Commutators on ℓ_{∞}

D. Dosev and W. B. Johnson

Abstract

The operators on ℓ_{∞} which are commutators are those not of the form $\lambda I+S$ with $\lambda \neq 0$ and S strictly singular.

1. Introduction

The commutator of two elements A and B in a Banach algebra is given by

$$
[A, B]=A B-B A
$$

A natural problem that arises in the study of derivations on a Banach algebra \mathcal{A} is to classify the commutators in the algebra. Using a result of Wintner $([\mathbf{1 8}])$, who proved that the identity in a unital Banach algebra is not a commutator, with no effort one can also show that no operator of the form $\lambda I+K$, where K belongs to a norm closed ideal $\mathcal{I}(\mathcal{X})$ of $\mathcal{L}(\mathcal{X})$ and $\lambda \neq 0$, is a commutator in the Banach algebra $\mathcal{L}(\mathcal{X})$ of all bounded linear operators on the Banach space \mathcal{X}. The latter fact can be easily seen just by observing that the quotient algebra $\mathcal{L}(\mathcal{X}) / \mathcal{I}(\mathcal{X})$ also satisfies the conditions of Wintner's theorem.
In 1965 Brown and Pearcy ([5]) made a breakthrough by proving that the only operators on ℓ_{2} that are not commutators are the ones of the form $\lambda I+K$, where K is compact and $\lambda \neq 0$. Their result suggests what the classification on the other classical sequence spaces might be, and, in 1972, Apostol ([3]) proved that every non-commutator on the space ℓ_{p} for $1<p<\infty$ is of the form $\lambda I+K$, where K is compact and $\lambda \neq 0$. One year later he proved that the same classification holds in the case of $\mathcal{X}=c_{0}([4])$. Apostol proved some partial results on ℓ_{1}, but only 30 year later was the same classification proved for $\mathcal{X}=\ell_{1}$ by the first author $([\mathbf{6}])$. Note that if $\mathcal{X}=\ell_{p}(1 \leq p<\infty)$ or $\mathcal{X}=c_{0}$, the ideal of compact operators $K(\mathcal{X})$ is the largest proper ideal in $\mathcal{L}(\overline{\mathcal{X}})([\mathbf{8}]$, see also [17, Theorem 6.2]). The classification of the commutators on $\ell_{p}, 1 \leq p<\infty$, and partial results on other spaces suggest the following

Conjecture 1. Let \mathcal{X} be a Banach space such that $\mathcal{X} \simeq\left(\sum \mathcal{X}\right)_{p}, 1 \leq p \leq \infty$ or $p=0$ (we say that such a space admits a Pełczyński decomposition). Assume that $\mathcal{L}(\mathcal{X})$ has a largest ideal \mathcal{M}. Then every non-commutator on \mathcal{X} has the form $\lambda I+K$, where $K \in \mathcal{M}$ and $\lambda \neq 0$.

In [3] Apostol obtained a partial result regarding the commutators on ℓ_{∞}. He proved that if $T \in \mathcal{L}\left(\ell_{\infty}\right)$ and there exists a sequence of projections $\left(P_{n}\right)_{n=1}^{\infty}$ on ℓ_{∞} such that $P_{n}\left(\ell_{\infty}\right) \simeq \ell_{\infty}$ for $n=1,2, \ldots$ and $\left\|P_{n} T\right\| \rightarrow 0$ as $n \rightarrow \infty$, then T is a commutator. This condition is clearly

[^0]This article is part of the first author's doctoral dissertation, which is being prepared at Texas A\&M University under the direction of the second author.
satisfied if T is a compact operator, but, as the first author showed in [6], it is also satisfied if T is strictly singular, which is an essential step for proving the conjecture for ℓ_{∞}. In order to give a positive answer to the conjecture one has to prove

- Every operator $T \in \mathcal{M}$ is a commutator
- If $T \in \mathcal{L}(\mathcal{X})$ is not of the form $\lambda I+K$, where $K \in \mathcal{M}$ and $\lambda \neq 0$, then T is a commutator. In this paper we will give positive answer to this conjecture for the space ℓ_{∞}.

The authors would like to thank the referee and Dr. Niels Jakob Lausten for their comments and suggestions that help improve the manuscript.

2. Notation and basic results

For a Banach space \mathcal{X} denote by the $\mathcal{L}(\mathcal{X}), \mathcal{K}(\mathcal{X}), \mathcal{C}(\mathcal{X})$ and $S_{\mathcal{X}}$ the space of all bounded linear operators, the ideal of compact operators, the set of all finite co-dimensional subspaces of \mathcal{X} and the unit sphere of \mathcal{X}. By ideal we always mean closed, non-zero, proper ideal. A map from a Banach space \mathcal{X} to a Banach space \mathcal{Y} is said to be strictly singular if whenever the restriction of T to a subspace M of \mathcal{X} has a continuous inverse, M is finite dimensional. In the case where $\mathcal{X} \equiv \mathcal{Y}$, the set of strictly singular operators forms an ideal which we will denote by $\mathcal{S}(\mathcal{X})$. Recall that for $\mathcal{X}=\ell_{p}, 1 \leq p<\infty, \mathcal{S}(\mathcal{X})=\mathcal{K}(X)([\mathbf{8}])$ and on ℓ_{∞} the ideals of strictly singular and weakly compact operators coincide ([1, Theorem 5.5.1]). A Banach space \mathcal{X} is called prime if each infinite-dimensional complemented subspace of \mathcal{X} is isomorphic to \mathcal{X}. The spaces $\ell_{p}, 1 \leq p \leq \infty$, are all prime (cf. [13, Theorem 2.a. 3 and Theorem 2.a.7]). We say that a linear operator between two Banach spaces $T: \mathcal{X} \rightarrow \mathcal{Y}$ is an isomorphism if T is injective bounded linear map. If in addition T is surjective we will say that T is an onto isomorphism. For any two subspaces (possibly not closed) X and Y of a Banach space \mathcal{Z} let

$$
d(X, Y)=\inf \left\{\|x-y\|: x \in S_{X}, y \in Y\right\}
$$

A well known consequence of the open mapping theorem is that for any two closed subspaces X and Y of $\mathcal{Z}, d(X, Y)>0$ if and only if $X \cap Y=\{0\}$ and $X+Y$ is a closed subspace of \mathcal{Z}. Note also that $d(X, Y)=0$ if and only if $d(Y, X)=0$. First we prove a proposition that will later allow us to consider translations of an operator T by a multiple of the identity instead of the operator T itself.

Proposition 2.1. Let \mathcal{X} be a Banach space and $T \in \mathcal{L}(\mathcal{X})$ be such that there exists a subspace $Y \subset \mathcal{X}$ for which T is an isomorphism on Y and $d(Y, T Y)>0$. Then for every $\lambda \in \mathbb{C}$, $(T-\lambda I)_{\mid Y}$ is an isomorphism and $d(Y,(T-\lambda I) Y)>0$.

Proof. First, note that the two hypotheses on Y (that T is an isomorphism on Y and $d(Y, T Y)>0)$ are together equivalent to the existence of a constant $c>0$ s.t. for all $y \in S_{Y}$, $d(T y, Y)>c$. To see this, let us first assume that the hypotheses of the theorem are satisfied. Then there exists a constant C such that $\|T y\| \geq C$ for every $y \in S_{Y}$. For an arbitrary $y \in S_{Y}$, let $z_{y}=\frac{T y}{\|T y\|}$ and then we clearly have

$$
d(T y, Y)=\|T y\| d\left(z_{y}, Y\right) \geq C d(T Y, Y)=: c>0
$$

To show the other direction note that for $y \in S_{Y}, \quad 0<c<d(T y, Y)=\|T y\| d\left(z_{y}, Y\right) \leq$ $\|T\| d\left(z_{y}, Y\right)$. Taking the infimum over all $z_{y} \in S_{T Y}$ in the last inequality, we obtain that $d(T Y, Y)>0$ and hence $d(Y, T Y)>0$. On the other hand, for all $y \in S_{Y}$ we have

$$
0<c<d(T y, Y) \leq\left\|T y-\frac{c}{2} y\right\| \leq\|T y\|+\frac{c}{2}
$$

hence $\|T y\| \geq \frac{c}{2}$, which in turn implies that T is an isomorphism on Y.

Now it is easy to finish the proof. The condition $d(T y, Y)>c$ for all $y \in S_{Y}$ is clearly satisfied if we substitute T with $T-\lambda I$ since for a fixed $y \in S_{Y}$,

$$
d((T-\lambda I) y, Y)=\inf _{z \in Y}\|(T-\lambda I) y-z\|=\inf _{z \in Y}\|T y-z\|=d(T y, Y)
$$

hence $(T-\lambda I)_{\mid Y}$ is an isomorphism and $d(Y,(T-\lambda I) Y)>0$.
Note the following two simple facts:

- If $T: \mathcal{X} \rightarrow \mathcal{X}$ is a commutator on \mathcal{X} and $S: \mathcal{X} \rightarrow \mathcal{Y}$ is an onto isomorphism, then $S T S^{-1}$ is a commutator on \mathcal{Y}.
- Let $T: \mathcal{X} \rightarrow \mathcal{X}$ be such that there exists $X_{1} \subset \mathcal{X}$ for which $T_{\mid X_{1}}$ is an isomorphism and $d\left(X_{1}, T X_{1}\right)>0$. If $S: \mathcal{X} \rightarrow \mathcal{Y}$ is an onto isomorphism, then there exists $Y_{1} \subset \mathcal{Y}, Y_{1} \simeq X_{1}$, such that $S T S^{-1}{ }_{\mid Y_{1}}$ is an isomorphism and $d\left(Y_{1}, S T S^{-1} Y_{1}\right)>0$ (in fact $Y_{1}=S X_{1}$). Note also that if X_{1} is complemented in \mathcal{X}, then Y_{1} is complemented in \mathcal{Y}.
Using the two facts above, sometimes we will replace an operator T by an operator T_{1} which is similar to T and possibly acts on another Banach space.

