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DONGYANG CHEN, WILLIAM B. JOHNSON, AND BENTUO ZHENG

Abstract. Let T be a bounded linear operator on X = (Σ `q)p with 1 ≤ q < ∞
and 1 < p <∞. Then T is a commutator if and only if for all non zero λ ∈ C, the

operator T − λI is not X-strictly singular.

1. Introduction

When studying derivations on a general Banach algebra A, a problem that arises

is to classify the commutators in the algebra; i.e., elements of the form AB −BA. A

natural class of algebras to consider are spaces L(X) of all (always bounded, linear)

operators on the Banach space X. After the breakthrough by Brown and Pearcy

[BP] that gave a classification of the commutators in L(X) when X is a Hilbert space,

Apostol [A] initiated the study of commutators in L(X) for X a general Banach space

and gave a complete classification when X = `p, 1 < p < ∞ [A] and X = c0 [A2],

and he proved partial results for other Banach spaces. This topic was resuscitated

30+ years later by Dosev [D], who classified the commutators in L(`1) and other

spaces, and this line of investigation was continued in [DJ] and [DJS]. It seems to

the authors that there are two reasons for this 30+ year gap. First, Apostol’s papers,

while containing the germs of many general facts, were focused on special spaces, and

it is quite difficult to discern from his proofs what is needed in more general spaces

X to understand the structure of commutators in L(X). Secondly, the geometry of

most Banach spaces is much more complicated than that of `p, 1 < p < ∞, and

c0, and this makes it much more difficult to determine which operators on them are

commutators. Although the papers [D], [DJ], and [DJS], as well as this paper, are

focused on classifying the commutators in L(X) for special spaces X, part of their

value consists of building a machine that tells one for certain classes of Banach spaces
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what geometrical facts about a space are needed in order to classify the commutators

on the space.

For a general Banach algebra A, the only known obstruction for an element being

a commutator was proved in 1947 by Wintner [W]. He showed that the identity in

a unital Banach algebra is not a commutator, which immediately implies that no

element of the form λI + K, where K belongs to a norm closed (proper) ideal of A
and λ 6= 0, is a commutator in the Banach algebra A. While in some Banach algebras

there are other obstructions (such as the existence of traces), Wintner’s obstruction

is the only one known for L(X) for any infinite dimensional Banach space X.

We say that a Banach space X is a Wintner space provided that every non com-

mutator in L(X) is of the form λI + K, where λ 6= 0 and K lies in a proper ideal.

(In [DJ] the property of being a Winter space was called property P.)

Wild Conjecture. Every infinite dimensional Banach space is a Wintner space.

We do not believe that this Wild Conjecture is true. In fact, there may be an infinite

dimensional Banach space such that every finite rank commutator onX has zero trace!

Nevertheless, every infinite dimensional Banach space on which the commutators are

classified is a Winter space, and the conjecture that every Banach space that admits

a Pe lczyński decomposition (defined below) is a Wintner space is much tamer. In

this paper we verify that the spaces Zp,q := (Σ `q)p with 1 ≤ q < ∞ and 1 < p < ∞
are Wintner spaces. Each of these spaces does admit a Pe lczyński decomposition;

in fact, it is clear that Zp,q is isometrically isomorphic to (
∑
Zp,q)p. Recall that,

given a sequence (Xn) of Banach spaces and p ∈ [1,∞] ∪ {0}, (
∑
Xn)p is the space

of all sequences (xn) with xn ∈ Xn and ‖(xn)‖ := ‖(‖xn‖)‖p < ∞ and the formula

‖(xn)‖ := ‖(‖xn‖)‖p < ∞ for p = 0 is used in the sense (‖xn‖) ∈ c0. The space X

is said to have a Pe lczyński decomposition provided X is isomorphic to (ΣX)p for

some p.

2. The Main Theorem

For a Banach space X denote by SX the unit sphere of X. We say that a linear

operator between two Banach spaces T : X → Y is an isomorphism if T is an injective

bounded linear map with closed range. If in addition T is surjective then we will say

that T is an onto isomorphism. Let X, Y and Z be Banach spaces. An operator

from X to Y is said to be Z-strictly singular provided that there is no subspace Z0

of X which is isomorphic to Z for which T |Z0 is an isomorphism. Thus an operator
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is strictly singular in the usual sense if and only if it is Z-strictly singular for every

infinite dimensional space Z. For any two subspaces (possibly not closed) M and N

of a Banach space X let d(M,N) = inf{‖m − n‖ : m ∈ SM , n ∈ N}, so that when

M∩N = {0}, the projection from M+N onto M with kernel N has norm d(M,N)−1.

Main Theorem. Let T be an operator on X := Zp,q, 1 ≤ q <∞, 1 < p <∞. Then

T is a commutator if and only if for all non zero λ ∈ C the identity on X factors

through T − λI. Consequently, X is a Wintner space.

Remark 2.1. For p = q = 2, the Main Theorem is of course a restatement of the

classical Brown-Pearcy theorem [BP]. The case when p = q was proved by C. Apostol

[A]. So, by duality (see the proof of Corollary 2.16), it is enough to look at Zp,q when

1 ≤ q < p <∞.

