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Abstract. A precise quantitative version of the following qual-
itative statement is proved: If a finite dimensional normed space
contains approximately Euclidean subspaces of all proportional di-
mensions, then every proportional dimensional quotient space has
the same property.

1. Introduction

Given a function λ from (0, 1) into the positive reals, call a finite
dimensional normed space E λ essentially Euclidean provided that for
every ε > 0 there is a subspace Eε of E that has dimension at least
(1− ε) dim E and the Euclidean distortion c2(Eε) of Eε is ≤ λ(ε); that
is, Eε is λ(ε)-isomorphic to the Euclidean space of its dimension. A
family F of finite dimensional spaces is λ essentially Euclidean pro-
vided that each space in F is λ essentially Euclidean, and F is called
essentially Euclidean if it is λ essentially Euclidean for some function
λ as above. Litwak, Milman, and Tomczak-Jaegermann [?] considered
the concept of essentially Euclidean, but what we are calling an es-
sentially Euclidean family they would term a 1-ess-Euclidean family.
The most studied essentially Euclidean families are the class of all fi-
nite dimensional spaces that have cotype two constant less than some
numerical constant, and the set of all finite dimensional subspaces of a
Banach space that has weak cotype two [?, Chapter 10]. However, if
one is interested in the proportional subspace theory of finite dimen-
sional spaces, cotype two and weak cotype two are unnecessarily strong
conditions because they are conditions on all subspaces rather than on
just subspaces of proportional dimension. For example, let 0 < α < 1
and let Fα be the family {`n−nα2 ⊕2 `

nα

∞ : n = 1, 2, 3, . . . } (throughout
we use the convention, standard in the local theory of Banach spaces,
that when a specified dimension is not a postive integer, it should be
adjusted to the next larger or smaller positive integer, depending on
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context). The cotype two constants of the spaces in Fα are obviously
unbounded and it is also well known that the family does not live in
any weak cotype two space. Computing that Fα is λα(ε) essentially
Euclidean with λα(ε) ≤ (1/ε)α/2(1−α) is straightforward: First, when
nα ≤ εn, the space `n−n

α

2 ⊕2 `
nα

∞ has a subspace of dimension at least
(1−ε)n that is isometrically Euclidean. On the other hand, if εn < nα,
then the entire space `n−n

α

2 ⊕2 `
nα

∞ is nα/2-Euclidean since that is the
isomorphism constant between `n

α

∞ and `n
α

2 , and nα/2 ≤ (1/ε)α/2(1−α).
It is also simple to check that the essentially Euclidean property

passes to proportional dimensional subspaces. Suppose that E is an
n-dimensional space that is λ essentially Euclidean, F is a subspace
of E that has dimension αn, and ε > 0. Take a subspace E1 of E
of dimension (1 − εα)n with c2(E1) ≤ λ(εα). Then dimE1 ∩ F =
(1 − εα)n + αn − n = (1 − ε)αn, which implies that F is λF essen-
tially Euclidean with λF (ε) ≤ λ(εα). It is, however, not obvious that
the essentially Euclidean property passes to proportional dimensional
quotients; the main result of this note is that it does.

We use standard notation. We just mention that if A is a set of
vectors in a normed space, [A] denotes the closed linear space of A,
and ei denotes the ith unit basis vector in a sequence space.

2. Main Result

The main tool we use is Milman’s subspace of quotient theorem
[?], [?, Chapters 7 & 8]. In [?] this theorem is not used directly, but
the ingredients of its proof are. The theorem says that there is a
function M : (0, 1) → R+ such that for every n and every 0 < δ < 1,
if dim E = n then there is a subspace F of some quotient of E so
that dim F = (1 − δ)n and c2(F ) ≤ M(δ). It is known that M(δ) ≤
(C/δ)(1 + | logCδ|) as δ → 0 [?, Theorem 8.4].

In this section we prove

Theorem 2.1. Suppose that E is λ essentially Euclidean, 0 < α < 1,
and Q is a quotient mapping from E onto a space F . Let n = dim E
and assume that dim F = αn. Then F is γ essentially Euclidean, where
γ(ε) ≤ λ(εα/4)M(ε/4); in fact, for each ε > 0 there is a subspace E2

of E and operators A : `
(1−ε)αn
2 → E2 and B : QE2 → `

(1−ε)αn
2 such that

BQA is the identity on `
(1−ε)αn
2 and ‖A‖ · ‖B‖ ≤ λ(εα/4)M(ε/4).

Proof: Set n := dimE and fix 0 < ε < 1. Let R be a quotient
mapping from F onto a space G that has a subspace G2 of dimension
(1−ε/4)αn such that c2(G2) ≤M(ε/4). We want to find a subspace E2

of E with dimE2 ≥ (1− ε)αn so that RQE2 ⊂ G2 and RQ is a “good”
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isomorphism on E2, which implies that Q is also a “good” isomorphism
on E2. Since ‖R‖ = ‖Q‖ = 1, “good” means that ‖RQx‖ is bounded
away from zero for x in the unit sphere of E2.

Since E is λ essentially Euclidean, there is a subspace E0 of E with
dimE0 = (1 − αε/4)n such that c2(E0) ≤ λ(αε/4). Put Euclidean
norms ‖ · ‖1 and ‖ · ‖2 on E0 and G2, respectively, to satisfy for all
x ∈ E0 and all y ∈ G2 the inequalities

(1) ‖x‖ ≤ ‖x‖1 ≤ λ(αε/4)‖x‖ and M(ε/4)−1‖y‖ ≤ ‖y‖2 ≤ ‖y‖.