If $\left\{Y_{i}\right\}_{i=0}^{\infty}$ is a sequence of arbitrary Banach spaces, by $\left(\sum_{i=0}^{\infty} Y_{i}\right)_{p}$ we denote the space of all sequences $\left\{y_{i}\right\}_{i=0}^{\infty}$ where $y_{i} \in Y_{i}, i=0,1, \ldots$, such that $\left(\left\|y_{i}\right\|_{Y_{i}}\right) \in \ell_{p}$ with the norm $\left\|\left(y_{i}\right)\right\|=\| \| y_{i}\left\|_{Y_{i}}\right\|_{p}$ (if $Y_{i} \equiv Y$ for every $i=0,1, \ldots$ we will use the notation $\left.\left(\sum Y\right)_{p}\right)$. We will only consider the case where all the spaces $Y_{i}, i=0,1 \ldots$, are uniformly isomorphic to a Banach space Y, that is, there exists a constant $\lambda>0$ and sequence of onto isomorphisms $\left\{T_{i}: Y_{i} \rightarrow Y\right\}_{i=0}^{\infty}$ such that $\left\|T^{-1}\right\|=1$ and $\|T\| \leq \lambda$. In this case we define an onto isomorphism $U:\left(\sum_{i=0}^{\infty} Y_{i}\right)_{p} \rightarrow\left(\sum Y\right)_{p}$ via $\left(T_{i}\right)$ by

$$
\begin{equation*}
U\left(y_{0}, y_{1}, \ldots\right)=\left(T_{0}\left(y_{0}\right), T_{1}\left(y_{1}\right), \ldots\right) \tag{2.1}
\end{equation*}
$$

and it is easy to see that $\|U\| \leq \lambda$ and $\left\|U^{-1}\right\|=1$. Sometimes we will identify the space $\left(\sum_{i=0}^{\infty} Y_{i}\right)_{p}$ with $\left(\sum Y\right)_{p}$ via the isomorphism U when there is no ambiguity how the properties of an operator T on $\left(\sum_{i=0}^{\infty} Y_{i}\right)_{p}$ translate to the properties of the operator $U T U^{-1}$ on $\left(\sum Y\right)_{p}$. For $y=\left(y_{i}\right) \in\left(\sum Y\right)_{p}, y_{i} \in Y$, define the following two operators:

$$
R(y)=\left(0, y_{0}, y_{1}, \ldots\right) \quad, \quad L(y)=\left(y_{1}, y_{2}, \ldots\right)
$$

The operators L and R are, respectively, the left and the right shift on the space $\left(\sum Y\right)_{p}$. Denote by $P_{i}, i=0,1, \ldots$, the natural, norm one, projection from $\left(\sum Y\right)_{p}$ onto the i-th component of $\left(\sum Y\right)_{p}$, which we denote by Y^{i}. We should note that if $Y \simeq\left(\sum Y\right)_{p}$, then some of the results in this paper are similar to results in [6], but initially we do not require this condition, and, in particular, some of the results we prove here have applications to spaces like $\left(\sum \ell_{q}\right)_{p}$ for arbitrary $1 \leq p, q \leq \infty$. Our first proposition shows some basic properties of the left and the right shift as well as the fact that all the powers of L and R are uniformly bounded, which will play an important role in the sequel. Since the proof follows immediately from the definitions we will omit it.

Proposition 2.2. Consider the Banach space $\left(\sum Y\right)_{p}$. We have the following identities

$$
\begin{equation*}
\left\|L^{n}\right\|=1,\left\|R^{n}\right\|=1 \text { for every } n=1,2, \ldots \tag{2.2}
\end{equation*}
$$

$$
\begin{equation*}
L P_{0}=P_{0} R=0, L R=I, R L=I-P_{0}, R P_{i}=P_{i+1} R, P_{i} L=L P_{i+1} \text { for } i \geq 0 \tag{2.3}
\end{equation*}
$$

Note that we can define a left and right shift on $\left(\sum_{i=0}^{\infty} Y_{i}\right)_{p}$ by $\tilde{L}=U^{-1} L U$ and $\tilde{R}=U^{-1} R U$, and, using the above proposition, we immediately have $\left\|\tilde{R}^{n}\right\| \leq \lambda$ and $\left\|\tilde{L}^{n}\right\| \leq \lambda$. If there is no ambiguity, we will denote the left and the right shift on $\left(\sum_{i=0}^{\infty} Y_{i}\right)_{p}$ simply by L and R.

Following the ideas in [3], for $1 \leq p<\infty$ and $p=0$ define the set

$$
\begin{equation*}
\mathcal{A}=\left\{T \in \mathcal{L}\left(\left(\sum Y\right)_{p}\right): \sum_{n=0}^{\infty} R^{n} T L^{n} \text { is strongly convergent }\right\} \tag{2.4}
\end{equation*}
$$

and for $T \in \mathcal{A}$ define

$$
T_{\mathcal{A}}=\sum_{n=0}^{\infty} R^{n} T L^{n}
$$

Now using the fact that an operator T is a commutator if and only if T is in the range of D_{S} for some S, where D_{S} is the inner derivation determined by S, defined by $D_{S}(T)=S T-T S$, it is easy to see ([6, Lemma 3]) that if $T \in \mathcal{A}$ then

$$
\begin{equation*}
T=D_{L}\left(R T_{\mathcal{A}}\right)=-D_{R}\left(T_{\mathcal{A}} L\right) \tag{2.5}
\end{equation*}
$$

hence T is a commutator.

3. Commutators on $\left(\sum Y\right)_{p}$

The ideas in this section are similar to the ideas in [6], but here we present them from a different point of view, in a more general setting and we also include the case $p=\infty$. The following lemma is a generalization of [3, Lemma 2.8] in the case $p=\infty$ and [$\mathbf{6}$, Corollary 7] in the case $1 \leq p<\infty$ and $p=0$. The proof presented here follows the ideas of the proof in [6]. Of course, some of the ideas can be traced back to the classic paper of Brown and Pearcy ([5]) and to Apostol's papers [3], [4], and the references therein.

Lemma 3.1. Let $T \in \mathcal{L}\left(\left(\sum Y\right)_{p}\right)$. Then the operators $P_{0} T$ and $T P_{0}$ are commutators.

Proof. The proof shows that $P_{0} T$ is in the range of D_{L} and $T P_{0}$ is in the range of D_{R}. We will consider two cases depending on p.
Case I : $p=\infty$
In this case we first observe that the series

$$
S_{0}=\sum_{n=0}^{\infty} R^{n} P_{0} T L^{n}
$$

is pointwise convergent coordinatewise. Indeed, let $x \in\left(\sum Y\right)_{\infty}$ and define $y_{n}=R^{n} P_{0} T L^{n} x$ for $n=0,1, \ldots$. Note that from the definition we immediately have $y_{n} \in Y^{n}$ so the sum $\sum_{n=0}^{\infty} y_{n}$ converges in the product topology on $\left(\sum Y\right)_{\infty}$ to a point in $\left(\sum Y\right)_{\infty}$ since $\left\|y_{n}\right\| \leq\left\|R^{n}\right\|\left\|P_{0}\right\|\|T\|\left\|L^{n}\right\|\|x\| \leq\|T\|\|x\|$.

Secondly, we observe that S_{0} and L commute. Because L and R are continuous operators on $\left(\sum Y\right)_{\infty}$ with the product topology and $L R=I$, we have

$$
\begin{align*}
S_{0} L x & =\sum_{n=0}^{\infty} R^{n} P_{0} T L^{n+1} x=L\left(\sum_{n=1}^{\infty} R^{n} P_{0} T L^{n} x\right)=L\left(\sum_{n=0}^{\infty} R^{n} P_{0} T L^{n} x\right)-L P_{0} T x \tag{3.1}\\
& =L S_{0} x-0
\end{align*}
$$

since $L P_{0}=0$. That is, $D_{L} S_{0}=0$, as desired.

