CORRIGENDUM TO THEOREM 2.10 OF "COMMUTATORS ON $\left(\sum \ell_{q}\right)_{\ell_{p}}$ " [STUDIA MATH. 206 (2011), NO.2, 175-190]

DONGYANG CHEN, WILLIAM B. JOHNSON, AND BENTUO ZHENG

Abstract

We give a corrected proof of Theorem 2.10 in our paper "Commutations on $\left(\sum \ell_{q}\right)_{\ell_{p}}$ " [Studia Math. 206 (2011), no.2, 175-190] for the case $1<q<p<\infty$. The case when $1=q<p<\infty$ remains open. As a consequence, the Main Theorem and Corollary 2.17 in [CJZh] are only valid for $1<p, q<\infty$.

Throughout this note, "small perturbation" means using the image of the subspace under an operator that is close to the identity. The notation is as in [CJZh]. We thank Eugenio Spinu for spotting the error in the last line of the proof of Theorem 2.10 in [CJZh], where it is claimed "Then it is easy to see that $\Sigma_{n=0}^{\infty} R^{n} T L^{n}$ is strongly convergent if $\Sigma_{n} \varepsilon_{n}<\infty$ ".

Theorem 0.1. Let $1<p<q<\infty$. Let $T: Z_{p, q} \rightarrow Z_{p, q}$ be $Z_{p, q}$-strictly singular. Then for all $\epsilon>0$ there is a 1-complemented subspace Y of $Z_{p, q}$ which is isometric to $Z_{p, q}$ and $\left\|\left.T\right|_{Y}\right\|<\epsilon$.

Lemma 0.2. Let $S: \ell_{q} \rightarrow Z_{p, q}(1<p<q<\infty)$. Then $\forall \epsilon>0$, there is an $N \in \mathbb{N}$ such that $\left\|P_{[N, \infty)} S\right\|<\epsilon$.

Proof. Suppose not. Then there is an $\epsilon>0$ so that for any $N \in \mathbb{N}$, $\left\|P_{[N, \infty)} S\right\| \geq \epsilon$. So by a standard perturbation argument, there is a normalized block basis $\left(x_{i}\right)$ of ℓ_{q} whose image sequence $\left(T x_{i}\right)$ is equivalent to the unit vector basis of ℓ_{p}. Since $1<p<q<\infty$, this contradicts the boundedness of T.

Lemma 0.3. Let $S: Z_{p, q} \rightarrow \ell_{q}(1<p<q<\infty)$. Then $\forall \epsilon>0$ there is a subspace Y of $Z_{p, q}$, such that Y is isometric to ℓ_{q}, Y is 1-complemented in $Z_{p, q}$, and $\left\|\left.S\right|_{Y}\right\|<\epsilon$.

[^0]Proof. Let $\left(e_{i, j}\right)$ be the natural unit vector basis of $Z_{p, q}$, where $\left(e_{i, j}\right)_{j}$ is the unit vector basis of the i th ℓ_{q}. By passing to appropriate subsequences of $\left(e_{i, j}\right)$ and perturbing S slightly, we may assume that $\left(S e_{i, j}\right)$ are disjointly supported in ℓ_{q}. Since $1<p<q<\infty$, we can pick an $N \in \mathbb{N}$ so large that $N^{1 / q-1 / p}<\epsilon /\|T\|$. Let $x_{j}=N^{-1 / p} \sum_{i=1}^{N} e_{i, j}$. Then $\left(x_{j}\right)$ is 1-equivalent to the unit vector basis of ℓ_{q}. Let Y be the closed linear span of $\left(x_{j}\right)$. Then Y is 1-complemented in $Z_{p, q}$ and $\left\|\left.S\right|_{Y}\right\|<\epsilon$.

Proof of Theorem 0.1. Fix $\epsilon>0$. Let $\left(\epsilon_{i}\right)$ be a sequence of positive reals decreasing to 0 fast so that $\sum \epsilon_{i}<\min \{\epsilon / 4,1 / 4\}$. We write $Z_{p, q}=\left(\sum \ell_{q}^{(n)}\right)_{\ell_{p}}$. Let $X_{1}=\ell_{q}^{(1)}$. By Lemma 0.2, there is $N_{1} \in \mathbb{N},\left.P_{\left[N_{1}, \infty\right)} T\right|_{X_{1}}<\epsilon_{1}$. By Lemma 0.3, there are $N_{2} \in \mathbb{N}$ and $X_{2} \subset P_{\left[N_{1}, N_{2}\right)} Z_{p, q}$ so that $X_{2} \equiv \ell_{q}, X_{2}$ is 1-complemented in $Z_{p, q}$, and $\left\|\left.P_{\left[1, N_{1}\right)} T\right|_{X_{2}}\right\|<\epsilon_{2} / 2$. By using Lemma 0.2 again and increasing N_{2}, we may also assume that $\left\|\left.P_{\left[N_{2}, \infty\right)} T\right|_{X_{2}}\right\|<\epsilon_{2} / 2$.