The strategy for proving the main theorem is the same as that in [D], [DJ], and

[DJS]. The main problem is to prove structural results for Zp,q, 1 ≤ q < p < ∞, so

that [DJ] can be applied. To get started, we show in Proposition 2.8 that the Zp,q

strictly singular operators agree with the setMZp,q of those operators T on Zp,q such

that the identity on Zp,q does not factor through T . We also need thatMZp,q is closed

under addition, so that MZp,q is the largest (proper) ideal in L(MZp,q). This is part

of Proposition 2.8.

We begin with a discussion of how isomorphic copies of `q in Zp,q, 1 ≤ q < p <∞,

are situated in Zp,q. We are primarily interested in passing to a subspace which is

situated in a canonical fashion. Much of what we need is known and for Zp,2 is partly

contained in in [O]. We do not assume familiarity with arguments involving Zp,q, but

we do assume a basic knowledge of techniques using block basic sequences, gliding

hump arguments, small perturbations of operators, and how they are applied in the

study of `q. This material can be found in standard texts, including [LT, Chapter 1].

This allows us in many places to avoid writing long strings of inequalities when an

argument is standard.

First, if X is a subspace of Zp,q that is isomorphic to `q, then for all ε > 0 there

is a subspace Y of X that is (1 + ε)-isomorphic to `q. This follows from a general

result of Krivine and Maurey [KM] about stable Banach spaces, but can be proved in

an elementary way using James’ [J] proof of the non distortablity of the norm on `1.
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Indeed, by passing to a subspace and making a small perturbation, we can assume

that X = spanxn with (xn) a normalized block basis of the usual basis for Zp,q and

where (xn) is equivalent to the usual basis for `q. James’ argument shows that there

is a normalized block basis (yn) of (xn) so that for all scalar sequences (an)

(2.1) ‖
∑
n

anyn‖ ≥ (1 + ε)−1(
∑
n

|an|q)1/q.

Let us recall the argument for (2.1): Suppose that (xn) is a normalized basic

sequence in some Banach space satisfying (2.1) with 1+ε replaced byK > 1. Partition

N into infinitely many disjoint infinite sets (Nk). It may be that for some k and all

scalars (an)

‖
∑
n∈Nk

anxn‖ ≥ K−1/2(
∑
n∈Nk

|an|q)1/q.

If not, choose for each k a finitely non zero sequence (bn)n∈Nk
so that yk :=

∑
n∈Nk

bnxn

has norm one and (
∑

n∈Nk
|bn|q)1/q > K1/2. It is easy to check that the sequence (yk)

satisfies (2.1) with 1+ε replaced by K1/2 > 1. Iterating, we get a normalized sequence

(yn) in spanxn which is disjointly supported with respect to (xn) and which satisfies

(2.1). Finally, pass to any subsequence of (yn) that is a true block basis of (xn). This

does it, because if (zk) is a disjoint sequence in Zp,q, then ‖
∑

k zk‖ ≤ (
∑

k ‖zk‖q)1/q.

If T : X → Y is an operator between Banach spaces and Z is a subspace of X,

define

(2.2) f(T, Z) = inf{‖Tz‖ : z ∈ Z; ‖z‖ = 1} (= ‖T−1
|Z ‖

−1).

Then f(T, Z) > 0 iff T|Z is an isomorphism; f(T, Z) = ‖T‖ > 0 iff T|Z is a multiple

of an isometry; and ‖T‖ ≥ f(T, Z1) ≥ f(T, Z2) if Z1 ⊂ Z2 ⊂ X.

Lemma 2.1. Let T be an operator from `q into Zp,q, 1 ≤ q < p < ∞. Then, for

all ε > 0, there exists a block subspace Z of `q (i.e. Z is the closed linear span of a

block basis of the unit vector basis for `q) which is isometric to `q so that ‖T |Z‖ ≤
f(T, Z) + ε.

Proof. If T is strictly singular, which is to say that f(T, Z) = 0 for all infinite di-

mensional subspaces Z of `q, then this is a standard textbook exercise. So we can

assume, by passing to a suitable block subspace spanned by a block basis of the unit

vector basis (δn) of `q, that T is an isomorphism. Using the fact that subspaces of

Zp,q which are isomorphic to `q contain smaller subspaces almost isometric to `q, and

keeping in mind that the ε > 0 gives wiggle room, Lemma 2.1 reduces to the case
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where the operator maps `q into an isometric copy of `q, which of course is easy and

is contained e.g. in [AK, Section 2.1]. �

Lemma 2.2. Let T : Zp,q → Zp,q (1 ≤ q < p < ∞) be an operator. Then, for every

positive integer m, limk→∞ ‖(P[1,m]T )|P[k,∞)Zp,q‖ = 0, where P[m,n] is the projection

from Zp,q onto the direct sum from the m-th `q to the n-th `q.

Proof. Suppose not. Then there exist a positive integer m, a positive number δ > 0

and a normalized block basis (xn) of the natural basis for Zp,q which is equivalent to

the unit vector basis of `p such that ‖P[1,m]Txn‖ ≥ δ. By passing to a subsequence

of (xn), we may assume that (P[1,m]Txn) is equivalent to the unit vector basis of `q.