On the other hand, again using $L P_{0}=0$,

$$
\begin{align*}
(I-R L) S_{0} x & =\sum_{n=0}^{\infty}(I-R L) R^{n} P_{0} T L^{n} x=(I-R L) P_{0} T x+\underbrace{\sum_{n=1}^{\infty}(I-R L) R^{n} P_{0} T L^{n} x}_{0} \tag{3.2}\\
& =(I-R L) P_{0} T x=P_{0} T x
\end{align*}
$$

Therefore

$$
\begin{equation*}
D_{L}\left(R S_{0}\right)=\left(D_{L} R\right) S_{0}+R\left(D_{L} S_{0}\right)=(I-R L) S_{0}+0=P_{0} T \tag{3.3}
\end{equation*}
$$

The proof of the statement that $T P_{0}$ is a commutator involves a similar modification of the proof of [3, Lemma 2.8]. Again, consider the series

$$
S=\sum_{n=0}^{\infty} R^{n} P_{0} T P_{0} L^{n}
$$

This is pointwise convergent coordinatewise and $S L=L S$ (from the above reasoning applied to the operator $T P_{0}$), and

$$
\begin{aligned}
D_{R}(-S L) & =-D_{R}(L S)=-R L S+L S R=-\left(I-P_{0}\right) S+L S R \\
& =-S+P_{0} S+S L R=-S+P_{0} S+S=P_{0} T P_{0}
\end{aligned}
$$

Now it is easy to see that

$$
D_{R}\left(L T P_{0}-S L\right)=R L T P_{0}-\underbrace{L T P_{0} R}_{0}+P_{0} T P_{0}=\left(I-P_{0}\right) T P_{0}+P_{0} T P_{0}=T P_{0}
$$

Case II : $1 \leq p<\infty$ or $p=0$
In this case the proof is similar to the proof of [6, Lemma 6 and Corollary 7] and we include it for completeness. Let us consider the case $p \geq 1$ first. For any $y \in\left(\sum Y\right)_{p}$ we have

$$
\begin{aligned}
\left\|\sum_{n=m}^{m+r} R^{n} P_{i} T P_{j} L^{n} y\right\|^{p} & =\left\|\sum_{n=m}^{m+r} R^{n} P_{i} T P_{j} L^{n} P_{j+n} y\right\|^{p}=\sum_{n=m}^{m+r}\left\|R^{n} P_{i} T P_{j} L^{n} P_{j+n} y\right\|^{p} \\
& \leq\left\|P_{i} T P_{j}\right\|^{p} \sum_{n=m}^{m+r}\left\|P_{j+n} y\right\|^{p} \leq\left\|P_{i} T P_{j}\right\|^{p} \sum_{n=m}^{\infty}\left\|P_{j+n} y\right\|^{p}
\end{aligned}
$$

Since $\sum_{n=m}^{\infty}\left\|P_{j+n} y\right\|^{p} \rightarrow 0$ as $m \rightarrow \infty$ we have that $\sum_{n=0}^{\infty} R^{n} P_{i} T P_{j} L^{n}$ is strongly convergent and $P_{i} T P_{j} \in \mathcal{A}$.
For $p=0$ a similar calculation shows

$$
\begin{aligned}
\left\|\sum_{n=m}^{m+r} R^{n} P_{i} T P_{j} L^{n} y\right\| & =\left\|\sum_{n=m}^{m+r} R^{n} P_{i} T P_{j} L^{n} P_{j+n} y\right\|=\max _{m \leq n \leq m+r}\left\|R^{n} P_{i} T P_{j} L^{n} P_{j+n} y\right\| \\
& \leq\left\|P_{i} T P_{j}\right\| \max _{m \leq n \leq m+r}\left\|P_{j+n} y\right\|
\end{aligned}
$$

and since $\max _{m \leq n \leq m+r}\left\|P_{j+n} y\right\| \rightarrow 0$ as $m \rightarrow \infty$ we apply the same argument as in the case $p \geq 1$ to obtain $P_{i} T \bar{P}_{j} \in \mathcal{A}$.
Using $P_{i} T P_{j} \in \mathcal{A}$ for $i=j=0$ and (2.5) we have $P_{0} T P_{0}=D_{L}\left(R\left(P_{0} T P_{0}\right)_{\mathcal{A}}\right)=$ $-D_{R}\left(\left(P_{0} T P_{0}\right)_{\mathcal{A}} L\right)$. Again, as in [6, Corollary 7], via direct computation we obtain

$$
\begin{align*}
& T P_{0}=D_{R}\left(L T P_{0}-\left(P_{0} T P_{0}\right)_{\mathcal{A}} L\right) \tag{3.4}\\
& P_{0} T=D_{L}\left(-P_{0} T R+R\left(P_{0} T P_{0}\right)_{\mathcal{A}}\right) \tag{3.5}
\end{align*}
$$

Now we switch our attention to Banach spaces which in addition satisfy $\mathcal{X} \simeq\left(\sum \mathcal{X}\right)_{p}$ for some $1 \leq p \leq \infty$ or $p=0$. Note that the Banach space $\left(\sum Y\right)_{p}$ satisfies this condition regardless of the space Y, hence we will be able to use the results we proved so far in this section. We begin with a definition.

Definition 1. Let \mathcal{X} be a Banach space such that $\mathcal{X} \simeq\left(\sum \mathcal{X}\right)_{p}, 1 \leq p \leq \infty$ or $p=0$. We say that $\mathcal{D}=\left\{X_{i}\right\}_{i=0}^{\infty}$ is a decomposition of \mathcal{X} if it forms an ℓ_{p} or c_{0} decomposition of \mathcal{X} into subspaces which are uniformly isomorphic to \mathcal{X}; that is, if the following three conditions are satisfied:

- There are uniformly bounded projections P_{i} on \mathcal{X} with $P_{i} \mathcal{X}=X_{i}$ and $P_{i} P_{j}=0$ for $i, j=$ $0,1, \ldots$ and $i \neq j$
- There exists a collection of isomorphisms $\psi_{i}: X_{i} \rightarrow \mathcal{X}, i \in \mathbb{N}_{0}$ (we denote $\mathbb{N}_{0}=\mathbb{N} \cup\{0\}$), such that $\left\|\psi_{i}^{-1}\right\|=1$ and $\lambda=\sup _{i \in \mathbb{N}_{0}}\left\|\psi_{i}\right\|<\infty$
- The formula $S x=\left(\psi_{i} P_{i} x\right)$ defines a surjective isomorphism from \mathcal{X} onto $\left(\sum \mathcal{X}\right)_{p}$

If $\mathcal{D}=\left\{X_{i}\right\}_{i=0}^{\infty}$ is a decomposition of \mathcal{X} we have $\mathcal{X} \simeq\left(\sum \mathcal{X}\right)_{p} \simeq\left(\sum_{i=0}^{\infty} X_{i}\right)_{p}$, where the second isomorphic relation is via the isomorphism U defined in (2.1). Using this simple observation we will often identify \mathcal{X} with $\left(\sum_{i=0}^{\infty} X_{i}\right)_{p}$. Our next theorem is similar to $[\mathbf{6}$, Theorem 16] and [3, Theorem 4.6], but we state it and prove it in a more general setting and also include the case $p=\infty$.

Theorem 3.2. Let \mathcal{X} be a Banach space such that $\mathcal{X} \simeq\left(\sum \mathcal{X}\right)_{p}, 1 \leq p \leq \infty$ or $p=0$. Let $T \in \mathcal{L}(\mathcal{X})$ be such that there exists a subspace $X \subset \mathcal{X}$ such that $X \simeq \mathcal{X}, T_{\mid X}$ is an isomorphism, $X+T(X)$ is complemented in \mathcal{X} and $d(X, T(X))>0$. Then there exists a decomposition \mathcal{D} of \mathcal{X} such that T is similar to a matrix operator of the form

$$
\left(\begin{array}{ll}
* & L \\
* & *
\end{array}\right)
$$

on $\mathcal{X} \oplus \mathcal{X}$, where L is the left shift associated with \mathcal{D}.

Proof. Clearly $\mathcal{X}=X \oplus T(X) \oplus Z$ where Z is complemented in \mathcal{X}. Note that without loss of generality we can assume that Z is isomorphic to \mathcal{X}. Indeed, if this is not the case, let $X=X_{1} \oplus X_{2}, X \simeq X_{1} \simeq X_{2}$ and X_{1}, X_{2} complemented in X (hence also complemented in $\mathcal{X})$. Then $d\left(X_{1}, T\left(X_{1}\right)\right)>0$ and $\mathcal{X}=X_{1} \oplus T\left(X_{1}\right) \oplus Z_{1}$ where Z_{1} is a complemented subspace of \mathcal{X}, which contains the subspace $X_{2} \subset \mathcal{X}$, such that X_{2} is isomorphic to \mathcal{X} and complemented in Z. Applying the Pełczýnski decomposition technique ($[\mathbf{1 4}$, Proposition 4]), we conclude that Z_{1} is isomorphic to X. This observation plays an important role and will allow us to construct the decompositions we need during the rest of the proof.
Denote by $I-P$ the projection onto $T(X)$ with kernel $X+Z$. Consider two decompositions $\mathcal{D}_{1}=\left\{X_{i}\right\}_{i=0}^{\infty}, \mathcal{D}_{2}=\left\{Y_{i}\right\}_{i=0}^{\infty}$ of \mathcal{X} such that $T(X)=Y_{0}=X_{1} \oplus X_{2} \oplus \cdots, X_{0}=Y_{1} \oplus Y_{2} \oplus \cdots$, $Y_{1}=X$, and $Z=Y_{2} \oplus Y_{3} \oplus \cdots$. Define a map S

$$
S \varphi=L_{\mathcal{D}_{1}} \varphi \oplus L_{\mathcal{D}_{2}} \varphi, \quad \varphi \in \mathcal{X}
$$

from \mathcal{X} to $\mathcal{X} \oplus \mathcal{X}$. The map S is invertible $\left(S^{-1}(a, b)=R_{\mathcal{D}_{1}} a+R_{\mathcal{D}_{2}} b\right)$. Just using the definition of S and the formula for S^{-1} we see that

$$
\begin{aligned}
S T S^{-1}(a, b) & =S T\left(R_{\mathcal{D}_{1}} a+R_{\mathcal{D}_{2}} b\right)=S\left(T R_{\mathcal{D}_{1}} a+T R_{\mathcal{D}_{2}} b\right) \\
& =\left(L_{\mathcal{D}_{1}} T R_{\mathcal{D}_{1}} a+L_{\mathcal{D}_{1}} T R_{\mathcal{D}_{2}} b\right) \oplus\left(L_{\mathcal{D}_{2}} T R_{\mathcal{D}_{1}} a+L_{\mathcal{D}_{2}} T R_{\mathcal{D}_{2}} b\right),
\end{aligned}
$$

hence

$$
S T S^{-1}=\left(\begin{array}{cc}
* & L_{\mathcal{D}_{1}} T R_{\mathcal{D}_{2}} \\
* & *
\end{array}\right) .
$$

