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ABSTRACT

Enflo and Rosenthal [4] proved that ℓp(ℵ1), 1 < p < 2, does not (isomor-

phically) embed into Lp(µ) with µ a finite measure. We prove that if X

is a subspace of an Lp space, 1 < p < 2, and ℓp(ℵ1) does not embed into

X, then X embeds into Lp(µ) for some finite measure µ.

1. Introduction

In this note we study the structure of non-separable subspaces X of Lp(µ) with

µ a finite measure. For 2 < p < ∞ an obvious necessary condition is that ℓp(ℵ1)

does not (isomorphically) embed intoX . Indeed, since every operator from even

ℓp into a Hilbert space is compact, there is no one-to-one (bounded, linear)
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operator from ℓp(ℵ1) into a Hilbert space. On the other hand, for 2 < p, if µ

is a finite measure we have Lp(µ) ⊂ L2(µ) with the injection being continuous.

We conjecture that if X is a subspace of some Lp space, 2 < p < ∞, and ℓp(ℵ1)

does not embed into X , then X embeds into Lp(µ) for some finite measure µ.

At the end of Section 3 we verify this conjecture when X is a complemented

subspace of some Lp. However, the only information we know related to this

conjecture for general subspaces is Proposition 1, which says that in this range

of p, a subspace X of an Lp space contains ℓp(ℵ1) isomorphically iff X contains

ℓp(ℵ1) isometrically iff there is no one-to-one operator from X into a Hilbert

space.

For 1 ≤ p < 2, the conjectured classification mentioned above for 2 < p is

true. In Theorem 1, the main result of Section 2, we prove for p in this range

that a subspace X of an Lp space embeds into Lp(µ) for some finite measure

µ if and only if ℓp(ℵ1) does not embed (isomorphically) into X . This is not

equivalent to saying that X does not contain an isometric copy of ℓp(ℵ1) (but

is equivalent to saying that X contains almost isometric copies of ℓp(ℵ1); see

the remark after Theorem 1). Part of Theorem 1 is known. The p = 1 case

is an almost immediate consequence of a result due to Rosenthal [9], and, as

mentioned in the abstract, the fact that X does not embed into Lp(µ) for any

finite measure µ if ℓp(ℵ1) embeds into X is due to Enflo and Rosenthal [4]. The

main new result herein is the “if” part of Theorem 1.

In Section 3 we generalize the results in Section 2 to higher cardinals and

thereby obtain characterizations of subspaces of Lp spaces that contain an iso-

morphic copy of ℓp(ℵ) for a general uncountable cardinal ℵ. Section 3 contains

as special cases the results of Section 2, but the arguments in Section 3 require

somewhat more background knowledge and there are a few more technicalities.

Although not directly relevant for this note, we draw attention to another

result in [4]; namely, that for 1 < p 6= 2 < ∞, a space Lp(µ) with µ finite

does not have an unconditional basis if its density character is at least ℵω.

Trying (unfortunately, unsuccessfully) to decide what happens when the density

character is ℵ1 led us to the results presented here.

2. Main results

We begin with the easy result mentioned in the introduction
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Proposition 1: Let X be a subspace of some Lp space, 2 < p < ∞. The

following are equivalent:

• ℓp(ℵ1) isometrically embeds into X .

• There is a subspace of X that is isomorphic to ℓp(ℵ1) and is comple-

mented in Lp.

• ℓp(ℵ1) isomorphically embeds into X .

• There is no one-to-one (bounded, linear) operator from X into a Hilbert

space.

Proof. Since every isometric copy of an Lp space in an Lp space is norm one com-

plemented [5, Theorem 6.3], and since we already explained in the introduction

why the third assertion implies the fourth, we only need to prove that the fourth

condition implies the first condition. For this, we use Maharam’s theorem [8], [5,

Theorem 5.8], which implies thatX is a subspace of Lp := (
∑

γ∈Γ Lp{−1, 1}ℵγ)p

for some set Γ of ordinal numbers, where {−1, 1} is endowed with the uniform

probability measure.