This yields an obvious contradiction since q < p and T is bounded. �

Lemma 2.3. Let T be an operator from `q into Zp,q (1 ≤ q < p <∞). Then, for all

ε > 0, there exist a positive integer N and a block subspace X of `q which is isometric

to `q so that ‖(P[N,∞)T )|X‖ < ε.

Proof. If T is strictly singular then there is a normalized block basis (xn) of the unit

vector basis (δn) of `q so that ‖T|span xn‖ < ε, and we are done. Otherwise, by passing

to a suitable block subspace of (δn), we can assume that T is an isomorphism and

hence f(T, `q) > 0. By Lemma 2.1, for a value of δ = δ(ε) to be specified momentarily,

we can pass to a another block subspace, say Z, so that

‖T|Z‖ < f(T, Z) + δf(T, `q) ≤ (1 + δ)f(T, Z),

and, by replacing T with ‖T|Z‖−1T , also that ‖T|Z‖ = 1. Moreover, just as in Lemma

2.1, we can assume that Tδn are disjointly supported in Zp,q. This reduces to the case

where ‖T‖ = 1 and f(T, `q) > (1 + δ)−1.

Now if ‖P[N,∞)T|span (δk)∞k=n
‖ > ε for all N and n, we then get N1 < N2 < . . . and a

normalized block basis (xn) of (δn) so that for all k,

‖P[Nk,Nk+1)Txk‖ > ε.
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Keeping in mind that (Txn) is disjointly supported and thus has an a upper q estimate

and a lower p estimate, we see that for all m,

(1 + δ)−1m1/q ≤ ‖
m∑
k=1

Txk‖ ≤ ‖
m∑
k=1

(I − P[Nk,Nk+1))Txk‖+ ‖
m∑
k=1

P[Nk,Nk+1)Txk‖

≤
( m∑
k=1

‖(I − P[Nk,Nk+1))Txk‖q
)1/q

+
( m∑
k=1

‖P[Nk,Nk+1)Txk‖p
)1/p

≤
( m∑
k=1

(‖Txk‖p − ‖P[Nk,Nk+1
)Txk‖p)q/p

)1/q
+m1/q

≤
( m∑
k=1

(1− εp)q/p
)1/q

+m1/p = m1/q(1− εp)1/p +m1/p,

which gives a contradiction if (1 + δ)(1− εp)1/p < 1. �

We also need that copies of `q in Zp,q contain almost isometric copies of `q which are

almost norm one complemented in Zp,q. This can be done using the special structure

of Zp,q, but in fact it follows from the general results Lemma 2.4 and Lemma 2.5, which

were proved by G. Schechtman and the second author recently (probably also thirty

years ago) when they discussed a preliminary version of this paper, and the lemmas

may well be somewhere in the literature. We state the lemmas for spaces with an

unconditional basis, but the same proofs (modulo incorporating some standard theory

of Banach lattices into the proof) yield the same result for general Banach lattices. In

the proofs we assume the reader is familiar with the notions of p-convex and p-concave

function lattices and the related notions of p-convexification and p-concavification of

spaces with a monotone unconditional basis; see, e.g., [LT2, 40-58].

Lemma 2.4. (W. Johnson and G. Schechtman) Suppose that X has an uncondition-

ally monotone basis with p-convexity constant one and (xk)
n
k=1, (n ∈ N ∪ {∞}), is a

disjoint sequence in X so that for some 0 < θ < 1 and all scalars (αk),

(2.3) θ(
∑
k

|αk|p)1/p ≤ ‖
∑
k

αkxk‖ ≤ (
∑
k

|αk|p)1/p.

Then there is an unconditionally monotone norm !·! on X with p-convexity constant

one so that for all scalars (αk),

(1) θ!x! ≤ ‖x‖ ≤!x! for all x ∈ X;

(2) (
∑

k |αk|p)1/p =!
∑

k αkxk!.



COMMUTATORS ON (Σ `q)p 7

Proof. Without loss of generality we assume that xk ≥ 0 for all k so that the closed

span of (xk) is a sublattice of X. Assume first that p = 1. By the lattice version

of the Hahn-Banach theorem and the hypothesis on (xk) there is a linear functional

x∗ ≥ 0 on X with ‖x∗‖ ≤ θ−1 so that 〈x∗, xk〉 = 1 for all k. Define !·! on X by

!x! := ‖x‖ ∨ 〈x∗, |x|〉. This clearly does the job. In the general case, apply the case

p = 1 to the p-concavification of X and take the p-convexification of the resulting

norm. �

Lemma 2.5. (W. Johnson and G. Schechtman) Suppose that X has an uncondi-

tionally monotone basis with p-convexity constant one (1 ≤ p < ∞) and (xk)
n
k=1,

(n ∈ N ∪ {∞}), is a disjoint sequence of unit vectors in X which is isometrically

equivalent to the unit vector basis for `p. Then spanxk is norm one complemented in

X.

Proof. Since the unit ball of `p is weak∗ compact, the case n = ∞ follows from the

case n <∞, so we assume n <∞. We can also assume that xk ≥ 0 for all k and that

the union of the supports of the xk is the entire unconditional basis for X.