Let

$$
\begin{equation*}
A=P_{Y_{0}} T R_{\mathcal{D}_{2}}=(I-P) T R_{\mathcal{D}_{2}} \tag{3.6}
\end{equation*}
$$

and note that $A_{\mid P_{Y_{0}} \mathcal{X}} \equiv A_{\mid(I-P) \mathcal{X}}:(I-P) \mathcal{X} \rightarrow(I-P) \mathcal{X}$ is onto and invertible since $R_{\mathcal{D}_{2}}$ is an isomorphism on $P_{Y_{0}} \mathcal{X}$ and $R_{\mathcal{D}_{2}}\left(P_{Y_{0}} \mathcal{X}\right)=Y_{1}=X$. Here we used the fact that $P_{Y_{0}} T$ is an isomorphism on $X(P X=X)$. Denote by $T_{0}:(I-P) \mathcal{X} \rightarrow(I-P) \mathcal{X}$ the inverse of $A_{\mid P_{Y_{0}} \mathcal{X}}$ (note that T_{0} is an automorphism on $(I-P) \mathcal{X}$) and consider $G: \mathcal{X} \rightarrow \mathcal{X}$ defined by

$$
G=I+T_{0}(I-P)-T_{0} A .
$$

We will show that $G^{-1}=A+P$. In fact, from the definitions of A and T_{0} it is clear that

$$
\begin{equation*}
A T_{0}(I-P)=T_{0} A(I-P)=I-P, P T_{0}(I-P)=P A=0,(I-P) A=A \tag{3.7}
\end{equation*}
$$

and since A maps onto $(I-P) \mathcal{X}$ and $A T_{0}=I_{\mid(I-P) \mathcal{X}}$ we also have

$$
\begin{equation*}
A-A T_{0} A=0 . \tag{3.8}
\end{equation*}
$$

Now using (3.7) and (3.8) we compute

$$
\begin{aligned}
(A+P) G & =(A+P)\left(I+T_{0}(I-P)-T_{0} A\right) \\
& =A+A T_{0}(I-P)-A T_{0} A+P=I-P+P=I \\
G(A+P) & =\left(I+T_{0}(I-P)-T_{0} A\right)(A+P) \\
& =A+P+T_{0}(I-P) A+T_{0}(I-P) P-T_{0} A A-T_{0} A P \\
& =A+P+T_{0} A-T_{0} A A-T_{0} A P \\
& =P+\left(I-T_{0} A\right) A+T_{0} A(I-P) \\
& =P+\left(I-T_{0} A\right)(I-P) A+(I-P) \\
& =I+\left((I-P)-T_{0} A(I-P)\right) A \\
& =I+(I-P-(I-P)) A=I .
\end{aligned}
$$

Using a similarity we obtain

$$
\left(\begin{array}{cc}
I & 0 \\
0 & G^{-1}
\end{array}\right)\left(\begin{array}{cc}
* & L_{\mathcal{D}_{1}} T R_{\mathcal{D}_{2}} \\
* & *
\end{array}\right)\left(\begin{array}{cc}
I & 0 \\
0 & G
\end{array}\right)=\left(\begin{array}{cc}
* & L_{\mathcal{D}_{1}} T R_{\mathcal{D}_{2}} G \\
* & *
\end{array}\right)
$$

It is clear that we will be done if we show that $L_{\mathcal{D}_{1}}=L_{\mathcal{D}_{1}} T R_{\mathcal{D}_{2}} G$. In order to do this consider the equation $(A+P) G=I \Leftrightarrow A G+P G=I$. Multiplying both sides of the last equation on the left by $L_{\mathcal{D}_{1}}$ gives us $L_{\mathcal{D}_{1}} A G+L_{\mathcal{D}_{1}} P G=L_{\mathcal{D}_{1}}$. Using $L_{\mathcal{D}_{1}} P \equiv L_{\mathcal{D}_{1}} P_{X_{0}}=0$ we obtain $L_{\mathcal{D}_{1}} A G=$ $L_{\mathcal{D}_{1}}$. Finally, substituting A from (3.6) in the last equation yields

$$
L_{\mathcal{D}_{1}}=L_{\mathcal{D}_{1}} A G=L_{\mathcal{D}_{1}} P_{Y_{0}} T R_{\mathcal{D}_{2}} G=L_{\mathcal{D}_{1}}\left(I-P_{X_{0}}\right) T R_{\mathcal{D}_{2}} G=L_{\mathcal{D}_{1}} T R_{\mathcal{D}_{2}} G,
$$

which finishes the proof.
The following theorem was proved in $[\mathbf{3}]$ for $X=\ell_{p}, 1<p<\infty$, but inessential modifications give the result in these general settings.

Theorem 3.3. Let \mathcal{X} be a Banach space such that $\mathcal{X} \simeq\left(\sum \mathcal{X}\right)_{p}$. Let \mathcal{D} be a decomposition of \mathcal{X} and let L be the left shift associated with it. Then the matrix operator

$$
\left(\begin{array}{cc}
T_{1} & L \\
T_{2} & T_{3}
\end{array}\right)
$$

acting on $\mathcal{X} \oplus \mathcal{X}$ is a commutator.

Proof. Let $\mathcal{D}=\left\{X_{i}\right\}$ be the given decomposition. Consider a decomposition $\mathcal{D}_{1}=$ $\left\{Y_{i}\right\}$ such that $Y_{0}=\bigoplus_{i=1}^{\infty} X_{i}$ and $X_{0}=\bigoplus_{i=1}^{\infty} Y_{i}$. Now there exists an operator G such that $D_{L_{\mathcal{D}}} G=R_{\mathcal{D}_{1}} L_{\mathcal{D}_{1}}\left(T_{1}+T_{3}\right)$. This can be done using Lemma 3.1, since $R_{\mathcal{D}_{1}} L_{\mathcal{D}_{1}}=I-P_{Y_{0}}=$ $P_{X_{0}}$. Note that we have $T_{1}+T_{3}-L G+G L=T_{1}+T_{3}-D_{L} G=T_{1}+T_{3}-R_{\mathcal{D}_{1}} L_{\mathcal{D}_{1}}\left(T_{1}+\right.$ $\left.T_{3}\right)=P_{Y_{0}}\left(T_{1}+T_{3}\right)$, and using Lemma 3.1 again, we deduce that $T_{1}+T_{3}-L G+G L$ is a commutator. Thus by making the similarity

$$
\widetilde{T}:=\left(\begin{array}{cc}
I & 0 \\
G & I
\end{array}\right)\left(\begin{array}{cc}
T_{1} & L \\
T_{2} & T_{3}
\end{array}\right)\left(\begin{array}{cc}
I & 0 \\
-G & I
\end{array}\right)=\left(\begin{array}{cc}
T_{1}-L G & L \\
* & T_{3}+G L
\end{array}\right)
$$

and replacing T by \widetilde{T} we can assume that $T_{1}+T_{3}$ is a commutator, say $T_{1}+T_{3}=A B-B A$ and $\|A\|<1 /(2\|R\|)$ (this can be done by scaling). Denote by M_{S} left multiplication by an operator S. Then $\left\|M_{R} D_{A}\right\|<1$ where R is the right shift associated with \mathcal{D}. The operator $T_{0}=\left(M_{I}-M_{R} D_{A}\right)^{-1} M_{R}\left(T_{3} B-T_{2}\right)$ is well defined and it is easy to see that

$$
\left(\begin{array}{cc}
A & 0 \\
T_{3} & A-L
\end{array}\right)\left(\begin{array}{cc}
B & I \\
T_{0} & 0
\end{array}\right)-\left(\begin{array}{cc}
B & I \\
T_{0} & 0
\end{array}\right)\left(\begin{array}{cc}
A & 0 \\
T_{3} & A-L
\end{array}\right)=\left(\begin{array}{cc}
T_{1} & L \\
T_{2} & T_{3}
\end{array}\right) .
$$

This finishes the proof.