Now assume that there is no one-to-one operator from X into a Hilbert

space. This implies that for any countable subset Γ′ of Γ, the natural pro-

jection PΓ′ from Lp onto (
∑

γ∈Γ′ Lp{−1, 1}ℵγ)p is not one-to-one on X , be-

cause one can map (
∑

γ∈Γ′ Lp{−1, 1}ℵγ)p one-to-one into the Hilbert space

(
∑

γ∈Γ′ L2{−1, 1}ℵγ)2 in an obvious way when Γ′ is countable. On the other

hand, given any x in X , there is a countable subset x(Γ) of Γ so that Pγx = 0 for

all γ not in x(Γ). Thus if one takes a collection of unit vectors x in X maximal

with respect to the property that x(Γ) ∩ y(Γ) = ∅ when x 6= y, then the collec-

tion must have cardinality at least ℵ1 and hence ℓp(ℵ1) embeds isometrically

into X .

Proposition 1 is completely wrong for p < 2. For one thing, there is an

obvious one-to-one operator from ℓp(Γ) into a Hilbert space—the formal identity

mapping from ℓp(Γ) into ℓ2(Γ). Secondly, there are subspaces of Lp isomorphic

to ℓp(Γ) for any set Γ that do not contain isometric copies even of ℓp. Indeed,

take a family (fγ)γ∈Γ of independent standard normal random variables on

some probability space (Ω, µ) and in Lp(µ) ⊕p ℓp(Γ) consider the closed linear

span of (fγ ⊕ eγ)γ∈Γ, where (eγ)γ∈Γ is the unit vector basis for ℓp(Γ).

It is reasonable to conjecture that an isomorphic copy of ℓp(Γ) in an Lp space

contains for every ε > 0 a (1 + ε)-isomorphic copy of ℓp(Γ), and this is proved
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in the remark after Theorem 1 when Γ has cardinality ℵ1, and in Theorem 2

for general uncountable Γ. (The case when Γ is countably infinite is contained

in [4].)

The main result in this note is

Theorem 1: Let X be a subspace of some Lp space, 1 ≤ p < 2. Then X

embeds into Lp(µ) for some finite measure µ if and only if ℓp(ℵ1) does not

embed (isomorphically) into X .

Proof. In view of [4], we only need to prove the if part, so assume that ℓp(ℵ1)

does not embed intoX . As in the proof of Proposition 1, by Maharam’s theorem

we can assume that X is a subspace of Lp := (
∑

γ∈Γ Lp{−1, 1}ℵγ)p for some

set Γ of ordinal numbers. Assume now that X does not embed into Lp(µ) for

any finite measure µ. We want to build a long unconditionally basic sequence

(xα)α<ℵ1
of unit vectors in X that have “big disjoint pieces”; more precisely,

so that there are disjoint countable subsets Γα, α < ℵ1, of Γ so that PΓα
xβ 6= 0

iff α = β. It then follows that for some ε > 0, ‖PΓα
xα‖ > ε for ℵ1 values of α,

which we might as well assume for all α < ℵ1. Such a sequence must, by the

diagonal principle [7, Proposition 1.c.8] (or with a worse constant, by a square

function argument), dominate the unit vector basis of ℓp(ℵ1). But by the type

p property of Lp [1, Theorem 6.2.14], every normalized unconditionally basic

sequence of cardinality ℵ1 is dominated by the unit vector basis of ℓp(ℵ1). Here

we use “dominate” as is customary in Banach space theory: (xα) dominates

(yα) provided there is a constant C so that for all finite sets aα of scalars,

‖
∑

aαyα‖ ≤ C‖
∑

aαxα‖.

Since X does not embed into Lp(µ) for any finite measure µ, we have for any

countable subset Γ′ of Γ that the restriction of PΓ′ to X is not an isomorphism,

because (
∑

γ∈Γ′ Lp{−1, 1}ℵγ)p is isometrically isomorphic to Lp(µ) for some

finite µ when Γ′ is countable. From this it is not hard to get a set (xα)α<ℵ1
of

unit vectors in X that have big disjoint pieces. In the case p = 1, this is enough

by Rosenthal’s technique [9] to get a subset of (xα)α<ℵ1
that is equivalent to

the unit vector basis of ℓ1(ℵ1), but for p > 1 we need to do more work to get

(xα)α<ℵ1
unconditionally basic. So, from here on, we assume that 1 < p < 2.