First proof. The idea is situate X between L1(µ) and L∞(µ) with µ a probability

measure so that both inclusions have norm one. Since X has p-convexity constant

one, it then follows from an argument in [JMST, p. 14] that in fact Lp(µ) ⊃ X with

the inclusion having norm one. We set this up so that
∑

k xk is the constant n1/p

function and the norm of each xk in L1(µ) is n1/p/n = n−1/p′ ; this forces the Lp(µ)

norm of each xk to be one. Since in X the sequence (xk) is 1-equivalent to the unit

vector basis for `np , the injection IX,p from X into Lp(µ) is an isometry on span (xk)
n
k=1.

But of course span (xk)
n
k=1 is norm one complemented in Lp(µ) and hence also in X.

To effect this situation, use the lattice version of the Hahn-Banach theorem to get

x∗ ≥ 0 in X∗ so that for each k, 〈x∗, xk〉 = n−1/p′ . Define a seminorm on X by

‖x‖1 := 〈x∗, |x|〉. This is an L1 (semi)norm on X and the inclusion from X into this

L1 space has norm one. The L∞ structure on X is defined by specifying n−1/p
∑

k xk

to be the constant one function; i.e., by taking the unit ball to be those vectors x in

X such that |x| ≤ n−1/p
∑

k xk.

Second proof. As in the proof of Lemma 2.4, we use p-concavification to reduce

to the case p = 1, but in a different way. In the p-concavification X(1/p) of X, the

sequence (xpk) is a disjoint sequence that is 1-equivalent to the unit vector basis of `n1 ,

so there is a norm one functional x∗ ≥ 0 in (X(1/p))∗ such that 〈x∗, xpk〉 = 1 for all k.
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The (semi)norm ‖x‖p := 〈x∗, |x|p〉1/p turns X into an abstract Lp space and (xk) are

disjoint unit vectors in this abstract Lp space, hence in it (xk) is 1-equivalent to the

unit vector basis for `np and span (xk) is norm one complemented (either do a direct

argument or use the deeper fact [LT2, Theorem 1.b.2] that an abstract Lp space is

isometrically lattice isomorphic to Lp(µ) for some measure µ). Since ‖ · ‖p ≤ ‖ · ‖X
and in X the sequence (xk) is 1-equivalent to the unit vector basis for `np , we conclude

that span (xk) is also norm one complemented in X. �

Lemma 2.6. Let X be a subspace of Zp,q, 1 ≤ q < p < ∞, which is isomorphic to

Zp,q. Then for all ε > 0, there is a subspace Y of X so that Y is (1 + ε)-isomorphic

to Zp,q and (1 + ε)-complemented in Zp,q.

Proof. Write X =
∑

kXk where each Xk is isomorphic to `q and the sum is (isomor-

phically) an `p-sum. By the remarks at the beginning, we can assume by passing

to subspaces of each Xk that Xk has a normalized basis (xn,k)
∞
n=1 that is (1 + εk)-

equivalent to the unit vector basis of `q with εk ↓ 0 as fast as we like. Also, by

doing a small perturbation we can assume that (xn,k)n,k are disjointly supported with

respect to the canonical basis for Zp,q. Finally, using Lemma 2.2 and Lemma 2.3

we can assume, by passing to a subsequence of subspaces of (Xk), that there are

N1 < N2 < . . . so that for all k, ‖P[Nk,Nk+1)x − x‖ ≤ εk‖x‖ for all x in Xk. Doing

one more perturbation, we might as well assume in fact that P[Nk,Nk+1) is the identity

on Xk. Using Lemma 2.4 and Lemma 2.5, we get a projection Qk from P[Nk,Nk+1)Zp,q

onto Xk with ‖Qk‖ ≤ 1 + εk. Then
∑

kQkP[Nk,Nk+1) is a projection from Zp,q onto X

of norm at most 1 + ε1. �

Remark. Note that the argument for Lemma 2.6 also shows that if T is a Zp,q-

strictly singular operator on Zp,q = (
∑
Yk)p with each Yk isometrically isomorphic to

`q, then f(T, Yk)→ 0 as k →∞.

Proposition 2.7. T be a Zp,q-strictly singular operator on Zp,q, 1 ≤ q < p < ∞.

Then for all ε > 0, there is a subspace X of Zp,q which is isometrically isomorphic

to Zp,q so that ‖T |X‖ < ε. Consequently, the set of Zp,q-strictly singular operators on

Zp,q is a linear subspace of L(Zp,q).

Proof. As usual, write Zp,q = (
∑
Yk)p with each Yk isometrically isomorphic to `q.

By passing to subspaces of each Yk, we can by Lemma 2.1 assume that for each k,

‖T|Yk‖ < f(T, Yk) + 2−k, so that ‖T|Yk‖ → 0 by the Remark after Lemma 2.6. Let

X = (
∑

n Ykn)p, where kn ↑ is chosen so that
∑

n ‖T|Ykn‖ < ε. �
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Proposition 2.8 is an immediate consequence of Lemma 2.6 and Proposition 2.7 .