4. Operators on ℓ_{∞}

Definition 2. The left essential spectrum of $T \in \mathcal{L}(\mathcal{X})$ is the set ([2] Def 1.1)

$$
\sigma_{l . e .}(T)=\left\{\lambda \in \mathbb{C}: \inf _{x \in S_{Y}}\|(\lambda-T) x\|=0 \text { for all } Y \subset \mathcal{X} \text { s.t. } \operatorname{codim}(Y)<\infty\right\} .
$$

Apostol [2, Theorem 1.4] proved that for any $T \in \mathcal{L}(\mathcal{X}), \sigma_{l . e .}(T)$ is a closed non-void set. The following lemma is a characterization of the operators not of the form $\lambda I+K$ on the classical Banach sequence spaces. The proof presented here follows Apostol's ideas [3, Lemma 4.1], but it is presented in a more general way.

Lemma 4.1. Let \mathcal{X} be a Banach space isomorphic to ℓ_{p} for $1 \leq p<\infty$ or c_{0} and let $T \in$ $\mathcal{L}(\mathcal{X})$. Then the following are equivalent
(1) $T-\lambda I$ is not a compact operator for any $\lambda \in \mathbb{C}$.
(2) There exists an infinite dimensional complemented subspace $Y \subset \mathcal{X}$ such that $Y \simeq \mathcal{X}, T_{\mid Y}$ is an isomorphism and $d(Y, T(Y))>0$.

Proof. (2) \Longrightarrow (1)
Assume that $T=\lambda I+K$ for some $\lambda \in \mathbb{C}$ and some $K \in \mathcal{K}(\mathcal{X})$. Clearly $\lambda \neq 0$ since $T_{\mid Y}$ is an isomorphism. Now there exists a sequence $\left\{x_{i}\right\}_{i=1}^{\infty} \subset S_{Y}$ such that $\left\|K x_{n}\right\| \rightarrow 0$ as $n \rightarrow \infty$. Let
$y_{n}=T\left(\frac{x_{n}}{\lambda}\right)$ and note that

$$
\left\|x_{n}-y_{n}\right\|=\left\|x_{n}-(\lambda I+K)\left(\frac{x_{n}}{\lambda}\right)\right\|=\left\|x_{n}-x_{n}-K\left(\frac{x_{n}}{\lambda}\right)\right\|=\frac{\left\|K x_{n}\right\|}{\lambda} \rightarrow 0
$$

as $n \rightarrow \infty$ which contradicts the assumption $d(Y, T(Y))>0$. Thus $T-\lambda I$ is not a compact operator for any $\lambda \in \mathbb{C}$.
(1) $\Longrightarrow(2)$

The proof in this direction follows the ideas of the proof of Lemma 4.1 from $[\mathbf{3}]$. Let $\lambda \in \sigma_{l . e .}(T)$. Then $T_{1}=T-\lambda I$ is not a compact operator and $0 \in \sigma_{l . e}\left(T_{1}\right)$. Using just the definition of the left essential spectrum, we find a normalized block basis sequence $\left\{x_{i}\right\}_{i=1}^{\infty}$ of the standard unit vector basis of \mathcal{X} such that $\left\|T_{1} x_{n}\right\|<\frac{1}{2^{n}}$ for $n=1,2, \ldots$. Thus if we denote $Z=\overline{\operatorname{span}}\left\{x_{i}: i=\right.$ $1,2, \ldots\}$ we have $Z \simeq \mathcal{X}$ and $T_{1 \mid Z}$ is a compact operator. Let $I-P$ be a bounded projection from \mathcal{X} onto $Z\left(\left[\mathbf{1 4}\right.\right.$, Lemma 1]) so that $T_{1}(I-P)$ is compact. Now consider the operator $T_{2}=(I-P) T_{1} P$. We have two possibilities:
Case I. Assume that $T_{2}=(I-P) T_{1} P$ is not a compact operator. Then there exists an infinite dimensional subspace $Y_{1} \subset P \mathcal{X}$ on which T_{2} is an isomorphism and hence using [14, Lemma 2] if necessary, we find a complemented subspace $Y \subset P \mathcal{X}$, such that T_{2} is an isomorphism on Y. By the construction of the operator T_{2} we immediately have $d\left(Y,(I-P) T_{1} P(Y)\right)>0$ and hence $d\left(Y, T_{1}(Y)\right)>0$. Note that since \mathcal{X} is prime and Y is complemented in $\mathcal{X}, Y \simeq \mathcal{X}$ is automatic. Now we are in position to use Proposition 2.1 to conclude that $d(Y, T(Y))>0$.
Case II. Now we can assume that the operator $(I-P) T_{1} P$ is compact. Since $T_{1}(I-P)$ is compact and using

$$
T_{1}=T_{1}(I-P)+(I-P) T_{1} P+P T_{1} P
$$

we conclude that the operator $P T_{1} P$ is not compact. Using $\mathcal{X} \equiv P \mathcal{X} \oplus(I-P) \mathcal{X}$, we identify $P \mathcal{X} \oplus(I-P) \mathcal{X}$ with $\mathcal{X} \oplus \mathcal{X}$ via an onto isomorphism U, such that U maps $P \mathcal{X}$ onto the first copy of \mathcal{X} in the sum $\mathcal{X} \oplus \mathcal{X}$. Without loss of generality we assume that $T_{1}=\left(\begin{array}{ll}T_{11} & T_{12} \\ T_{21} & T_{22}\end{array}\right)$ is acting on $\mathcal{X} \oplus \mathcal{X}$. Denote by $P=\left(\begin{array}{cc}I & 0 \\ 0 & 0\end{array}\right)$ the projection from $\mathcal{X} \oplus \mathcal{X}$ onto the first copy of \mathcal{X}. In the new settings, we have that T_{11} is not compact and T_{21}, T_{22} and T_{12} are compact operators. Define the operator S on $\mathcal{X} \oplus \mathcal{X}$ in the following way:

$$
\sqrt{2} S=\left(\begin{array}{rr}
I & I \\
I & -I
\end{array}\right)
$$

Clearly $S^{2}=I$ hence $S=S^{-1}$. Now consider the operator $2(I-P) S^{-1} T_{1} S P$. A simple calculation shows that

$$
2(I-P) S^{-1} T_{1} S P=\left(\begin{array}{cc}
0 & 0 \\
T_{11}+T_{12}-T_{21}-T_{22} & 0
\end{array}\right)
$$

hence $(I-P) S^{-1} T_{1} S P$ is not compact. Now we can continue as in the previous case to conclude that there exists a complemented subspace $Y \subset \mathcal{X}$ in the first copy of $\mathcal{X} \oplus \mathcal{X}$ for which $d\left(Y, S^{-1} T_{1} S(Y)\right)>0$ and hence $d\left(S Y, T_{1}(S Y)\right)>0$. Again using Proposition 2.1, we conclude that $d(S Y, T(S Y))>0$.

REMARK 1. We should note that the two conditions in the preceding lemma are equivalent to a third one, which is the same as (2) plus the additional condition that $Y \oplus T(Y)$ is complemented in \mathcal{X}. This is essentially what was used for proving the complete classification of the commutators on ℓ_{1} in [6], and $\ell_{p}, 1<p<\infty$, and c_{0} in [3] and [4]. The last mentioned condition will also play an important role in the proof of the complete classification of the commutators on ℓ_{∞}, but we should point out that once we have an infinite dimensional subspace $Y \subset \ell_{\infty}$ such that $Y \simeq \ell_{\infty}, T_{\mid Y}$ is an isomorphism and $d(Y, T(Y))>0$, then Y and $Y \oplus T(Y)$ will be automatically complemented in ℓ_{∞}.

Lemma 4.2. Let $T \in \mathcal{L}\left(\ell_{\infty}\right)$ and denote by I the identity operator on ℓ_{∞}. Then the following are equivalent
(a) For each subspace $X \subset \ell_{\infty}, X \simeq c_{0}$, there exists a constant λ_{X} and a compact operator $K_{X}: X \rightarrow \ell_{\infty}$ depending on X such that $T_{\mid X}=\lambda_{X} I_{\mid X}+K_{X}$.
(b) There exists a constant λ such that $T=\lambda I+S$, where $S \in \mathcal{S}\left(\ell_{\infty}\right)$.

Proof. Clearly (b) implies (a), since every strictly singular operator from c_{0} to any Banach space is compact ($[\mathbf{1}$, Theorem 2.4.10]). For proving the other direction we will first show that for every two subspaces X, Y such that $X \simeq Y \simeq c_{0}$ we have $\lambda_{X}=\lambda_{Y}$. We have several cases.

Case I. $X \cap Y=\{0\}, d(X, Y)>0$.
Let $\left\{x_{i}\right\}_{i=1}^{\infty}$ and $\left\{y_{i}\right\}_{i=1}^{\infty}$ be bases for X and Y, respectively, which are equivalent to the usual unit vector basis of c_{0}. Consider the sequence $\left\{z_{i}\right\}_{i=1}^{\infty}$ such that $z_{2 i}=x_{i}, z_{2 i-1}=y_{i}$ for $i=1,2, \ldots$. If we denote $Z=\overline{\operatorname{span}}\left\{z_{i}: i=1,2, \ldots\right\}$, then clearly $Z \simeq c_{0}$, and, using the assumption of the lemma, we have that $T_{\mid Z}=\lambda_{Z} I_{\mid Z}+K_{Z}$. Now using $X \subset Z$ we have that $\lambda_{X} I_{\mid X}+K_{X}=\left(\lambda_{Z} I_{\mid Z}+K_{Z}\right)_{\mid X}$, hence

$$
\left(\lambda_{X}-\lambda_{Z}\right) I_{\mid X}=\left(K_{Z}\right)_{\mid X}-K_{X}
$$

The last equation is only possible if $\lambda_{X}=\lambda_{Z}$ since the identity is never a compact operator on a infinite dimensional subspace. Similarly $\lambda_{Y}=\lambda_{Z}$ and hence $\lambda_{X}=\lambda_{Y}$.

