CORRIGENDUM TO THEOREM 2.10 OF "COMMUTATORS ON $(\sum \ell_q)_{\ell_p}$ " [STUDIA MATH. 206 (2011), NO.2, 175-190]

DONGYANG CHEN, WILLIAM B. JOHNSON, AND BENTUO ZHENG

ABSTRACT. We give a corrected proof of Theorem 2.10 in our paper "Commutations on $(\sum \ell_q)_{\ell_p}$ " [Studia Math. 206 (2011), no.2, 175-190] for the case $1 < q < p < \infty$. The case when $1 = q remains open. As a consequence, the Main Theorem and Corollary 2.17 in [CJZh] are only valid for <math>1 < p, q < \infty$.

Throughout this note, "small perturbation" means using the image of the subspace under an operator that is close to the identity. The notation is as in [CJZh]. We thank Eugenio Spinu for spotting the error in the last line of the proof of Theorem 2.10 in [CJZh], where it is claimed "Then it is easy to see that $\sum_{n=0}^{\infty} R^n T L^n$ is strongly convergent if $\sum_n \varepsilon_n < \infty$ ".

Theorem 0.1. Let $1 . Let <math>T : Z_{p,q} \to Z_{p,q}$ be $Z_{p,q}$ -strictly singular. Then for all $\epsilon > 0$ there is a 1-complemented subspace Y of $Z_{p,q}$ which is isometric to $Z_{p,q}$ and $||T|_Y|| < \epsilon$.

Lemma 0.2. Let $S : \ell_q \to Z_{p,q}$ $(1 . Then <math>\forall \epsilon > 0$, there is an $N \in \mathbb{N}$ such that $\|P_{[N,\infty)}S\| < \epsilon$.

Proof. Suppose not. Then there is an $\epsilon > 0$ so that for any $N \in \mathbb{N}$, $||P_{[N,\infty)}S|| \geq \epsilon$. So by a standard perturbation argument, there is a normalized block basis (x_i) of ℓ_q whose image sequence (Tx_i) is equivalent to the unit vector basis of ℓ_p . Since 1 , this contradicts the boundedness of <math>T.

Lemma 0.3. Let $S : Z_{p,q} \to \ell_q$ $(1 . Then <math>\forall \epsilon > 0$ there is a subspace Y of $Z_{p,q}$, such that Y is isometric to ℓ_q , Y is 1-complemented in $Z_{p,q}$, and $||S|_Y|| < \epsilon$.

Dongyang Chen was a participant in the NSF Workshop in Analysis and Probability, Texas A&M University.

The research of William B. Johnson is supported in part by NSF DMS-1301604.

The research of Bentuo Zheng is supported in part by NSF DMS-1068838.

Bentuo Zheng was a participant in the NSF Workshop in Analysis and Probability, Texas A&M University.

Proof. Let $(e_{i,j})$ be the natural unit vector basis of $Z_{p,q}$, where $(e_{i,j})_j$ is the unit vector basis of the *i*th ℓ_q . By passing to appropriate subsequences of $(e_{i,j})$ and perturbing S slightly, we may assume that $(Se_{i,j})$ are disjointly supported in ℓ_q . Since $1 , we can pick an <math>N \in \mathbb{N}$ so large that $N^{1/q-1/p} < \epsilon/||T||$. Let $x_j = N^{-1/p} \sum_{i=1}^{N} e_{i,j}$. Then (x_j) is 1-equivalent to the unit vector basis of ℓ_q . Let Y be the closed linear span of (x_j) . Then Yis 1-complemented in $Z_{p,q}$ and $||S|_Y|| < \epsilon$.