Actually Proposition 2.7 says that the set of all Zp,q-strictly singular operators on

Zp,q is an ideal and Lemma 2.6 tells us that it is maximal.

Proposition 2.8. Let 1 ≤ q < p <∞. The set of all Zp,q-strictly singular operators

on Zp,q is equal to MZp,q and forms the unique maximal ideal in L(Zp,q).

Let (Xi)
∞
i=0 be a sequence of Banach spaces. In our case, all the (Xi)’s are uni-

formly isomorphic to Zp,q so that their `p direct sum (
∑∞

i=0Xi)p is isomorphic to

(
∑∞

i=0 Zp,q)p, which in turn is isometrically isomorphic to Zp,q. We are interested in

the case when (Xi) is a sequence of subspaces of Zp,q which are uniformly isomorphic

to Zp,q, span
⋃∞
i=0Xi is dense in Zp,q and the mapping that identifies Xi, 0 ≤ i < ∞

in Zp,q with Xi in (
∑∞

j=0Xj)p extends to an isomorphism from Zp,q onto (
∑∞

j=0Xj)p.

Since commutators are preserved under similarity transformations, without confu-

sion we will identify an operator on (
∑∞

i=0 Xi)p with the corresponding operator on

span(Xi)
∞
i=0 = Zp,q. For an element x = (xi) ∈ (

∑∞
i=0Xi)p with xi ∈ Xi, we define

the right and left shifts as following:

R(x) = (0, x0, x1, ...), L(x) = (x1, x2, ...).

Let A = {T ∈ L((
∑∞

i=0Xi)p) :
∑∞

n=0R
nTLnis strongly convergent}. By Lemma 3 in

[D], if T is in A, then T is a commutator. The proof of the next theorem shows that

if T is a Zp,q-strictly singular operator on Zp,q then there is an `p decomposition of

Zp,q so that T is in A and hence is a commutator.

Theorem 2.9. Let 1 ≤ q < p < ∞. If T : Zp,q → Zp,q is Zp,q-strictly singular, then

T is a commutator.

Proof. We first make a partition of the natural numbers to infinitely many infinite

subsets, denoted by N = ∪∞n=0In. For each n ≥ 1, (
∑

i∈In Zp,q)p is isometric to Zp,q and

the restriction of T to
∑

i∈In Zp,q is Zp,q-strictly singular. By Proposition 2.7, for each

n there is a subspace Xn of
∑

i∈In Zp,q so that Xn is isometric to Zp,q and ‖T |Xn‖ < εn.

Moreover, by Lemma 2.5 Xn can be chosen 1-complemented in
∑

i∈In Zp,q. By passing

to appropriate subspaces of Xn, we can assume that the complement Zn to Xn in∑
i∈In Zp,q contains a 1-complemented subspace that is uniformly isomorphic (actually

even isometric) to Zp,q and hence Zn is uniformly isomorphic to Zp,q by the Pe lczyński

decomposition method [LT, p. 54] (the decomposition method applies because Zp,q is



10 DONGYANG CHEN, WILLIAM B. JOHNSON, AND BENTUO ZHENG

isometric to (
∑∞

i=0 Zp,q)p). So we get a sequence of subspaces (Xn)∞n=1 of (
∑∞

n=0 Zp,q)`p

such that

(1) Xn is isometric to Zp,q and 1-complemented in Zp,q;

(2) ‖T |Xn‖ < εn;

(3) ‖Σ∞n=1xn‖ = (Σ∞n=1‖xn‖p)
1
p , for all xn ∈ Xn;

(4) Zp,q = (Σ∞n=1Xn)p ⊕X0 and X0 is isomorphic to Zp,q.

Let R and L be the right shift and left shift with respect to the `p-decomposition

(Xn)∞n=0 of Zp,q. Then it is easy to see [D, Lemma 3] that Σ∞n=0R
nTLn is strongly

convergent if Σnεn <∞. �

The following lemma is a direct consequence of Lemma 2.2 and Lemma 2.3. We

omit the proof.

Lemma 2.10. Let T be an operator on Zp,q, 1 ≤ q < p <∞. Then for any sequence

(εi) of positive numbers, there exist an infinite subset M of positive integers and

a subspace Zi of the i-th `q which is isometric to `q for all i ∈ M so that for all

k ∈M, ‖Σi∈M,i6=kPiT |Zk
‖ < εk, where Pi is the projection from Zp,q onto the i-th `q.

Let T be an operator on a Banach space X. The left essential spectrum of T is

defined to be the set

σl.e.(T ) = {λ ∈ C : inf
x∈SY

‖(λ− T )x‖ = 0 for all Y ⊂ X with codimY <∞}.

Apostol proved in [A] that σl.e.(T ) is nonempty for all operators T on any infinite

dimensional X.

Proposition 2.11. Let T be an operator on Zp,q, 1 ≤ q < p <∞. Then either there

is a λ ∈ C and a subspace Y of Zp,q that is isomorphic to Zp,q so that (T − λI)|Y is

Zp,q-strictly singular or there is a λ ∈ C and a subspace Y of Zp,q that is isomorphic

to Zp,q so that (T − λI)|Y is an isomorphism and d((T − λI)(Y ), Y ) > 0.