Define E1 := E0 ∩ (RQ)−1G2, so that dimE1 := m ≥ (1− εα/2)n.
Now take an orthonormal basis e1, e2, . . . , em for the Euclidean space

(E1, ‖ · ‖1) so that RQe1, RQe2, . . . , RQem is orthogonal in the Eu-
clidean space (G2, ‖ · ‖2) and ordered so that
‖RQe1‖2, ‖RQe2‖2, . . . , ‖RQem‖2 is decreasing. We next compute that
‖RQej‖2 is large for j := (1− ε)αn. Now ‖RQej‖2 is the norm of the
restriction to E3 := [ej, ej+1, . . . , em] of the operator RQ when it is con-
sidered as an operator from the Euclidean space (E1, ‖ · ‖1) to the Eu-
clidean space (G2, ‖·‖2), and dimE3 = m−j+1 ≥ (1−α)n+εαn/2+1,
which is strictly larger than the dimension of the kernel of RQ, because
it has dimension at most (1−α)n+αεn/4. By the definition of quotient
norms, the norm of RQ|E3 when RQ is considered as an operator from
E1 toG2 under their original norms is the maximum over points x in the
unit sphere of E3 of the distance from x to the kernel of RQ. By a well-
known consequence of the Borsuk-Ulam antipodal mapping theorem,
(first observed in [?]; see also [?]), this distance is one. In view of the re-
lationship (??), we deduce that ‖RQej‖2 ≥ λ(αε/4)−1M(ε/4)−1. Also
by (??), the norm of RQ is at most one when considered as an operator
from (E1, ‖ · ‖1) to (G2, ‖ · ‖2). Finally, set E2 := [e1, e2, . . . , ej] and let
U1 be the restriction to E2 of RQ, considered as a mapping onto RQE2.
We have just shown that the identity on `j2 factors through U1 with fac-
torization constant at most λ(αε/4)−1M(ε/4)−1, hence it factors with
the same constant through the restriction of Q to E2, considered as an
operator from E2 to QE2.

Theorem ?? gives an improvement of the qualitative version of The-
orem ?? when E = `np , 1 ≤ p < 2. For S ⊂ {1, . . . , n}, let `Sp be the
span in `np of the unit vector basis elements {ei : i ∈ S}.

Theorem 2.2. There is a function g : (0, 1)2 → (1,∞) so that for
all 1 ≤ p < 2, all natural numbers n, and all ε ∈ (0, 1) the following
is true. If Q is a quotient mapping from `np onto a normed space F
and dim F = αn, then there is a subset S of 1, 2, . . . , n of cardinality
(1− ε)αn such that ‖(Q|`Sp )−1‖ ≤ g(α, ε).
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Sketch of proof: The main point is the observation made in [?, The-
orem 2.1] that the proof of [?, Theorem 2.1] by Bourgain, Kalton, and
Tzafriri shows that there is a constant c > 0 so that if Q is a quotient
mapping from `np , 1 ≤ p < 2, onto a space of dimension at least βn,

then there is a subset S of 1, 2, . . . , n of cardinality at least c1/βn so that
‖(Q|`Sp )−1‖ ≤ c−1/β. Given a quotient mapping Q on `np whose range has
dimension αn and given 0 < ε < 1, apply the observation iteratively
with β := (1− ε)α. At step one set Q1 := Q and get S1 ⊂ {1, 2, . . . , n}
of cardinality at least c1/βn so that ‖((Q1)|`S1p )−1‖ ≤ c−1/β. At step two

take the quotient mapping Q2 on `np whose kernel is the span of the ker-
nel of Q1 and {ei}i∈S1 and get S2 ⊂ {1, 2, . . . , n} of cardinality at least
c1/βn so that ‖((Q2)|`S2p )−1‖ ≤ c−1/β. Necessarily S1 and S2 are dis-

joint. More importantly, from the definition of the norm in a quotient
space we see that in Q`np , the norm of the projection from Q[ei]i∈S1∪S2

onto Q[ei]i∈S1 that annihilates Q[ei]i∈S1 has norm controlled by c−1/β,
which implies that the norm of (Q|`pS1∪S2 )−1 is also controlled. Then
let Q3 be the quotient mapping on `np whose kernel is the span of the
kernel of Q and {ei}i∈S1∪S2 and use the observation to get S3. The
iteration stops once the dimension of the kernel of Qk is larger than
(1−βn), which happens after fewer than c−1/β steps; say, after k steps.
By construction you can estimate the basis constant of (Q[ei]i∈Sm)k−1m=i,
so that Q will be a good isomorphism on [ei : i ∈ ∪k−1m=1Sm] because it
is a good isomorphism on each [ei : i ∈ Sm] for 1 ≤ m < k.

Remark 2.3. It is interesting to have the best estimates for γ in Theo-
rem ?? and for g in Theorem ??. In Theorem ?? we gave the estimate
for γ(ε) that the method gives and think that this might be the order
of the best estimate. We did not do the same in Theorem ?? because
we think that a different argument is probably needed to obtain the
best estimate for g(α, ε).
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