Proof of Theorem 0.1. Fix $\epsilon > 0$. Let (ϵ_i) be a sequence of positive reals decreasing to 0 fast so that $\sum \epsilon_i < \min\{\epsilon/4, 1/4\}$. We write $Z_{p,q} = (\sum \ell_q^{(n)})_{\ell_p}$. Let $X_1 = \ell_q^{(1)}$. By Lemma 0.2, there is $N_1 \in \mathbb{N}$, $P_{[N_1,\infty)}T|_{X_1} < \epsilon_1$. By Lemma 0.3, there are $N_2 \in \mathbb{N}$ and $X_2 \subset P_{[N_1,N_2)}Z_{p,q}$ so that $X_2 \equiv \ell_q$, X_2 is 1-complemented in $Z_{p,q}$, and $||P_{[1,N_1)}T|_{X_2}|| < \epsilon_2/2$. By using Lemma 0.2 again and increasing N_2 , we may also assume that $||P_{[N_2,\infty)}T|_{X_2}|| < \epsilon_2/2$.

So by induction we get an increasing sequence (N_i) of positive integers and a sequence of subspaces (X_i) so that

- $X_i \equiv \ell_q;$
- X_i is 1-complemented in $Z_{p,q}$;
- $X_i \subset P_{[N_{i-1},N_i)}Z_{p,q}$ (where $N_0 = 1$);
- $||(I P_{[N_{i-1},N_i)})T|_{X_i}|| < \epsilon_i.$

We claim that for all but finitely many $i \in \mathbb{N}$, there is a subspace Y_i of X_i so that $Y_i \equiv \ell_q$, Y_i is 1-complemented in X_i , and $||T|_{Y_i}|| < \epsilon$. Suppose not. Then there is an infinite subset $I \subset \mathbb{N}$ so that for all $i \in I$ and for every 1-complemented subspace Y_i of X_i that is isometric to ℓ_q we have $||T|_{Y_i}|| \geq \epsilon$. Therefore, for each $i \in I$ there is a normalized block basis $(x_{i,j})_j$ of X_i so that $||Tx_{i,j}|| \geq \epsilon$. By passing to a subsequence of $(x_{i,j})_j$ and doing a small perturbation, we may assume that $(Tx_{i,j})_j$ is disjointly supported in $Z_{p,q}$. Since $Z_{p,q}$ has a lower q-estimate with constant 1, $(Tx_{i,j})_j$ is $||T||/\epsilon$ -equivalent to $(x_{i,j})_j$. For each $i \in I$, let Y_i be the closed linear span of $(x_{i,j})_j$. Then $\sum_{i \in I} Y_i$ is isometric to $Z_{p,q}$. Next we show that $T|_{\sum_{i \in I} Y_i}$ is an isomorphism. To see this, let $(y_i)_{i \in I} \in \sum_{i \in I} Y_i$ with $\sum_{i \in I} ||y_i||^p = 1$.

CORRIGENDUM TO THEOREM 2.10 OF "COMMUTATORS ON $(\sum \ell_q)_{\ell_p}$ " [STUDIA MATH. 206 (2011), NO.2, 175-1903]

Then we have

$$\|T((y_i)_{i \in I})\| \ge \|\sum_{i \in I} P_{[N_{i-1}, N_i)} Ty_i\| - \sum_{i \in I} \|(I - P_{[N_{i-1}, N_i)}) Ty_i\|$$

$$\ge (\sum_{i \in I} (1 - \epsilon_i)^p \|Ty_i\|^p)^{1/p} - \sum_{i \in I} \epsilon_i \|y_i\|$$

$$\ge 3\epsilon/4 - \sum_{i \in I} \epsilon_i$$

$$> \epsilon/2.$$

This contradicts the hypothesis that T is $Z_{p,q}$ -strictly singular.