Call a set S of vectors in Lp = (
∑

γ∈Γ Lp{−1, 1}ℵγ)p a generalized martin-

gale difference set (GMD set, in short) provided that for every finite subset

F of S and every γ in Γ, the sequence (Pγx)x∈F can be ordered to be a mar-

tingale difference sequence. We allow 0 to appear in a martingale difference
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sequence, but the definition requires that Pγx 6= Pγy if Pγx 6= 0. Since a mar-

tingale difference sequence is unconditional in Lp(µ) for any probability µ, any

1 < p < ∞, and with the unconditional constant depending only on p [2], a

GMD set in Lp is unconditionally basic for our range of p.

Take a collection V of pairs (x, γ(x))x∈M in X × Γ maximal with respect to

the properties that ‖x‖ = 1, Pγ(x)x 6= 0, the γ(x) are all distinct, and M is a

GMD set. The collection M is unconditionally basic and has disjoint pieces,

hence if M is uncountable there is a subset of M having cardinality ℵ1 that is

equivalent to the unit vector basis for ℓp(ℵ1). So assume that M is countable.

For each x in M , there is a countable subset x(Γ) of Γ so that Pγx = 0 for

γ 6∈ x(Γ). Set Γ′ =
⋃

x∈M x(Γ). Each vector in Lp{−1, 1}ℵγ depends on only

countably many coordinates, so for each γ in Γ′ there is countable subset S(γ)

of ℵγ so that for every x in M , the vector Pγx depends only on S(γ). Let

QS(γ) be the (norm one) conditional expectation projection from Lp{−1, 1}ℵγ

onto its subspace of functions that depend only on S(γ) and let Q be the

(norm one) projection on Lp that is the direct sum over Γ′ of QS(γ). Since the

projection Q has separable range and we are assuming that X does not embed

into Lp(µ) for any finite measure µ, the space X ′ := kerQ ∩ X also does not

embed into Lp(µ) for any finite measure µ. This is perhaps not quite obvious

but follows from the reflexivity of X . Lindenstrauss proved that reflexive spaces

have the separable complementation property [6], so there is a complemented

separable subspace Y of X∗ that contains the range of (Q|X)∗ and hence the

co-separable complemented subspace Y⊥ ⊂ X ′ of X cannot embed into Lp(µ)

for any finite measure µ. Now let PΓ′ be the natural projection from Lp onto

(
∑

γ∈Γ′ Lp{−1, 1}ℵγ)p. Since Γ
′ is countable, the space (

∑

γ∈Γ′ Lp{−1, 1}ℵγ)p is

isometric to Lp(µ) for some probability µ and hence PΓ′ is not an isomorphism

on X ′. So there is a unit vector x in X ′ so that (I − PΓ′)x 6= 0; in fact,

‖(I − PΓ′)x‖ can be taken arbitrarily close to one (this is important for the

remark below). In particular, there is γ(x) ∈ Γ ∼ Γ′ so that Pγ(x)x 6= 0.

Since also {x} ∪M is a GMD set, V ∪ {(x, γ(x))} contradicts the maximality

of V .

Remark: A minor modification of the above argument shows that if X ⊂ Lp,

1 < p < 2, does not embed into Lp(µ) for some finite measure µ, then ℓp(ℵ1)

almost isometrically embeds into X . One needs to define the collection V a

bit differently. Fix ε > 0 and take a set V of pairs (x,Γ(x))x∈M with each
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x a unit vector in X , each Γ(x) a countable subset of Γ, and maximal with

respect to the properties that the M forms a GMD set, ‖PΓ(x)x‖ > 1 − ε, and

the Γ(x) are pairwise disjoint. The argument for Theorem 1 shows that V is

uncountable. Notice that the collection M is an ε-GMD perturbation of the

disjoint vectors (PΓ(x)x)x∈M ; i.e., (x − PΓ(x)x)x∈M is a GMD set of vectors

each of which has norm less than ε. Thus for any scalars ax, we have by

the type p property of Lp and the GMD property of (x − PΓ(x)x)x∈M that

‖
∑

ax(x− PΓ(x)x)‖ ≤ εCp(
∑

|ax|p)1/p.