Proof. Let (εi) be a sequence of positive reals decreasing to 0 fast. Let (Z̃i)i∈M be a

sequence of subspaces satisfying the conclusion of Lemma 2.10. By Lemma 2.5, for

each i ∈ M , Z̃i is 1-complemented in the i-th `q. Let R̃i be a contractive projection

from the i-th `q onto Z̃i. Let Pi be the natural projection from Zp,q onto the i-th

`q and set Q̃i = R̃iPi. Since for all k ∈ M , ‖Σi∈M,i 6=kPiT |Z̃k
‖ < εk and Q̃iPi = Q̃i,

it follows that for all k ∈ M, ‖Σi∈M,i 6=kQ̃iT |Z̃k
‖ < εk. For each i ∈ M , consider

the operator Q̃iT |Z̃i
: Z̃i → Z̃i. Let λi be any number in σi.e.(Q̃iT |Z̃i

). Then there
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is a subspace Zi of Z̃i which is isometric to `q and hence 1-complemented in the

i-th `q so that ‖(Q̃iT − λiI)|Zi
‖ < εi. Since (λi) is uniformly bounded by ‖T‖, by

taking a limit of a subsequence of (λi) and passing to an infinite subset J of M ,

we get a complex number λ so that for all i ∈ J, ‖(Q̃iT − λI)|Zi
‖ < εi. Let Ri

be a contractive projection from the i-th `q onto Zi and let Qi = RiPi. Then for all

k ∈ J, ‖Σi∈J,i6=kQiT |Zk
‖ < εk and ‖(QkT−λI)|Zk

‖ < εk. This immediately yields that

for all k ∈ J, ‖((Σi∈JQiT ) − λI)|Zk
‖ < 2εk. Let Ỹ = (Σi∈JZi)p. Then Q = Σi∈JQi

is a contractive projection from Zp,q onto Ỹ and ‖(QT − λI)|Ỹ ‖ < 2Σiεi. Since

‖(QT − λI)|(Σi∈J,i≥kZi)p‖ < Σi≥kεi, it is straightforward to check that (QT − λI)|Ỹ is

Zp,q-strictly singular if (εi)i is summable. Now consider the operator ((I − Q)T )|Ỹ .

If it is Zp,q-strictly singular, then (T − λI)|Ỹ = (QT − λI)|Ỹ + ((I −Q)T )|Ỹ is Zp,q-

strictly singular by Proposition 2.7. If it is not Zp,q-strictly singular, then (T − λI)|Ỹ
is not Zp,q-strictly singular and hence there is a subspace Y of Ỹ that is isomorphic

to Zp,q so that for some µ > 0 and all norm one vectors y in Y , ‖(T − λI)y‖ > µ. By

Lemma 2.6 we may assume that Y is 1 + ε-isomorphic to Zp,q and by Proposition 2.7

we can assume that ‖(QT − λI)|Y ‖ < 3−1µ. So ‖(I −Q)T (y)‖ > µ− 3−1µ = 2
3
µ for

all y ∈ SY . Hence if y1, y2 are in Y and ‖(T − λI)y1‖ = 1 (so that ‖y1‖ ≥ µ−1),

‖(T − λI)y1 − y2‖ ≥
1

2
‖(I −Q)[(T − λI)y1 − y2]‖

=
1

2
‖(I −Q)Ty1‖

≥ 1

2
· 2

3
· µ‖y1‖ ≥

1

3
.

This implies that d((T − λI)(Y ), Y ) ≥ 1
3
. �

To prove our last theorem, we use the following lemma which is an immediate

consequence of Theorem 3.2 and Theorem 3.3 in [DJ].

Lemma 2.12. Let X be a Banach space such that X is isomorphic to (
∑
X)p, p ∈

[1,∞]∪ {0}. Let T be a bounded linear operator on X so that there exists a subspace

Y of X such that Y is isomorphic to X, T |Y is an isomorphism, d(TY, Y ) > 0 and

Y + T (Y ) is complemented in X. Then T is a commutator.

An infinite dimensional Banach space X is said to be complementably homogeneous

if every subspace of X that is isomorphic to X must contain a smaller subspace that

is isomorphic to X and is complemented in X. It is clear that if X is complementably

homogeneous then MX , the set of operators T on X such that the identity does not
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factor through T , is equal to the set of X-strictly singular operators on X. Lemma

2.6 implies that Zp,q is complementably homogeneous for 1 ≤ q < p < ∞. (We did

not attempt to check that Zp,q is complementably homogeneous for other values of p

and q because that is not needed to prove our Main Theorem.)

Let T be a bounded linear operator on the complementably homogeneous space

X. An important fact which was used repeatedly in [D, DJ, DJS] is that in certain

spaces of this type, if there exists a subspace Y of X such that Y is isomorphic to X,

T |Y is an isomorphism and d(Y, TY ) > 0, then there is a subspace Z of Y isomorphic

to X so that Z + T (Z) is complemented in X. The next lemma gives a formulation

of this fact for a general class of spaces for which the statement is true.

