{\infty} F_i$ we conclude that $L_1(0,j+1) \subset \sum_{i=1}^{\infty} F_i$.

This finishes the proof for $L_1(0,\infty)$. Since every separable L_1 space is order isometric to one of the spaces ℓ_1^k , $k = 1, 2, \ldots, \ell_1, L_1(0,\infty), L_1(0,\infty) \bigoplus_1 \ell_1^k$, $k = 1, 2, \ldots$, or $L_1(0,\infty) \bigoplus_1 \ell_1$, and since the discrete L_1 spaces ℓ_1^k , $k = 1, 2, \ldots$, and ℓ_1 clearly have non-negative bases, we get the conclusion for any separable L_1 space.

3 Unconditional non-negative sequences in L_p

Here we prove

Theorem 2 Suppose that $\{x_n\}_{n=1}^{\infty}$ is a normalized unconditionally basic sequence of non-negative functions in L_p , $1 \leq p < \infty$. Then $\{x_n\}_{n=1}^{\infty}$ is equivalent to the unit vector basis of ℓ_p .

Proof: First we give a sketch of the proof, which should be enough for experts in Banach space theory. By unconditionality, we have for all coefficients a_n that $\|\sum_n a_n x_n\|_p$ is equivalent to the square function $\|(\sum_n |a_n|^2 x_n^2)^{1/2}\|_p$, and, by non-negativity of x_n , is also equivalent to $\|\sum_n |a_n| x_n\|_p$. Thus by trivial interpolation when $1 \le p \le 2$, and by extrapolation when $2 , we see that <math>\|\sum_n a_n x_n\|_p$ is equivalent to $\|(\sum_n |a_n|^p x_n^p)^{1/p}\|_p = (\sum_n |a_n|^p)^{1/p}$.

We now give a formal argument for the benefit of readers who are not familiar with the background we assumed when giving the sketch. Let K be

the unconditional constant of $\{x_n\}_{n=1}^{\infty}$. Then

$$K^{-1} \| \sum_{n=1}^{N} a_n x_n \|_p \le B_p \| (\sum_{n=1}^{N} |a_n|^2 x_n^2)^{1/2} \|_p$$

$$\le B_p \| \sum_{n=1}^{N} |a_n| x_n \|_p \le B_p K \| \sum_{n=1}^{N} a_n x_n \|_p,$$
(2)

where the first inequality is obtained by integrating against the Rademacher functions (see, e.g., [4, Theorem 2.b.3]). The constant B_p is Khintchine's constant, so $B_p = 1$ for $p \leq 2$ and B_p is of order \sqrt{p} for p > 2. If $1 \leq p \leq 2$ we get from (2)

$$K^{-1} \| \sum_{n=1}^{N} a_n x_n \|_p \le \| (\sum_{n=1}^{N} |a_n|^p x_n^p)^{1/p} \|_p \le K \| \sum_{n=1}^{N} a_n x_n \|_p.$$
 (3)

Since $\|(\sum_{n=1}^N |a_n|^p x_n^p)^{1/p}\|_p = (\sum_{n=1}^N |a_n|^p)^{1/p}$, this completes the proof when $1 \le p \le 2$. When $2 , we need to extrapolate rather than do (trivial) interpolation. Write <math>1/2 = \theta/1 + (1-\theta)/p$. Then

$$(KB_{p})^{-1} \| \sum_{n=1}^{N} a_{n} x_{n} \|_{p} \leq \| (\sum_{n=1}^{N} |a_{n}|^{2} x_{n}^{2})^{1/2} \|_{p}$$

$$\leq \| \sum_{n=1}^{N} |a_{n}| x_{n} \|_{p}^{\theta} \| (\sum_{n=1}^{N} |a_{n}|^{p} x_{n}^{p})^{1/p} \|_{p}^{1-\theta}$$

$$\leq K \| \sum_{n=1}^{N} a_{n} x_{n} \|_{p}^{\theta} (\sum_{n=1}^{N} |a_{n}|^{p})^{(1-\theta)/p}, \quad \text{so that}$$

$$(K^{2}B_{p})^{(-1)/(1-\theta)} \| \sum_{n=1}^{N} a_{n} x_{n} \|_{p} \leq (\sum_{n=1}^{N} |a_{n}|^{p})^{1/p} \leq K \| \sum_{n=1}^{N} a_{n} x_{n} \|_{p}. \quad \blacksquare$$