Case II. $X \cap Y=\{0\}, d(X, Y)=0$.
Again let $\left\{x_{i}\right\}_{i=1}^{\infty}$ and $\left\{y_{i}\right\}_{i=1}^{\infty}$ be bases of X and Y, respectively, which are equivalent to the usual unit vector basis of c_{0} and assume also that $\lambda_{X} \neq \lambda_{Y}$. There exists a normalized block basis $\left\{u_{i}\right\}_{i=1}^{\infty}$ of $\left\{x_{i}\right\}_{i=1}^{\infty}$ and a normalized block basis $\left\{v_{i}\right\}_{i=1}^{\infty}$ of $\left\{y_{i}\right\}_{i=1}^{\infty}$ such that $\left\|u_{i}-v_{i}\right\|<\frac{1}{i}$. Then $\left\|u_{i}-v_{i}\right\| \rightarrow 0 \Rightarrow\left\|T u_{i}-T v_{i}\right\| \rightarrow 0 \Rightarrow\left\|\lambda_{X} u_{i}+K_{X} u_{i}-\lambda_{Y} v_{i}-K_{Y} v_{i}\right\| \rightarrow$ 0 . Since $u_{i} \rightarrow 0$ weakly (as a bounded block basis of the standard unit vector basis of c_{0}) we have $\left\|K_{X} u_{i}\right\| \rightarrow 0$ and using $\left\|u_{i}-v_{i}\right\| \rightarrow 0$ we conclude that

$$
\left\|\left(\lambda_{X}-\lambda_{Y}\right) v_{i}-K_{Y} v_{i}\right\| \rightarrow 0
$$

Then there exists $N \in \mathbb{N}$ such that $\left\|K_{Y} v_{i}\right\|>\frac{\left|\lambda_{X}-\lambda_{Y}\right|}{2}\left\|v_{i}\right\|$ for $i>N$, which is impossible because K_{Y} is a compact operator. Thus, in this case we also have $\lambda_{X}=\lambda_{Y}$.

Case III. $X \cap Y=Z \neq\{0\}, \operatorname{dim}(Z)=\infty$.
In this case we have $\left(\lambda_{X} I_{\mid X}+K_{X}\right)_{\mid Z}=\left(\lambda_{Y} I_{\mid Y}+K_{Y}\right)_{\mid Z}$ and, as in the first case, we rewrite the preceding equation in the form

$$
\left(\lambda_{X} I_{\mid X}-\lambda_{Y} I_{\mid Y}\right)_{\mid Z}=\left(K_{Y}-K_{X}\right)_{\mid Z}
$$

Again, as in Case I, the last equation is only possible if $\lambda_{X}=\lambda_{Y}$ since the identity is never a compact operator on a infinite dimensional subspace.

Case IV. $X \cap Y=Z \neq\{0\}, \operatorname{dim}(Z)<\infty$.
Let $X=Z \bigoplus X_{1}$ and $Y=Z \bigoplus Y_{1}$. Then $X_{1} \cap Y_{1}=\{0\}, X_{1} \simeq Y_{1} \simeq c_{0}$ and we can reduce to one of the previous cases.

Let us denote $S=T-\lambda I$ where $\lambda=\lambda_{X}$ for arbitrary $X \subset \ell_{\infty}, X \simeq c_{0}$. If S is not a strictly singular operator, then there is a subspace $Z \subset \ell_{\infty}, Z \simeq \ell_{\infty}$ such that $S_{\mid Z}$ is an isomorphism ([16, Corollary 1.4]), hence we can find $Z_{1} \subset Z \subset \ell_{\infty}, Z_{1} \simeq c_{0}$, such that $S_{\mid Z_{1}}$ is an isomorphism. This contradicts the assumption that $S_{Z_{1}}$ is a compact operator.

The following corollary is an immediate consequence of Lemma 4.2.

Corollary 4.3. Suppose $T \in \mathcal{L}\left(\ell_{\infty}\right)$ is such that $T-\lambda I \notin \mathcal{S}\left(\ell_{\infty}\right)$ for any $\lambda \in \mathbb{C}$. Then there exists a subspace $X \subset \ell_{\infty}, X \simeq c_{0}$ such that $(T-\lambda I)_{\mid X}$ is not a compact operator for any $\lambda \in \mathbb{C}$.

Theorem 4.4. Let $T \in \mathcal{L}\left(\ell_{\infty}\right)$ be such that $T-\lambda I \notin \mathcal{S}\left(\ell_{\infty}\right)$ for any λ. Then there exists a subspace $X \subset \ell_{\infty}$ such that $X \simeq c_{0}, T_{\mid X}$ is an isomorphism and $d(X, T(X))>0$.

Proof. By Corollary 4.3 we have a subspace $X \subset \ell_{\infty}, X \simeq c_{0}$ such that $(T-\lambda I)_{\mid X}$ is not a compact operator for any λ. Let $Z=\overline{X \oplus T(X)}$ and let P be a projection from Z onto X (such exists since Z is separable and $X \simeq c_{0}$). We have two cases:
Case I. The operator $T_{1}=(I-P) T P$ is not compact. Since T_{1} is a non-compact operator from $X \simeq c_{0}$ into a Banach space we have that T_{1} is an isomorphism on some subspace $Y \subset X$, $Y \simeq c_{0}\left(\left[\mathbf{1}\right.\right.$, Theorem 2.4.10]). Clearly, from the form of the operator T_{1} we have $d\left(Y, T_{1}(Y)\right)=$ $d(Y,(I-P) T P(Y))>0$ and hence $d(Y, T(Y))>0$.
Case II. If $(I-P) T P$ is compact and $\lambda \in \mathbb{C}$, then $(I-P) T P+P T P-\lambda I_{\mid Z}=T P-\lambda I_{\mid Z}$ is not compact and hence $P T P-\lambda I_{\mid Z}$ is not compact. Now for $T_{2}:=P T P: X \rightarrow X$ we apply Lemma 4.1 to conclude that there exists a subspace $Y \subseteq X, Y \simeq c_{0}$ such that $d(Y, P T(Y))=$ $d(Y, P T P(Y))>0$ and hence $d(Y, T(Y))>0$.

The following theorem is an analog of Lemma 4.1 for the space ℓ_{∞}.

TheOrem 4.5. Let $T \in \mathcal{L}\left(\ell_{\infty}\right)$ be such that $T-\lambda I \notin \mathcal{S}\left(\ell_{\infty}\right)$ for any $\lambda \in \mathbb{C}$. Then there exists a subspace $X \subset \ell_{\infty}$ such that $X \simeq \ell_{\infty}, T_{\mid X}$ is an isomorphism and $d(X, T(X))>0$.

Proof. From Theorem 4.4 we have a subspace $Y \subset \ell_{\infty}, Y \simeq c_{0}$ such that $T_{\mid Y}$ is an isomorphism and $d(Y, T(Y))>0$. Let $N_{k}=\{3 i+k: i=0,1, \ldots\}$ for $k=1,2,3$. There exists an isomorphism $\bar{S}: Y \oplus T Y \rightarrow c_{0}\left(N_{1}\right) \oplus c_{0}\left(N_{2}\right)$ such that $\bar{S}(Y)=c_{0}\left(N_{1}\right)$ and $\bar{S}(T Y)=c_{0}\left(N_{2}\right)$. Note that the space $Y \oplus T Y$ is indeed a closed subspace of ℓ_{∞} due to the fact that $d(Y, T(Y))>$ 0 . Now we use [12, Theorem 3] to extend \bar{S} to an automorphism S on ℓ_{∞}. Let $T_{1}=S T S^{-1}$ and consider the operator $\left(P_{N_{2}} T_{1}\right)_{\mid \ell_{\infty}\left(N_{1}\right)}: \ell_{\infty}\left(N_{1}\right) \rightarrow \ell_{\infty}\left(N_{2}\right)$, where $P_{N_{2}}$ is the natural projection onto $\ell_{\infty}\left(N_{2}\right)$. Since $T_{1}\left(c_{0}\left(N_{1}\right)\right)=c_{0}\left(N_{2}\right)$, by [16, Proposition 1.2] there exists an infinite set $M \subset N_{1}$ such that $\left(P_{N_{2}} T_{1}\right)_{\mid \ell_{\infty}(M)}$ is an isomorphism. This immediately yields

$$
d\left(\ell_{\infty}(M), P_{N_{2}} T_{1}\left(\ell_{\infty}(M)\right)\right)>0
$$

If $x \in \ell_{\infty}(M),\|x\|=1$ and $y \in \ell_{\infty}(M)$ is arbitrary, then

$$
\|x-T y\|=\max \left(\left\|x-P_{M} T_{1} y\right\|,\left\|P_{M^{c}} T_{1} y\right\|\right) \geq \max \left(\left\|x-P_{M} T_{1} y\right\|,\left\|P_{N_{2}} T_{1} y\right\|\right)
$$