So by induction we get an increasing sequence $\left(N_{i}\right)$ of positive integers and a sequence of subspaces $\left(X_{i}\right)$ so that

- $X_{i} \equiv \ell_{q}$;
- X_{i} is 1-complemented in $Z_{p, q}$;
- $X_{i} \subset P_{\left[N_{i-1}, N_{i}\right)} Z_{p, q}\left(\right.$ where $\left.N_{0}=1\right)$;
- $\left\|\left.\left(I-P_{\left[N_{i-1}, N_{i}\right)}\right) T\right|_{X_{i}}\right\|<\epsilon_{i}$.

We claim that for all but finitely many $i \in \mathbb{N}$, there is a subspace Y_{i} of X_{i} so that $Y_{i} \equiv \ell_{q}, Y_{i}$ is 1-complemented in X_{i}, and $\left\|\left.T\right|_{Y_{i}}\right\|<\epsilon$. Suppose not. Then there is an infinite subset $I \subset \mathbb{N}$ so that for all $i \in I$ and for every 1-complemented subspace Y_{i} of X_{i} that is isometric to ℓ_{q} we have $\left\|\left.T\right|_{Y_{i}}\right\| \geq \epsilon$. Therefore, for each $i \in I$ there is a normalized block basis $\left(x_{i, j}\right)_{j}$ of X_{i} so that $\left\|T x_{i, j}\right\| \geq \epsilon$. By passing to a subsequence of $\left(x_{i, j}\right)_{j}$ and doing a small perturbation, we may assume that $\left(T x_{i, j}\right)_{j}$ is disjointly supported in $Z_{p, q}$. Since $Z_{p, q}$ has a lower q-estimate with constant 1 , $\left(T x_{i, j}\right)_{j}$ is $\|T\| / \epsilon$-equivalent to $\left(x_{i, j}\right)_{j}$. For each $i \in I$, let Y_{i} be the closed linear span of $\left(x_{i, j}\right)_{j}$. Then $\sum_{i \in I} Y_{i}$ is isometric to $Z_{p, q}$. Next we show that $\left.T\right|_{\sum_{i \in I} Y_{i}}$ is an isomorphism. To see this, let $\left(y_{i}\right)_{i \in I} \in \sum_{i \in I} Y_{i}$ with $\sum_{i \in I}\left\|y_{i}\right\|^{p}=1$.

Then we have

$$
\begin{aligned}
\left\|T\left(\left(y_{i}\right)_{i \in I}\right)\right\| & \geq\left\|\sum_{i \in I} P_{\left[N_{i-1}, N_{i}\right)} T y_{i}\right\|-\sum_{i \in I}\left\|\left(I-P_{\left[N_{i-1}, N_{i}\right)}\right) T y_{i}\right\| \\
& \geq\left(\sum_{i \in I}\left(1-\epsilon_{i}\right)^{p}\left\|T y_{i}\right\|^{p}\right)^{1 / p}-\sum_{i \in I} \epsilon_{i}\left\|y_{i}\right\| \\
& \geq 3 \epsilon / 4-\sum_{i \in I} \epsilon_{i} \\
& >\epsilon / 2 .
\end{aligned}
$$

This contradicts the hypothesis that T is $Z_{p, q}$-strictly singular.
Now we have our claim. Without loss of generality, we assume for all $i \in \mathbb{N}$, there is a subspace Y_{i} of X_{i} so that $Y_{i} \equiv \ell_{q}, Y_{i}$ is 1-complemented in X_{i} and $\left\|\left.T\right|_{Y_{i}}\right\|<\epsilon$. Let $Y=\sum Y_{i}$. Then Y is isometric to $Z_{p, q}$ and 1-complemented in $Z_{p, q}$. Let $\left(y_{i}\right) \in S_{Y}$. We have

$$
\begin{aligned}
\left\|T\left(\left(y_{i}\right)\right)\right\| & \leq\left\|\sum P_{\left[N_{i-1}, N_{i}\right)} T y_{i}\right\|+\sum\left\|\left(I-P_{\left[N_{i-1}, N_{i}\right)}\right) T y_{i}\right\| \\
& \leq\left(\sum\left\|T y_{i}\right\|^{p}\right)^{1 / p}+\sum \epsilon_{i}\left\|y_{i}\right\| \\
& <\epsilon+\sum \epsilon_{i} \\
& <5 \epsilon / 4 .
\end{aligned}
$$

Since ϵ is arbitrary, we are done.