Now we have our claim. Without loss of generality, we assume for all $i \in \mathbb{N}$, there is a subspace Y_i of X_i so that $Y_i \equiv \ell_q$, Y_i is 1-complemented in X_i and $||T|_{Y_i}|| < \epsilon$. Let $Y = \sum Y_i$. Then Y is isometric to $Z_{p,q}$ and 1-complemented in $Z_{p,q}$. Let $(y_i) \in S_Y$. We have

$$||T((y_i))|| \le ||\sum P_{[N_{i-1},N_i)}Ty_i|| + \sum ||(I - P_{[N_{i-1},N_i)})Ty_i||$$

$$\le (\sum ||Ty_i||^p)^{1/p} + \sum \epsilon_i ||y_i||$$

$$< \epsilon + \sum \epsilon_i$$

$$< 5\epsilon/4.$$

Since ϵ is arbitrary, we are done.

Lemma 0.4. Let $1 < p, q < \infty$ and $n \in \mathbb{N}$. Set $Z := (\sum_{k=1}^{n} X_n)_p$ with each X_n isometrically isomorphic to ℓ_q . Suppose that X is a subspace of Z. Then for each $\epsilon > 0$ there is a subspace Y of X so that Y is $1 + \epsilon$ -isomorphic to ℓ_q and Y is $1 + \epsilon$ -complemented in Z.

Proof. By the principle of small perturbations we can assume that X contains a sequence (x_k) that is disjointly supported with respect to the canonical basis $(e_{i,j})_{i=1,j=1}^{\infty, n}$. By passing to a subsequence of (x_k) and making another small perturbation, we can assume for every $j = 1, \ldots, n$ that there is a scalar a_j so that for each $k \in \mathbb{N}$ we have $||P_j x_k|| = a_j$, so that $\sum_{j=1}^n a_j^p = 1$. One checks easily that (x_k) is 1-equivalent to the unit vector basis of ℓ_q . Indeed, if $z = \sum_k b_k x_k$, then

$$||z||^{p} = \sum_{j=1}^{n} ||P_{j}z||^{p} = \sum_{j=1}^{n} ||\sum_{k} b_{k}P_{j}x_{k}||^{p}$$
$$= \sum_{j=1}^{n} (a_{j}(\sum_{k} |b_{k}|^{q})^{1/q})^{p} = (\sum_{j=1}^{n} a_{j}^{p})(\sum_{k} |b_{k}|^{q})^{p/q}).$$

To see that $[x_k]$ is norm one complemented in Z, assume WLOG that no a_j is zero and let $x_{k,j}^*$ be the unique norm one functional in $Z^* = (\sum_{k=1}^n X_n^*)_{p'}$ for which $\langle x_{k,j}^*, P_j x_k \rangle = a_j$. So $x_{k,j}^*$ has the same support as $P_j x_k$ and for each j, the sequence $(x_{k,j}^*)_k$ is 1-equivalent to the unit vector basis of $\ell_{q'}$. Define $x_k^* := \sum_{j=1}^n a_j^{p-1} x_{k,j}^*$. Then the sequence (x_k^*) is 1-equivalent to the unit vector basis for $\ell_{q'}$ and is biorthogonal to the sequence (x_k) . This implies that $Px := \sum_k \langle x_k^*, x \rangle x_k$ defines a norm one projection from Z onto $[x_k]$.

Lemma 0.5. $Z_{p,q}$ is complementably homogeneous for 1 .

Proof. Let $X = (\sum X_k)$ be a subspace of $Z_{p,q}$ isomorphic to $Z_{p,q}$ so that each X_k is isomorphic to ℓ_q . Let (ϵ_i) be a sequence of positive reals decreasing to 0 fast. Let Y_1 be a subspace of X_1 which is $1 + \epsilon_1$ -isomorphic to ℓ_q . By Lemma 0.2 and a small perturbation, we may assume that there is $N_1 \in \mathbb{N}$ so that $||P_{[N_1,\infty)}|_{Y_1}|| = 0$. By Lemma 0.2, Lemma 0.3, stability of ℓ_q , and a small perturbation, we may assume that there is a subspace Y_2 of X so that Y_2 is $1 + \epsilon_2$ -isomorphic to ℓ_q and $(I - P_{[N_1,N_2)})|_{Y_2} = 0$. Inductively, we get a sequence of subspaces (Y_k) of X and a sequence of increasing positive integers (N_k) so that Y_k is $1 + \epsilon_k$ -isomorphic to ℓ_q and $Y_k \subset P_{[N_{k-1},N_k)}Z_{p,q}$. By Lemma 0.4 and passing to subspaces of each Y_k , we may assume that Y_k is $1 + \epsilon_k$ -complemented in $P_{[N_{k-1},N_k)}Z_{p,q}$. Let $Y = \sum Y_k$. Then Y is $1 + \epsilon_i$ -isomorphic to $Z_{p,q}$ and $1 + \epsilon$ -complemented in $Z_{p,q}$ if $\sum \epsilon_k < \epsilon$.