3. Higher cardinals

In this section we generalize the main results in the previous section to the

setting of ℓp(ℵα) with α > 1. Towards the end of this section we also deal with

complemented subspaces of Lp spaces which do not contain large ℓp(Γ) spaces

and extend our results to the range 2 < p < ∞, but only for complemented

subspaces. We begin with a higher cardinal version of Proposition 1.

Let us say that a Banach space is an Lp(ℵ) space, where ℵ is an infinite

cardinal, provided X is isometric to (
∑

α∈Γ Lp(µα))p with |Γ| ≤ ℵ and each µa

a finite measure (which of course can be taken to be probabilities).

Proposition 2: Let X be a subspace of some Lp space, 2 < p < ∞, and let ℵ

be an uncountable cardinal. The following are equivalent:

(1) ℓp(ℵ) isometrically embeds into X .

(2) There is a subspace of X that is isomorphic to ℓp(ℵ) and is comple-

mented in Lp.

(3) ℓp(ℵ) isomorphically embeds into X .

(4) There is no one-to-one (bounded, linear) operator from X into an Lp(Γ)

space with Γ < ℵ.

Proof. As was mentioned in the proof of Proposition 1, the implication (1)=⇒(2)

is known, and (2)=⇒(3) is obvious. For (3)=⇒(4) it is enough to show that for

Γ < ℵ, there is no one-to-one operator from ℓp(ℵ) into (
∑

α∈Γ Lp(µα))p with

each µα a probability. Suppose, to the contrary, that T is such an operator. Let

iαp,2 be the formal inclusion mapping from Lp(µα) into L2(µα). The operators

iαp,2PαT are all compact and the iαp,2 are all one-to-one, so for each α ∈ Γ there

is a countable subset Aα of ℵ such that PαTeβ = 0 for all β ∈ ℵ ∼ Aα, where
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(eβ)β∈ℵ is the unit vector basis for ℓp(ℵ). Since T is one-to-one,
⋃

α∈Γ Aα = ℵ

and hence ℵ = |
⋃

α∈Γ Aα| ≤ |Γ| · ℵ0 = |Γ|.

For (4)=⇒(1), assume that X is a subspace of (
∑

α∈Γ Lp(µα))p with each µα

a probability. By (4), for all Γ′ ⊂ Γ with |Γ′| < ℵ, we have that the restriction

of PΓ′ to X is not one-to-one. Take a collection S of unit vectors in X maximal

with respect to the property that x(Γ) ∩ y(Γ) = ∅ for x 6= y in S, where x(Γ) is

the (countable) set of all α ∈ Γ for which Pαx 6= 0. If |S| < ℵ then Γ′ :=
⋃

x∈S

has cardinality at most |S| · ℵ0 < ℵ, which by (4) implies that the restriction of

PΓ′ to X is not one-to-one, which clearly contradicts the maximality of S.

We turn now to the case 1 < p < 2 (Rosenthal [9] treated the case p = 1 long

ago). In addition to the argument for Theorem 1, we need the following lemma.

Lemma 1: Let 1 < p < 2 and let ℵ be an uncountable cardinal. If ℵ′ < ℵ, then

ℓp(ℵ) is not isomorphic to a subspace of any Lp(ℵ′) space.

Proof. Notice that it follows by duality from Proposition 2 that ℓp(ℵ) is not

isomorphic to a complemented subspace of any Lp(ℵ′) space. So we just need

to prove that if ℓp(ℵ) embeds into an Lp(ℵ′) space, then it embeds into some

other Lp(ℵ′) space as a complemented subspace.

Assume that (xα)α∈ℵ is a normalized set of vectors in some Lp(ℵ
′) space

Lp(Ω, µ) that is equivalent to the unit vector basis for ℓp(ℵ). In particular,

there is θ > 0 so that for all finite subsets F of ℵ and all scalars (cα)α∈F ,

(1)

∥

∥

∥

∥

∑

α∈F

cαxα

∥

∥

∥

∥

p

≥ θ

(

∑

α∈F

|cα|
p

)1/p

.

By enlarging (Ω, µ) (but keeping Lp(Ω, µ) an Lp(ℵ′) space) we can assume

that µ is purely non-atomic. In the Lp(ℵ′) space Lp(Ω×{−1, 1}ℵ, µ×ν) (where

ν is the usual Haar measure on {−1, 1}ℵ), consider the vectors yα := xα ⊗ rα,

where rα is the usual coordinate projection [Rademacher] on {−1, 1}ℵ. Then

(yα) is also equivalent to the usual basis for ℓp(ℵ) (and satisfies the inequality

(1)) and, incidentally, is 1-unconditional (so that it satisfies the reverse inequal-

ity to (1) with θ replaced by one).