As stated, Theorem 2 gives no information when p=2 because every normalized unconditionally basic sequence in a Hilbert space is equivalent to the unit vector basis of ℓ_2 . However, if we extrapolate slightly differently in the above argument (writing $1/2 = \theta/1 + (1-\theta)/\infty$) we see that, no matter what p is, $\|\sum_{n=1}^{N} a_n x_n\|_p$ is also equivalent to $\|\max_n |a_n|x_n\|_p$. From this one can deduce e.g. that only finitely many Rademachers can be in the closed

span of $\{x_n\}_{n=1}^{\infty}$; in particular, $\{x_n\}_{n=1}^{\infty}$ cannot be a basis for L_p even when p=2. However, the proof given in [5] that a normalized unconditionally basic sequence of non-negative functions $\{x_n\}_{n=1}^{\infty}$ in L_p cannot span L_p actually shows that only finitely many Rademachers can be in the closed span of $\{x_n\}_{n=1}^{\infty}$. This is improved in our last result, which shows that the closed span of an unconditionally non-negative quasibasic sequence in $L_p(0,1)$ cannot contain any strongly embedded infinite dimensional subspace (a subspace X of $L_p(0,1)$ is said to be strongly embedded if the $L_p(0,1)$ norm is equivalent to the $L_p(0,1)$ norm on X for some–or, equivalently, for all–r < p; see e.g. [1, p. 151]). The main work for proving this is contained in Lemma 1.

Before stating Lemma 1, we recall that a quasibasis for a Banach space X is a sequence $\{f_n, g_n\}_{n=1}^{\infty}$ in $X \times X^*$ such that for each x in X the series $\sum_{n} \langle g_n, x \rangle f_n$ converges to x. (In [5] a sequence $\{f_n\}_{n=1}^{\infty}$ in X is a called a quasibasis for X provided there exists such a sequence $\{g_n\}_{n=1}^{\infty}$. Since the sequence $\{g_n\}_{n=1}^{\infty}$ is typically not unique, we prefer to specify it up front.) The quasibasis $\{f_n, g_n\}_{n=1}^{\infty}$ is said to be unconditional provided that for each x in X the series $\sum_{n} \langle g_n, x \rangle f_n$ converges unconditionally to x. One then gets from the uniform boundedness principle (see, e.g., [5, Lemma 3.2]) that there is a constant K so that for all x and all scalars a_n with $|a_n| \leq 1$, we have $\|\sum_{n} a_n \langle g_n, x \rangle f_n\| \leq K \|x\|$. A sequence $\{f_n, g_n\}_{n=1}^{\infty}$ in $X \times X^*$ is said to be [unconditionally] quasibasic provided $\{f_n, h_n\}_{n=1}^{\infty}$ is an [unconditional] quasibasis for the closed span $[f_n]$ of $\{f_n\}_{n=1}^{\infty}$, where h_n is the restriction of g_n to $[f_n]$.

Lemma 1 Suppose that $\{f_n, g_n\}_{n=1}^{\infty}$ is an unconditionally quasibasic sequence in $L_p(0,1)$, $1 with each <math>f_n$ non-negative. If $\{y_n\}_{n=1}^{\infty}$ is a normalized weakly null sequence in $[f_n]$, then $||y_n||_1 \to 0$ as $n \to \infty$.

Proof: If the conclusion is false, we get a normalized weakly null sequence $\{y_n\}_{n=1}^{\infty}$ in $[f_n]$ and a c > 0 so that for all n we have $||y_n||_1 > c$.

By passing to a subsequence of $\{y_n\}_{n=1}^{\infty}$, we can assume that there are integers $0 = m_1 < m_2 < \dots$ so that for each n,

$$\sum_{k=1}^{m_n} |\langle g_k, y_n \rangle| < 2^{-n-3}c \quad \text{and} \quad \|\sum_{k=m_{n+1}+1}^{\infty} |\langle g_k, y_n \rangle| f_n \|_p < 2^{-n-3}c. \quad (5)$$

Effecting the first inequality in (5) is no problem because $y_n \to 0$ weakly, but the second inequality perhaps requires a comment. Once we have a

 y_n that satisfies the first inequality in (5), from the unconditional convergence of the expansion of y_n and the non-negativity of all f_k we get that $\|\sum_{k=N}^{\infty} |\langle g_k, y_n \rangle| |f_k||_p \to 0$ as $n \to \infty$, which allows us to select m_{n+1} to satisfy the second inequality in (5).