If $\|y\|<\frac{1}{2\left\|T_{1}\right\|}$ then $\left\|x-P_{M} T_{1} y\right\| \geq \frac{1}{2}$. Otherwise $\left\|P_{N_{2}} T_{1} y\right\| \geq \frac{1}{2\|T\|\left\|\left(P_{N_{2}} T_{1}\right)^{-1}\right\|}$ where the norm of the inverse of $P_{N_{2}} T_{1}$ in the preceding inequality is taken considering $P_{N_{2}} T_{1}$ as an operator from $\ell_{\infty}(M)$ to $P_{N_{2}} T_{1}\left(\ell_{\infty}(M)\right)$. Now it is clear that

$$
\|x-T y\| \geq \max \left(\frac{1}{2}, \frac{1}{2\|T\|\left\|\left(P_{N_{2}} T_{1}\right)^{-1}\right\|}\right)
$$

for all $x \in \ell_{\infty}(M),\|x\|=1$ and $y \in \ell_{\infty}(M)$ hence

$$
\begin{equation*}
d\left(\ell_{\infty}(M), T_{1}\left(\ell_{\infty}(M)\right)\right)>0 \tag{4.1}
\end{equation*}
$$

Finally, recall that $T_{1}=S T S^{-1}$, thus

$$
d\left(\ell_{\infty}(M), S T S^{-1}\left(\ell_{\infty}(M)\right)\right)>0
$$

and hence $d\left(S^{-1}\left(\ell_{\infty}(M)\right), T S^{-1}\left(\ell_{\infty}(M)\right)\right)>0$.

Finally, we can prove our main result.

Theorem 4.6. An operator $T \in \mathcal{L}\left(\ell_{\infty}\right)$ is a commutator if and only if $T-\lambda I \notin \mathcal{S}\left(\ell_{\infty}\right)$ for any $\lambda \neq 0$.

Proof. Note first that if T is a commutator, from the remarks we made in the introduction it follows that $T-\lambda I$ cannot be strictly singular for any $\lambda \neq 0$. For proving the other direction we have to consider two cases:
Case I. If $T \in \mathcal{S}\left(\ell_{\infty}\right)(\lambda=0)$, the statement of the theorem follows from [6, Theorem 23].
Case II. If $T-\lambda I \notin \mathcal{S}\left(\ell_{\infty}\right)$ for any $\lambda \in \mathbb{C}$, then we apply Theorem 4.5 to get $X \subset \ell_{\infty}$ such that $X \simeq \ell_{\infty}, T_{\mid X}$ an isomorphism and $d(X, T X)>0$. The subspace $X+T X$ is isomorphic to ℓ_{∞} and thus is complemented in ℓ_{∞}. Theorem 3.2 now yields that T is similar to an operator of the form $\left(\begin{array}{ll}* & L \\ * & *\end{array}\right)$. Finally, we apply Theorem 3.3 to complete the proof.

5. Remarks and problems

We end this note with some comments and questions that arise from our work. First consider the set

$$
\mathcal{M}_{\mathcal{X}}=\left\{T \in \mathcal{L}(\mathcal{X}): I_{\mathcal{X}} \text { does not factor through } T\right\}
$$

This set comes naturally from our investigation of the commutators on ℓ_{p} for $1 \leq p \leq \infty$. We know ($[\mathbf{6}$, Theorem 18], $[\mathbf{3}$, Theorem 4.8], [4, Theorem 2.6]) that the non-commutators on $\ell_{p}, 1 \leq p<\infty$ and c_{0} have the form $\lambda I+K$ where $K \in \mathcal{M}_{\mathcal{X}}$ and $\lambda \neq 0$, where $\mathcal{M}_{\mathcal{X}}=\mathcal{K}\left(\ell_{p}\right)$ is actually the largest ideal in $\mathcal{L}\left(\ell_{p}\right)([\mathbf{8}])$, and, in this paper we showed (Theorem 4.6) that the non-commutators on ℓ_{∞} have the form $\lambda I+S$ where $S \in \mathcal{M}_{\mathcal{X}}$ and $\lambda \neq 0$, where $\mathcal{M}_{\mathcal{X}}=\mathcal{S}\left(\ell_{\infty}\right)$. Thus, it is natural to ask the question for which Banach spaces \mathcal{X} is the set $\mathcal{M}_{\mathcal{X}}$ the largest ideal in $\mathcal{L}(\mathcal{X})$? Let us also mention that in addition to the already mentioned spaces, if $\mathcal{X}=L_{p}(0,1)$, $1 \leq p<\infty$, then $\mathcal{M}_{\mathcal{X}}$ is again the largest ideal in $\mathcal{L}(\mathcal{X})$ (cf. [7] for the case $p=1$ and $[\mathbf{9}$, Proposition 9.11] for $p>1$).

First note that the set $\mathcal{M}_{\mathcal{X}}$ is closed under left and right multiplication with operators from $\mathcal{L}(\mathcal{X})$, so the question whether $\mathcal{M}_{\mathcal{X}}$ is an ideal is equivalent to the question whether $\mathcal{M}_{\mathcal{X}}$ is closed under addition. Note also that if $\mathcal{M}_{\mathcal{X}}$ is an ideal then it is automatically the largest ideal in $\mathcal{L}(\mathcal{X})$ and hence closed, so the question we will consider is under what conditions we have

$$
\begin{equation*}
\mathcal{M}_{\mathcal{X}}+\mathcal{M}_{\mathcal{X}} \subseteq \mathcal{M}_{\mathcal{X}} \tag{5.1}
\end{equation*}
$$

The following proposition gives a sufficient condition for (5.1) to hold.

Proposition 5.1. Let \mathcal{X} be a Banach space such that for every $T \in \mathcal{L}(\mathcal{X})$ we have $T \notin \mathcal{M}_{\mathcal{X}}$ or $I-T \notin \mathcal{M}_{\mathcal{X}}$. Then $\mathcal{M}_{\mathcal{X}}$ is the largest (hence closed) ideal in $\mathcal{L}(\mathcal{X})$.

Proof. Let $S, T \in \mathcal{M}_{\mathcal{X}}$ and assume that $S+T \notin \mathcal{M}_{\mathcal{X}}$. By our assumption, there exist two operators $U: \mathcal{X} \rightarrow \mathcal{X}$ and $V: \mathcal{X} \rightarrow \mathcal{X}$ which make the following diagram commute:

Denote $W=(S+T) U(\mathcal{X})$ and let $P: \mathcal{X} \rightarrow W$ be a projection onto W (we can take $P=$ $(S+T) U V)$. Clearly $V P(S+T) U=I$. Now $S, T \in \mathcal{M}_{\mathcal{X}}$ implies $V P S U, V P S T \in \mathcal{M}_{\mathcal{X}}$ which is a contradiction since $V P S U+V P T U=I$.

Let us just mention that the conditions of the proposition above are satisfied for $\mathcal{X}=C([0,1])$ ([11, Proposition 2.1]) hence $\mathcal{M}_{\mathcal{X}}$ is the largest ideal in $\mathcal{L}(C([0,1]))$ as well.

We should point out that there are Banach spaces for which $\mathcal{M}_{\mathcal{X}}$ is not an ideal in $\mathcal{L}(\mathcal{X})$. In the space $\ell_{p} \oplus \ell_{q}, 1 \leq p<q<\infty$, there are exactly two maximal ideals ([15]), namely, the closure of the ideal of the operators that factor through ℓ_{p}, which we will denote by α_{p}, and the closure of the ideal of the operators that factor through ℓ_{q}, which we will denote by α_{q}. In this particular space, the first author proved a necessary and sufficient condition for an operator to be a commutator:

Theorem 5.2. ([6, Theorem 20]) Let $P_{\ell_{p}}$ and $P_{\ell_{q}}$ be the natural projections from $\ell_{p} \oplus \ell_{q}$ onto ℓ_{p} and ℓ_{q}, respectively. Then T is a commutator if and only of $P_{\ell_{p}} T P_{\ell_{p}}$ and $P_{\ell_{q}} T P_{\ell_{q}}$ are commutators as operators acting on ℓ_{p} and ℓ_{q} respectively.

If we denote $T=\left(\begin{array}{ll}T_{11} & T_{12} \\ T_{21} & T_{22}\end{array}\right)$, the last theorem implies that T is not a commutator if and only if T_{11} or T_{22} is not a commutator as an operator acting on ℓ_{p} or ℓ_{q} respectively. Now using the classification of the commutators on ℓ_{p} for $1 \leq p<\infty$ and the results in [15], it is easy to deduce that an operator on $\ell_{p} \oplus \ell_{q}$ is not a commutator if and only if it has the form $\lambda I+K$ where $\lambda \neq 0$ and $K \in \alpha_{p} \cup \alpha_{q}$. We can generalize this fact, but first we need a definition and a lemma that follows easily from [6, Corollary 21].

Property \mathbf{P}. We say that a Banach space \mathcal{X} has property \mathbf{P} if $T \in \mathcal{L}(\mathcal{X})$ is not a commutator if and only if $T=\lambda I+S$, where $\lambda \neq 0$ and S belongs to some proper ideal of $\mathcal{L}(\mathcal{X})$.