We claim that the closed linear span Y of (yα) is complemented in

Lp(Ω× {−1, 1}ℵ, µ× ν). Notice that to prove the claim, it is enough to define

for each finite subset F of ℵ a projection PF from Lp(Ω×{−1, 1}ℵ, µ× ν) onto
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the span YF of {yα : α ∈ F} so that supF ‖PF ‖ := C < ∞. Indeed, if you in-

dex the finite subsets of ℵ by inclusion, the resulting net (PF ), being uniformly

bounded, has a weak operator cluster point (say P ) by the reflexivity of Lp

spaces. It is easy to check that P is a projection onto Y and ‖P‖ ≤ C.

So let F be any finite non-empty subset of ℵ. By a result of Dor [3, Theorem

B], inequality (1) implies that there are disjoint subsets (Ωα)α∈F of Ω so that

for each α in F ,

(2) ‖xα1Ωα
‖p ≥ θ2/(2−p).

(Dor’s theorem is stated for [0, 1] with Lebesgue meaure, but the proof works

for any non-atomic measure space. Alternatively, the more general result can

be deduced formally from the case of [0, 1].) For simplicity, and without loss of

generality by replacing the Ωα with subsets, we can assume that for each α in

F there is equality in inequality (2).

Define for α in F disjoint functions

(3) fα := θ(2p)/(p−2)|xα|
p−11Ωα

signxα.

Now define gα :=fα⊗rα. So the gα are disjoint vectors in Lp′(Ω×{−1, 1}ℵ, µ×ν),

the dual of Lp(Ω×{−1, 1}ℵ, µ×ν). The power of θ in their definition was chosen

to make (yα, gα)α∈F a biorthogonal system. A routine computation shows that

the projection PF :=
∑

α∈F gα ⊗ yα from Lp(Ω× {−1, 1}ℵ, µ× ν) onto YF has

norm at most θ2/(p−2).

The main result of this section is a generalization of Theorem 1 to higher

cardinals.

Theorem 2: Let X be a subspace of some Lp space, 1 ≤ p < 2, and let ℵ be

an uncountable cardinal. The following are equivalent.

(1) For all ε > 0, ℓp(ℵ) is (1 + ε)-isomorphic to a subspace of X .

(2) There is a subspace of X that is isomorphic to ℓp(ℵ) and is comple-

mented in Lp.

(3) ℓp(ℵ) isomorphically embeds into X .

(4) X does not isomorphically embed into an Lp(ℵ′) space with ℵ′ < ℵ.

Proof. The implication (1)=⇒ (2) follows easily from [10], while (2) =⇒ (3) is

obvious. Lemma 1 gives (3)=⇒(4), so we only need to prove (4)=⇒(1).
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By Maharam’s theorem [8], we can assume that X is a subspace of Lp :=

(
∑

β∈B Lp{−1, 1}ℵβ)p. Given ε > 0, take a set M := {xγ : γ ∈ Γ} of unit

vectors in X maximal with respect to the properties:

(i) The collection M is a GMD set.

(ii) There are disjoint countable subsets Bγ of B such that for all γ in Γ,

‖PBγ
xγ‖ > 1− ε.

To get (1), just as in the proof of Theorem 1 it is enough to verify that |Γ| ≥ ℵ.

Assume instead that ℵ > |Γ|. We might as well assume, by enlarging the Bγ ’s,

that for β 6∈ B′ :=
⋃

γ∈Γ Bγ , we have Pβxγ = 0 for all γ in Γ.

For each β in B′ and γ in Γ, let Cβ,γ be the (countable) set of coordinates of

{−1, 1}ℵβ on which Pβxγ depends, and let Cβ :=
⋃

γ∈ΓCβ,γ . Then |Cβ | ≤ |Γ|

and hence the density character of Lp{−1, 1}Cβ is at most |Γ|.