Lemma 2.13. Let X be a complementably homogeneous Banach space. Let T be a

bounded linear operator on X so that there is a subspace Y of X isomorphic to X

such that T |Y is an isomorphism and d(Y, TY ) > 0. Then there is a subspace Z of Y

which is isomorphic to X so that Z + T (Z) is complemented in X.

Proof. Since X is complementably homogeneous, there is a subspace W of TY that

is isomorphic to X and is the range of some projection PW . Then (T |Y )−1W is

also isomorphic to X and is the range of the projection (T |Y )−1PWT . Consequently,

without loss of generality we assume that Y and TY are complemented in X.

The main step of the proof consists of finding a subspace Y1 of Y that is isomorphic

to X such that there is a projection PTY1 onto TY1 for which PTY1Y1 = {0}. Having

done that, we have, as mentioned above, a projection PY1 onto Y1. Then PTY1 +

PY1(I − PTY1) is a projection onto Y1 + TY1, so that Z := Y1 satisfies the conclusions

of the lemma.

We now turn to the proof of the main step. Let P be a projection from X onto Y .

Since d(Y, TY ) > 0 and T |Y is an isomorphism, it follows that T ′ := (I − P )TP is

an isomorphism on Y , where I is the identity operator on X. Let W be a subspace

of T ′(Y ) that is isomorphic to X and complemented in X. Then Y1 := (T ′|Y )−1(W )

is also isomorphic to X and complemented in X. Let PW be a projection from X

onto W . Let S be the inverse of the isomorphism T (y) 7→ T ′(y), y ∈ Y . Then it is

straightforward to verify that PTY1 := SPW (I − P ) is a projection from X onto TY1

such that PTY1Y1 = {0}. �

The root of the proof of Theorem 2.14 goes back to [A]; see also [DJ, Lemma 4.1].
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Theorem 2.14. Let X be a complementably homogeneous Banach space so that X is

isomorphic to (
∑
X)p, p ∈ [1,∞]∪{0}, and the set of all X-strictly singular operators

on X form an ideal in L(X). Let T : X → X be a bounded linear operator such that

T − λ′I is not X-strictly singular for any λ′ ∈ C. If there is a λ ∈ C and a subspace

Y of X that is isomorphic to X so that (T − λI)|Y is X-strictly singular then T is a

commutator.

Proof. Since X is complementably homogeneous, by passing to a subspace of Y , we

may assume that Y is complemented in X. Let I − P be a bounded projection from

X onto Y . By passing to a further subspace of Y , we can assume additionally that

PX contains a complemented subspace isomorphic to X and hence PX is isomorphic

to X by Pe lczyński’s decomposition method [LT, p. 54]. To simplify the notation,

set Tλ := T − λI. Then Tλ(I − P ) is X-strictly singular. Now we consider the

operator (I − P )TλP . If it is not X-strictly singular, then there is a subspace Z of

PX that is isomorphic to X so that (I−P )TλP |Z is an isomorphism. By passing to a

subspace of Z, we may assume that Z is complemented in X. By the construction, we

immediately get d(Z, (I−P )TλPZ) > 0 and hence d(Z, TλZ) > 0. By Proposition 2.1

in [DJ], d(Z, TZ) > 0. By Lemma 2.13, we may assume Z + TZ is complemented in

X and hence T is a commutator in virtue of Lemma 2.12. If (I−P )TλP is X-strictly

singular, we write

Tλ = Tλ(I − P ) + (I − P )TλP + PTλP.

Since Tλ is not X-strictly singular, PTλP is not X-strictly singular by the hypothesis

that the X-strictly singular operators are closed under addition. Let A be an isomor-

phism from PX onto (I − P )X and let B : (I − P )X → PX be its inverse, so that

BAP = P and AB(I − P ) = I − P . We define an operator S on X by

√
2S = P + AP − (I − P ) +B(I − P ).

A direct computation shows that S2 = I.

Now we consider the operator R := 2(I − P )STλSP . We claim that R is not

X-strictly singular. To see this, substitute for S in the expression for R and compute

R = APTλP + [AP − (I − P )]TλAP − (I − P )TλP

=: APTλP + α− β.

The operator β is X-strictly singular by assumption and α is X-strictly singular

because AP has range (I −P )X and Tλ(I −P ) is X-strictly singular. We mentioned
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above that PTλP is not X-strictly singular, so also APTλP is not X-strictly singular

because A is an isomorphism on PX, and hence R = 2(I − P )STλSP is also not

X-strictly singular.

Therefore there is a complemented subspace Z of PX so that Z is isomorphic to

X and d(Z, STλS(Z)) > 0. That is, d(S(Z), TλS(Z)) > 0. By Proposition 2.1 in

[DJ] again, d(S(Z), TS(Z)) > 0. Hence T is a commutator by Lemma 2.13 and

Lemma 2.12. �

Corollary 2.15. Let X be a complementably homogeneous Banach space such that

X is isomorphic to (
∑
X)p, p ∈ [1,∞] ∪ {0}, and the set of all X-strictly singular

operators on X form an ideal in L(X) and are commutators in L(X). Assume that

for every operator T on X either there is a λ ∈ C and a subspace Y of X that is

isomorphic to X so that (T − λI)|Y is X-strictly singular or there is a λ ∈ C and a

subspace Y of X that is isomorphic to X so that (T − λI)|Y is an isomorphism and

d((T −λI)(Y ), Y ) > 0. Then T ∈ L(X) is a commutator if and only if T −λ′I is not

X-strictly singular for every non zero λ′ ∈ C. Consequently, X is a Wintner space.