Since $||f_n||_1 > c$, from (5) we also have for every n that

$$\|\sum_{k=m_n+1}^{m_{n+1}} |\langle g_k, y_n \rangle| f_n \|_1 \ge \|\sum_{k=m_n+1}^{m_{n+1}} \langle g_k, y_n \rangle f_n \|_1 \ge c/2.$$
 (6)

Since L_p has an unconditional basis, by passing to a further subsequence we can assume that $\{y_n\}_{n=1}^{\infty}$ is unconditionally basic with constant K_p . Also, L_p has type s, where $s = p \wedge 2$ (see [1, Theorem 6.2.14]), so for some constant K'_p we have for every N the inequality

$$\|\sum_{n=1}^{N} y_n\|_p \le K_p' N^{1/s}. \tag{7}$$

On the other hand, letting $\delta_k = \operatorname{sign} \langle g_k, y_n \rangle$ when $m_n + 1 \leq k \leq m_{n+1}$, $n = 1, 2, 3, \ldots$, we have

$$K_{p} \| \sum_{n=1}^{N} y_{n} \|_{p} \geq K_{p} \| \sum_{n=1}^{N} \sum_{k=1}^{\infty} \delta_{k} \langle g_{k}, y_{n} \rangle f_{k} \|_{p}$$

$$\geq \| \sum_{n=1}^{N} \sum_{k=m_{n}+1}^{m_{n+1}} |\langle g_{k}, y_{n} \rangle | f_{k} \|_{p} - \| \sum_{n=1}^{N} \sum_{k \notin [m_{n}+1, m_{n+1}]}^{N} \delta_{k} \langle g_{k}, y_{n} \rangle f_{k} \|_{p}$$

$$\geq \| \sum_{n=1}^{N} \sum_{k=m_{n}+1}^{m_{n+1}} |\langle g_{k}, y_{n} \rangle | f_{k} \|_{1} - \| \sum_{n=1}^{N} \sum_{k \notin [m_{n}+1, m_{n+1}]}^{N} |\langle g_{k}, y_{n} \rangle | f_{k} \|_{p}$$

$$\geq \sum_{n=1}^{N} \| \sum_{k=m_{n}+1}^{m_{n+1}} |\langle g_{k}, y_{n} \rangle | f_{k} \|_{1}$$

$$- \sum_{n=1}^{N} \left(\sum_{k=1}^{m_{n}} |\langle g_{k}, y_{n} \rangle | + \| \sum_{k=m_{n+1}+1}^{\infty} |\langle g_{k}, y_{n} \rangle | f_{n} \|_{p} \right)$$

$$\geq Nc/2 - c/4 \quad \text{by (6) and (5)}$$
(8)

This contradicts (7).

Theorem 3 Suppose that $\{f_n, g_n\}_{n=1}^{\infty}$ is an unconditional quasibasic sequence in $L_p(0,1)$, $1 \leq p < \infty$, and each f_n is non-negative. Then the closed span $[f_n]$ of $\{f_n\}_{n=1}^{\infty}$ embeds isomorphically into ℓ_p .

Proof: The case p = 1 is especially easy: There is a constant K so that for each y in $[f_n]$

$$||y||_1 \le ||\sum_{n=1}^{\infty} |\langle g_k, y \rangle| f_n ||_1 \le K ||y||_1,$$
 (9)

hence the mapping $y \mapsto \{\langle g_k, y \rangle\}_{k=1}^{\infty}$ is an isomorphism from $[f_n]$ into ℓ_1 .

So in the sequel assume that p > 1. From Lemma 1 and standard arguments (see, e.g., [1, Theorem 6.4.7]) we have that every normalized weakly null sequence in $[f_n]$ has a subsequence that is an arbitrarily small perturbation of a disjoint sequence and hence the subsequence is $1 + \epsilon$ -equivalent to the unit vector basis for ℓ_p . This implies that $[f_n]$ embeds isomorphically into ℓ_p (see [3] for the case p > 2 and [2, Theorems III.9, III.1, and III.2] for the case p < 2).

References

- [1] Albiac, Fernando; Kalton, Nigel J. Topics in Banach space theory. Graduate Texts in Mathematics, 233. Springer, New York, 2006.
- [2] Johnson, W. B. On quotients of L_p which are quotients of ℓ_p . Compositio Math. 34 (1977), no. 1, 6989.
- [3] Johnson, W. B.; Odell, E. Subspaces of L_p which embed into ℓ_p . Compositio Math. 28 (1974), 3749.
- [4] Lindenstrauss, Joram; Tzafriri, Lior. Classical Banach spaces. I. Sequence spaces. Ergebnisse der Mathematik und ihrer Grenzgebiete, Vol. 92. Springer-Verlag, Berlin-New York, 1977.
- [5] Powell, Alexander M.: Spaeth, Anneliese H. Nonnegative constraints for spanning systems.

W. B. Johnson
Department of Mathematics
Texas A&M University
College Station, TX 77843 U.S.A.
johnson@math.tamu.edu

G. Schechtman
Department of Mathematics
Weizmann Institute of Science
Rehovot, Israel
gideon@weizmann.ac.il