Let Eβ be the (norm one) conditional expectation projection from Lp{−1, 1}ℵβ

onto Lp{−1, 1}Cβ and let Q := (
∑

β∈B′ Eβ)p be the direct sum of these projec-

tions; we consider Q a projection on Lp. Note that the density character of the

range of Q is at most |Γ| < ℵ.

Just as in the proof of Theorem 1, this implies that X ′ := ker(Q)∩X does not

embed isomorphically into an Lp(ℵ′) space with ℵ′ < ℵ. Indeed, Lindenstrauss

[6] proved that there is a norm one complemented subspace Y of X∗ which

contains the range of (Q|X)∗ so that the density character of Y is the same

as the density character of QX , which is at most |Γ| < ℵ. This obviously

implies that Y ∗ (which is isometric to the range of the adjoint of the norm one

projection onto Y ) embeds isometrically into an Lp(|Γ|) space and hence Y ⊥

cannot embed into an Lp(ℵ′) space because X does not. Since Y ⊥ is contained

in X ′, also X ′ does not embed into an Lp(ℵ′) space.

The above argument shows that (PB′)|X is not an isomorphism, so there is

a norm one element x in X ′ such that ‖PB′x‖ < ε. Then M ∪ {x} satisfies (i)

and (ii), which contradicts the maximality of M .

Theorem 3 below gives another equivalence to the conditions in Theorem

2 that provides information on complemented subspaces of Lp spaces for all

1 < p < ∞. The proof is similar to the proof of (4)=⇒ (1) in Theorem 2 but

uses the well known consequence of Lindenstrauss’ [6] work that every reflexive

space X has an M -basis; that is, a biorthogonal system {xα, x
∗
α}α∈A such that

the linear span of {xα}α∈A is dense in X and {x∗
α}α∈A separates points of X
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(which, in view of the reflexivity of X , is the same as saying that the linear

span of {x∗
α}α∈A is dense in X∗); see, for example, [11, Theorem 4.2].

In the proof of Theorem 3 we use the following simple lemma, which is a

special case of a result well known to people who work in non-separable Banach

space theory. To avoid cumbersome notation in the statement and proof of

the lemma, we introduce here some notation. Fix 1 < p < ∞ and consider

a space Lp = (
∑

β∈B Lp{−1, 1}ℵβ)p. We call a projection P on Lp of the

form
∑

β∈B′ ECβ
with B′ ⊂ B and Cβ a non-empty subset of ℵβ for β ∈ B′ a

standard projection. Here ECβ
is the conditional expectation projection from

Lp{−1, 1}ℵβ onto Lp{−1, 1}Cβ . So if P is a standard projection on Lp, then P ∗

is the obvious standard projection on Lp∗ . Given standard projections P and Q

on Lp, write P ≤ Q if QP = P . So if P ≤ Q, then QP = PQ = P . Evidently

if P =
∑

β∈B′ ECβ
and Q =

∑

β∈B′′ EC′

β
, then P ≤ Q iff B′ ⊂ B′′ and for all

β ∈ B′ we have Cβ ⊂ C′
β . Notice that the density character of the range of a

standard projection P =
∑

β∈B ECβ
is ℵ0 +

∑

β∈B |Cβ |.

Lemma 2: Let {xα}α∈A be an M -basis for a subspace X of Lp :=

(
∑

β∈B Lp{−1, 1}ℵβ)p and let P be a standard projection on Lp. Then there is

a standard projection Q ≥ P on Lp so that the density character ℵ of the range

of Q is the same as the density character of the range of P and so that there

is a subset A′ ⊂ A with |A′| ≤ ℵ and Qxα = xα for α ∈ A′ and Qxα = 0 for

α 6∈ A′.

Proof. The main point is the obvious fact that if T is an operator from X

into some Banach space and the range of T ∗ is contained in the closed span of

{x∗
α}a∈A′, then for all α 6∈ A′ we have Txα = 0. Construct by induction an

increasing sequence Pn of standard projections on Lp and subsetsA1 ⊂ A2 ⊂ · · ·

of A so that each An has cardinality ℵ, the range of P is contained in the closed

linear span of A1, and for each n we have:

• The range of (Pn|X)∗ is contained in the closed span of {x∗
α}a∈An

.

• Pn+1xα = xα for all α ∈ An.