All the Banach spaces we have considered so far have property \mathbf{P} and our goal now is to show that property \mathbf{P} is closed under taking finite sums under certain conditions imposed on the elements of the sum.

Lemma 5.3. Let $\left\{X_{i}\right\}_{i=1}^{n}$ be a finite sequence of Banach spaces that have property \boldsymbol{P}. Assume also that all operators $A: X_{i} \rightarrow X_{i}$ that factor through X_{j} are in the intersection of all maximal ideals in $\mathcal{L}\left(X_{i}\right)$ for each $i, j=1,2, \ldots, n, i \neq j$. Let $\mathcal{X}=X_{1} \oplus X_{2} \oplus \cdots \oplus X_{n}$ and let P_{i} be the natural projections from \mathcal{X} onto X_{i} for $i=1,2, \ldots, n$. Then $T \in \mathcal{L}(\mathcal{X})$ is a commutator if and only if for each $1 \leq i \leq n, P_{i} T P_{i}$ is a commutator as an operator acting on X_{i}.

Proof. The proof is by induction and it mimics the proof of [6, Corollary 21]. First consider the case $n=2$. Let $T=\left(\begin{array}{cc}A & B \\ C & D\end{array}\right)$ where $A: X_{1} \rightarrow X_{1}, D: X_{2} \rightarrow X_{2}, B: X_{2} \rightarrow$ $X_{1}, C: X_{1} \rightarrow X_{2}$. If T is a commutator, then $T=\left[T_{1}, T_{2}\right]$ for some $T_{1}, T_{2} \in \mathcal{L}(\mathcal{X})$. Write

$$
\begin{aligned}
& T_{i}=\left(\begin{array}{cc}
A_{i} & B_{i} \\
C_{i} & D_{i}
\end{array}\right) \text { for } i=1,2 \text {. A simple computation shows that } \\
& \qquad T=\left(\begin{array}{cc}
{\left[A_{1}, A_{2}\right]+B_{1} C_{2}-B_{2} C_{1}} & A_{1} B_{2}+B_{1} D_{2}-A_{2} B_{1}-B_{2} D_{1} \\
C_{1} A_{2}+D_{1} C_{2}-C_{2} A_{1}-D_{2} C_{1} & {\left[D_{1}, D_{2}\right]+C_{1} B_{2}-C_{2} B_{1}}
\end{array}\right) .
\end{aligned}
$$

From the fact that X_{1} and X_{2} have property \mathbf{P}, and the fact that the $B_{1} C_{2}, B_{2} C_{1}$ lie in the intersection of all maximal ideals in $\mathcal{L}\left(X_{1}\right)$ and $C_{1} B_{2}, C_{2} B_{1}$ lie in the intersection of all maximal ideals in $\mathcal{L}\left(X_{2}\right)$ we immediately deduce that the diagonal entries in the last representation of T are commutators. In the preceding argument we used the fact that a perturbation of a commutator on a Banach space \mathcal{Y} having property \mathbf{P} by an operator that lies in the intersection of all maximal ideals in $\mathcal{L}(\mathcal{Y})$ is still a commutator. To show this fact assume that $A \in \mathcal{L}(\mathcal{Y})$ is a commutator, $B \in \mathcal{L}(\mathcal{Y})$ lies in the intersection of all maximal ideals in $\mathcal{L}(\mathcal{Y})$ and $A+B=$ $\lambda I+S$ where S is an element of some ideal M in $\mathcal{L}(\mathcal{Y})$. Now using the simple observation that every ideal is contained in some maximal ideal, we conclude that $S-B$ is contained in a maximal ideal, say \tilde{M} containing M hence $A-\lambda I \in \tilde{M}$, which is a contradiction with the assumption that \mathcal{Y} has property \mathbf{P}.

For the other direction we apply [6, Lemma 19] which concludes the proof in the case $n=2$. The general case follows from the same considerations as in the case $n=2$ in a obvious way.

Our last corollary shows that property \mathbf{P} is preserved under taking finite sums of Banach spaces having property \mathbf{P} and some additional assumptions as in Lemma 5.3.

Corollary 5.4. Let $\left\{X_{i}\right\}_{i=1}^{n}$ be a finite sequence of Banach spaces that have property \boldsymbol{P}. Assume also that all operators $A: X_{i} \rightarrow X_{i}$ that factor through X_{j} are in the intersection of all maximal ideals in $\mathcal{L}\left(X_{i}\right)$ for each $i, j=1,2, \ldots, n, i \neq j$. Then $\mathcal{X}=X_{1} \oplus X_{2} \oplus \cdots \oplus X_{n}$ has property \boldsymbol{P}.

Proof. Assume that $T \in \mathcal{L}(\mathcal{X})$ is not a commutator. Using Lemma 5.3, this can happen if and only if $P_{i} T P_{i}$ is not commutator on X_{i} for some $i \in\{1,2, \ldots, n\}$ and without loss of generality assume that $i=1$. Since $P_{1} T P_{1}$ is not a commutator and X_{1} has property \mathbf{P} then $P_{1} T P_{1}=\lambda I_{X_{1}}+S$ where S belongs to some maximal ideal J of $\mathcal{L}\left(X_{1}\right)$. Consider

$$
\begin{equation*}
M=\left\{B \in \mathcal{L}(\mathcal{X}): P_{1} B P_{1} \in J\right\} \tag{5.2}
\end{equation*}
$$

Clearly, if $B \in M$ and $A \in \mathcal{L}(\mathcal{X})$, then $A B, B A \in M$ because of the assumption on the operators from X_{1} to X_{1} that factor through X_{j}. It is also obvious that M is closed under addition, hence M is an ideal. Now it is easy to see that $T-\lambda I \in M$ which shows that all non-commutators have the form $\lambda I+S$, where $\lambda \neq 0$ and S belongs to some proper ideal of $\mathcal{L}(\mathcal{X})$.

The other direction follows from our comment in the beginning of the introduction that no operator of the form $\lambda I+S$ can be a commutator for any $\lambda \neq 0$ and any operator S which lies in a proper ideal of $\mathcal{L}(\mathcal{X})$.

References

1. F. Albiac and N. Kalton, Topics in Banach space theory, Graduate Texts in Mathematics, 233. Springer, New York, 2006.
2. C. Apostol, 'On the left essential spectrum and non-cyclic operators in Banach spaces', Rev. Roum. Math. Pures Appl. 17 (1972) 1141-1148.
3. C. Apostol, 'Commutators on ℓ_{p} spaces', Rev. Roum. Math. Pures Appl. 17 (1972) 1513-1534.
4. C. Apostol, 'Commutators on c_{0}-spaces and on ℓ_{∞}-spaces', Rev. Roum. Math. Pures Appl. 18 (1973) 1025-1032.
5. A. Brown and C. Pearcy, 'Structure of commutators of operators', Ann. of Math. 82 (1965) 112-127.
6. D. Dosev 'Commutators on ℓ_{1} ', J. of Func. Analysis 256 (2009) 3490-3509.
7. P. Enflo and T.W. Starbird, 'Subspaces of L_{1} containing L_{1} ', Studia Math. 65 (1979) 203-225.
8. I. A. Feldman, I. C. Gohberg and A. S. Markus, 'Normally solvable operators and ideals associated with them', Izv. Moldavsk. Filial Akad. Nauk SSSR 10 (76) (1960) 5169 (in Russian).
9. W. B. Johnson, B. Maurey, G. Schechtman and L. Tzafriri, 'Symmetric structures in Banach spaces', Mem. Amer. Math. Soc. 19 (1979), no. 217
10. J. Lindenstrauss, 'On complemented subspaces of m ', Israel J. Math. 5 (1967) 153-156.
11. J. Lindenstrauss and A. Peeczyński, 'Contributions to the theory of the classical Banach spaces', J. of Func. Analysis 8 (1971) 225-249.
12. J. Lindenstrauss and H. P. Rosenthal, 'Automorphisms in c_{0}, ℓ_{1} and m ', Israel J. Math. 7 (1969) 227-239.
13. J. Lindenstrauss and L. Tzafriri, Classical Banach spaces I, Ergebnisse der Mathematik und ihrer Grenzgebiete, 92 Springer-Verlag, Berlin-New York, 1977
14. A. Peeczyński, 'Projections in certain Banach spaces', Studia Math. 19 (1960) 209-228.
15. H. Porta, 'Factorable and strictly singular operators I', Studia Math. 37 (1971) 237-243.
16. H. P. Rosenthal, 'On relatively disjoint families of measures, with some applications to Banach space theory', Studia Math. 37 (1970) 13-36.
17. R. J. Whitley, 'Strictly singular operators and their conjugates', Trans. Amer. Math. Soc. 113 (1964) 252-261
18. A. Wintner, 'The unboundedness of quantum-mechanical matrices', Phys. Rev. 71 (1947) 738-739.

Detelin Dosev
Department of Mathematics
Texas A\&M University
College Station, Texas 77843
USA

dossev@math.tamu.edu

William B. Johnson
Department of Mathematics
Texas A\&M University
College Station, Texas 77843
USA
johnson@math.tamu.edu

[^0]: 2000 Mathematics Subject Classification 47B47 (primary), 47L20 (secondary).
 Research for both authors is supported in part by NSF grant DMS 05-03688.