Proof. Let T be an operator on X such that T − λI is not X-strictly singular for

all λ ∈ C. If there is a λ ∈ C and a subspace Y of X that is isomorphic to X so

that (T − λI)|Y is an isomorphism and d((T − λI)(Y ), Y ) > 0, by Lemma 2.13 and

Lemma 2.12, T is a commutator. If there is a λ ∈ C and a subspace Y of X that is

isomorphic to X so that (T − λI)|Y is X-strictly singular, then by Lemma 2.14, T is

a commutator. �

Finally we complete the proof of our Main Theorem:

Corollary 2.16. The space X := Zp,q with 1 ≤ q <∞ and 1 < p <∞ is a Wintner

space. In fact, if T is an operator on X, then T is a commutator if and only if for

all non zero λ ∈ C, the operator T −λI is not in MX (i.e., the identity on X factors

through T − λI).

Proof. For 1 ≤ q < p < ∞, Corollary 2.15 applies to give the desired conclusions.

The other cases follow from the obvious facts if X is reflexive and T is an operator

on X, then T is in MX (respectively, is a commutator) if and only if T ∗ is in MX∗

(respectively, is a commutator). �

3. Open Problems

Our first question concerns general classes of Banach spaces.
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Question 1. Is every infinite dimensional Banach space a Wintner space?

As we mentioned in the introduction, there may be an infinite dimensional Banach

space on which every finite rank commutator has zero trace. A less striking negative

example would be an infinite dimensional Banach space on which every operator is

of the form λI + T with T nuclear.

Question 1.1. If X admits a Pe lczyński decomposition, is X a Wintner space?

Question 1.2. What if also MX is an ideal in L(X)?

Question 1.3. What if also X is complementably homogenous?

We next turn to special spaces.

Question 2. Is every C(K) space a Wintner space when K is a compact Hausdorff

space? What if also K is metrizable?

Question 2.1. Is C[0, 1] a Wintner space?

An affirmative answer to Question 1.3 gives an affirmative answer to Question 2.1,

but we suspect that Question 2.1, while difficult, is much easier than Question 1.3.

Question 3. Is every complemented subspace of Lp := Lp(0, 1), 1 ≤ p < ∞, a

Wintner space?

In regard to Question 3, it is open whether every infinite dimensional complemented

subspace of L1 is isomorphic to either L1 or to `1. There are, on the other hand,

uncountably many different (up to isomorphism) complemented subspaces of Lp for

1 < p 6= 2 < ∞ [BRS], including the Wintner spaces Lp [DJS], `p [A], `p ⊕ `2 [D],

and Zp,2. All of these are complementably homogenous and have MX as an ideal,

but `p⊕ `2, while the direct sum of two spaces that admit Pe lczyński decompositions,

does not itself admit a Pe lczyński decomposition.

Question 3.1. Is Rosenthal’s space Xp [R] a Wintner space?

The space Xp, 2 < p < ∞, was the first “non obvious” complemented subspace

of Lp and it has played a central role in the modern development of the structure

theory of Lp. It is small in the sense that it embeds isomorphically into `p ⊕ `2

(`p is the only complemented subspace of Lp that does not contain any subspace

isomorphic to `p ⊕ `2), but not as a complemented subspace. The space Xp does not

admit a Pe lczyński decomposition, but it does admit something analogous (a “p, 2”

decomposition) which might serve as a substitute. Not every operator inMXp is Xp-

strictly singular because you can map Xp isomorphically into a subspace of Xp that is

isomorphic to `p ⊕ `2 and no isomorphic copy of Xp in `p ⊕ `2 can be complemented.
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Probably the ideas in [JO] can be used to show that MXp is an ideal in L(Xp), but

we have not yet tried to check this.

The famous problem, due to Brown and Pearcy, whether every compact operator

on `2 is a commutator of compact operators is still open. In fact, nothing is known

in a more general setting, so we ask:

Question 4. For what Banach spaces X is every compact operator a commutator of

compact operators? Is this true for every infinite dimensional X? Is it true for some

infinite dimensional space X?

Question 5. Assume that X is a complementably homogeneous Wintner space that

has a Pe lczyński decomposition and that MX is an ideal in LX . If T is not in MX

and T is a commutator, does there exist a complemented subspace X1 of X that is

isomorphic to X so that (I − PX1)T |X1 is an isomorphism? Here PX1 is a projection

onto X1.

For X = `p, 1 ≤ p ≤ ∞, or c0 or Lp, 1 ≤ p ≤ ∞, or Zp,q, 1 ≤ q < ∞ and

1 < p < ∞, the proofs that X is a Wintner space show that Question 5 has an

affirmative answer.

Finally there is the obvious problem to give an affirmative answer to.

Question 6. Is Zp,q a Wintner space for values of p and q not covered by the Main

Theorem?
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