Use the “main point” to check that the sequence Pn converges strongly to a

standard projection Q that satisfies the conclusions of the lemma.

Theorem 3: Let X be a subspace of Lp = (
∑

β∈B Lp{−1, 1}ℵβ)p, 1 < p < 2,

and let ℵ be an uncountable cardinal. If ℓp(ℵ) is not isomorphic to a sub-

space of X , then for every ε > 0 there is a subset B′ of B with |B′| < ℵ so
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that the restriction projection PB′ of Lp onto (
∑

β∈B′ Lp{−1, 1}ℵβ)p satisfies

‖PB′x− x‖ ≤ ε‖x‖ for every x ∈ X .

Proof. Since X has an M -basis we deduce from Lemma 2 that if P is a standard

projection on Lp, then there is a standard projection Q on Lp so that Q ≥ P

and QX ⊂ X and the range of Q has the same density character as the range

of P . We now basically just repeat the proof of (4)=⇒ (1) in Theorem 2, but

input this consequence of Lemma 2.

Assume that the conclusion of Theorem 3 is false for a certain ε > 0. Take

a set M := {xγ : γ ∈ Γ} of unit vectors in X maximal with respect to the

properties:

(i) The collection M is a GMD set.

(ii) There are disjoint countable subsets Bγ of B such that for all γ in Γ,

‖PBγ
xγ‖ > ε/2.

To get a contradiction, just as in the proofs of Theorem 1 and Theorem 2, it

is enough to verify that |Γ| ≥ ℵ. Assume instead that ℵ > |Γ|. We might

as well assume, by enlarging the Bγ ’s, that for β 6∈ B′ :=
⋃

γ∈ΓBγ , we have

Pβxγ = 0 for all γ in Γ. The set B′ could be replaced with any superset that

has cardinality at most |Γ|.

For each β in B′ and γ in Γ, let Cβ,γ be the (countable) set of coordinates of

{−1, 1}ℵβ on which Pβxγ depends, and let Cβ :=
⋃

γ∈ΓCβ,γ . Then |Cβ | ≤ |Γ|

and hence the density character of Lp{−1, 1}Cβ is at most |Γ|. We could as

well replace Cβ with any subset of ℵβ of cardinality at most |Γ| that contains

this Cβ . Let Eβ be the (norm one) conditional expectation projection from

Lp{−1, 1}ℵβ onto Lp{−1, 1}Cβ and let P := (
∑

β∈B′ Eβ)p be the direct sum of

these projections; so P is a standard projection on Lp. Note that the density

character of the range of P is at most |Γ| < ℵ. By the consequence of Lemma 2

we mentioned above, there is a standard projection Q ≥ P so that the density

characters of the ranges of Q and P are the same and QX ⊂ X . By the

replacement comments made above, without loss of generality we can avoid

introducing additional notation and just assume that P = Q.

We are now ready for the punch line. If y is a unit vector in the subspace

(I −P )X of X , then M ∪ {y} is still a GMD set. Consequently, by maximality

of M we have ‖(I − PB′)y‖ ≤ ε/2. Thus if x is a unit vector in X we have,

since P ≤ PB′ , that

‖x− PB′x‖ = ‖(I − PB′)(I − P )x‖ ≤ (ε/2)‖(I − P )x‖ ≤ ε‖x‖.
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Our main reason for proving Theorem 3 is that it gives as a corollary a

verification of the conjecture mentioned in the Introduction for complemented

subspaces of Lp spaces, 2 < p < ∞.

Corollary 1: Assume that X is a complemented subspace of some Lp space

(say, with a projection of norm λ). Let ℵ be an infinite cardinal and assume

that ℓp(ℵ) is not isomorphic to a subspace of X . Then:

(1) If 1 < p < 2, then for all ε > 0 there is ℵ′ < ℵ such that the space X is

(1+ ε)-isomorphic to a (1+ ε)λ-complemented subspace of some Lp(ℵ
′)

space.

(2) If 2 < p < ∞, then there is ℵ′ < ℵ such that X is isomorphic to a

complemented subspace of some Lp(ℵ′) space.

Proof. In view of Maharam’s theorem, (1) is immediate from Theorem 3 and

the principle of small perturbations. Conclusion (2) follows from (1) by duality

and the equivalence of (2) and (3) in Theorem 2.
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