Lemma 0.4. Let $1<p, q<\infty$ and $n \in \mathbb{N}$. Set $Z:=\left(\sum_{k=1}^{n} X_{n}\right)_{p}$ with each X_{n} isometrically isomorphic to ℓ_{q}. Suppose that X is a subspace of Z. Then for each $\epsilon>0$ there is a subspace Y of X so that Y is $1+\epsilon$-isomorphic to ℓ_{q} and Y is $1+\epsilon$-complemented in Z.

Proof. By the principle of small perturbations we can assume that X contains a sequence $\left(x_{k}\right)$ that is disjointly supported with respect to the canonical basis $\left(e_{i, j}\right)_{i=1, j=1}^{\infty, n}$. By passing to a subsequence of $\left(x_{k}\right)$ and making another small perturbation, we can assume for every $j=1, \ldots, n$ that there is a scalar a_{j} so that for each $k \in \mathbb{N}$ we have $\left\|P_{j} x_{k}\right\|=a_{j}$, so that $\sum_{j=1}^{n} a_{j}^{p}=1$. One checks easily that $\left(x_{k}\right)$ is 1-equivalent to the unit vector basis of ℓ_{q}. Indeed, if $z=\sum_{k} b_{k} x_{k}$, then

$$
\begin{aligned}
\|z\|^{p} & =\sum_{j=1}^{n}\left\|P_{j} z\right\|^{p}=\sum_{j=1}^{n}\left\|\sum_{k} b_{k} P_{j} x_{k}\right\|^{p} \\
& \left.=\sum_{j=1}^{n}\left(a_{j}\left(\sum_{k}\left|b_{k}\right|^{q}\right)^{1 / q}\right)^{p}=\left(\sum_{j=1}^{n} a_{j}^{p}\right)\left(\sum_{k}\left|b_{k}\right|^{q}\right)^{p / q}\right) .
\end{aligned}
$$

To see that $\left[x_{k}\right]$ is norm one complemented in Z, assume WLOG that no a_{j} is zero and let $x_{k, j}^{*}$ be the unique norm one functional in $Z^{*}=\left(\sum_{k=1}^{n} X_{n}^{*}\right)_{p^{\prime}}$ for which $\left\langle x_{k, j}^{*}, P_{j} x_{k}\right\rangle=a_{j}$. So $x_{k, j}^{*}$ has the same support as $P_{j} x_{k}$ and for each j, the sequence $\left(x_{k, j}^{*}\right)_{k}$ is 1-equivalent to the unit vector basis of $\ell_{q^{\prime}}$. Define $x_{k}^{*}:=\sum_{j=1}^{n} a_{j}^{p-1} x_{k, j}^{*}$. Then the sequence $\left(x_{k}^{*}\right)$ is 1 -equivalent to the unit vector basis for $\ell_{q^{\prime}}$ and is biorthogonal to the sequence $\left(x_{k}\right)$. This implies that $P x:=\sum_{k}\left\langle x_{k}^{*}, x\right\rangle x_{k}$ defines a norm one projection from Z onto $\left[x_{k}\right]$.

Lemma 0.5. $Z_{p, q}$ is complementably homogeneous for $1<p<q<\infty$.
Proof. Let $X=\left(\sum X_{k}\right)$ be a subspace of $Z_{p, q}$ isomorphic to $Z_{p, q}$ so that each X_{k} is isomorphic to ℓ_{q}. Let $\left(\epsilon_{i}\right)$ be a sequence of positive reals decreasing to 0 fast. Let Y_{1} be a subspace of X_{1} which is $1+\epsilon_{1}$-isomorphic to ℓ_{q}. By Lemma 0.2 and a small perturbation, we may assume that there is $N_{1} \in \mathbb{N}$ so that $\left\|\left.P_{\left[N_{1}, \infty\right)}\right|_{Y_{1}}\right\|=0$. By Lemma 0.2 , Lemma 0.3 , stability of ℓ_{q}, and a small perturbation, we may assume that there is a subspace Y_{2} of X so that Y_{2} is $1+\epsilon_{2}$-isomorphic to ℓ_{q} and $\left.\left(I-P_{\left[N_{1}, N_{2}\right)}\right)\right|_{Y_{2}}=0$. Inductively, we get a sequence of subspaces $\left(Y_{k}\right)$ of X and a sequence of increasing positive integers $\left(N_{k}\right)$ so that Y_{k} is $1+\epsilon_{k}$-isomorphic to ℓ_{q} and $Y_{k} \subset P_{\left[N_{k-1}, N_{k}\right)} Z_{p, q}$. By Lemma 0.4 and passing to subspaces of each Y_{k}, we may assume that Y_{k} is $1+\epsilon_{k}$-complemented in $P_{\left[N_{k-1}, N_{k}\right)} Z_{p, q}$. Let $Y=\sum Y_{k}$. Then Y is $1+\epsilon$-isomorphic to $Z_{p, q}$ and $1+\epsilon$-complemented in $Z_{p, q}$ if $\sum \epsilon_{k}<\epsilon$.