Theorem 0.6. Let $1 < q < p < \infty$. Let $T : Z_{p,q} \to Z_{p,q}$ be $Z_{p,q}$ -strictly singular. Then there is a 1-complemented subspace Y of $Z_{p,q}$ which is isometric to $Z_{p,q}$ so that $||P_YT|| < \epsilon$, where P_Y is a norm 1 projection from $Z_{p,q}$ onto Y.

Proof. This follows immediately by applying Theorem 0.1 for T^* and Lemma 0.5.

Corrected proof of Theorem 2.10 in [CJZh] for $1 < q < p < \infty$. By [D, Theorem 8], it is enough to show that there is an ℓ_p -decomposition $\{X_i\}$ of $Z_{p,q}$ into uniformly isomorphic copies of ℓ_q so that

(0.1)
$$\lim_{n \to \infty} \| (\sum_{k \ge n} P_k) T \| = \lim_{n \to \infty} \| T (\sum_{k \ge n} P_k) \| = 0,$$

where P_k is the natural projection from $Z_{p,q}$ onto X_k .

By the original proof of Theorem 2.10 in [CJZh], we can get a sequence of subspaces $(X_n)_{n=1}^{\infty}$ of $(\sum_{n=0}^{\infty} Z_{p,q})_{\ell_p}$ such that

- (1) X_n is isometric to $Z_{p,q}$ and 1-complemented in $Z_{p,q}$;
- (2) $||T|_{X_n}|| < \varepsilon_n;$
- (3) $\|\sum_{n=1}^{\infty} x_n\| = (\sum_{n=1}^{\infty} \|x_n\|^p)^{\frac{1}{p}}$, for all $x_n \in X_n$;
- (4) $Z_{p,q} = (\sum_{n=1}^{\infty} X_n)_p \oplus X_0$ and X_0 is isomorphic to $Z_{p,q}$.

By Theorem 0.6 and passing to subspaces X'_n of each X_n $(n \ge 1)$ (absorbing the complements of X'_n in X_n into X_0), we may assume one additional condition.

(5) $||P_nT|| < \epsilon_n \ (n \ge 1)$, where P_n is the norm one projection from $Z_{p,q}$ onto X_n .

Now Equation 0.1 clearly holds if $\lim_{n\to\infty} \sum_{k>n} \epsilon_k \to 0$.

References

[D] D. Dosev, Commutators on ℓ_1 , Journal of Functional Analysis, 256 (2009), no. 11, 3490-3509.

[CJZh] D. Chen, W. B. Johnson and Bentuo Zheng, Commutators on $(\sum \ell_q)_{\ell_p}$, Studia Math., 206 (2011), no. 2, 175-190.

School of Mathematical Sciences, Xiamen University, Xiamen, 361005, China

E-mail address: cdy@xmu.edu.cn

DEPARTMENT OF MATHEMATICS, TEXAS A&M UNIVERSITY, COLLEGE STATION, TEXAS, 77843

 $E\text{-}mail\ address: \texttt{johnson}\texttt{Cmath.tamu.edu}$

Department of Mathematical Sciences, The University of Memphis, Memphis, TN 38152

 $E\text{-}mail\ address: \texttt{bzheng@memphis.edu}$