Theorem 0.6. Let $1<q<p<\infty$. Let $T: Z_{p, q} \rightarrow Z_{p, q}$ be $Z_{p, q}$-strictly singular. Then there is a 1-complemented subspace Y of $Z_{p, q}$ which is isometric to $Z_{p, q}$ so that $\left\|P_{Y} T\right\|<\epsilon$, where P_{Y} is a norm 1 projection from $Z_{p, q}$ onto Y.

Proof. This follows immediately by applying Theorem 0.1 for T^{*} and Lemma 0.5 .

Corrected proof of Theorem 2.10 in [CJZh] for $1<q<p<\infty$. By [D, Theorem 8], it is enough to show that there is an ℓ_{p}-decomposition $\left\{X_{i}\right\}$ of $Z_{p, q}$ into uniformly isomorphic copies of ℓ_{q} so that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|\left(\sum_{k \geq n} P_{k}\right) T\right\|=\lim _{n \rightarrow \infty}\left\|T\left(\sum_{k \geq n} P_{k}\right)\right\|=0 \tag{0.1}
\end{equation*}
$$

where P_{k} is the natural projection from $Z_{p, q}$ onto X_{k}.
By the original proof of Theorem 2.10 in [CJZh], we can get a sequence of subspaces $\left(X_{n}\right)_{n=1}^{\infty}$ of $\left(\sum_{n=0}^{\infty} Z_{p, q}\right)_{\ell_{p}}$ such that

CORRIGENDUM TO THEOREM 2.10 OF "COMMUTATORS ON $\left(\sum \ell_{q}\right)_{\ell_{p}}$ " [STUDIA MATH. 206 (2011), NO.2, 175-1904]
(1) X_{n} is isometric to $Z_{p, q}$ and 1-complemented in $Z_{p, q}$;
(2) $\left\|\left.T\right|_{X_{n}}\right\|<\varepsilon_{n}$;
(3) $\left\|\sum_{n=1}^{\infty} x_{n}\right\|=\left(\sum_{n=1}^{\infty}\left\|x_{n}\right\|^{p}\right)^{\frac{1}{p}}$, for all $x_{n} \in X_{n}$;
(4) $Z_{p, q}=\left(\Sigma_{n=1}^{\infty} X_{n}\right)_{p} \oplus X_{0}$ and X_{0} is isomorphic to $Z_{p, q}$.

By Theorem 0.6 and passing to subspaces X_{n}^{\prime} of each $X_{n}(n \geq 1)$ (absorbing the complements of X_{n}^{\prime} in X_{n} into X_{0}), we may assume one additional condition.
(5) $\left\|P_{n} T\right\|<\epsilon_{n}(n \geq 1)$, where P_{n} is the norm one projection from $Z_{p, q}$ onto X_{n}.

Now Equation 0.1 clearly holds if $\lim _{n \rightarrow \infty} \sum_{k \geq n} \epsilon_{k} \rightarrow 0$.

References

[D] D. Dosev, Commutators on ℓ_{1}, Journal of Functional Analysis, 256 (2009), no. 11, 3490-3509.
[CJZh] D. Chen, W. B. Johnson and Bentuo Zheng, Commutators on $\left(\sum \ell_{q}\right)_{\ell_{p}}$, Studia Math., 206 (2011), no. 2, 175-190.

School of Mathematical Sciences, Xiamen University, Xiamen, 361005, China

E-mail address: cdy@xmu.edu.cn
Department of Mathematics, Texas A\&M University, College Station, Texas, 77843

E-mail address: johnson@math.tamu.edu
Department of Mathematical Sciences, The University of Memphis, MemPHIS, TN 38152

E-mail address: bzheng@memphis.edu

[^0]: Dongyang Chen was a participant in the NSF Workshop in Analysis and Probability, Texas A\&M University.

 The research of William B. Johnson is supported in part by NSF DMS-1301604.
 The research of Bentuo Zheng is supported in part by NSF DMS-1068838.
 Bentuo Zheng was a participant in the NSF Workshop in Analysis and Probability, Texas A\&M University.

