
HEREDITARY APPROXIMATION PROPERTY

W. B. JOHNSON AND A. SZANKOWSKI

Abstract. If X is a Banach space such that the isomorphism con-
stant to `n

2 from n dimensional subspaces grows sufficiently slowly
as n → ∞, then X has the approximation property. A conse-
quence of this is that there is a Banach space X with a symmetric
basis but not isomorphic to `2 so that all subspaces of X have the
approximation property. This answers a problem raised in 1980
[8]. An application of the main result is that there is a separable
Banach space X that is not isomorphic to a Hilbert space, yet ev-
ery subspace of X is isomorphic to a complemented subspace of
X. This contrasts with the classical result of Lindenstrauss and
Tzafriri [15] that a Banach space in which every closed subspace
is complemented must be isomorphic to a Hilbert space.

Dedicated to the memory of Joram Lindenstrauss

1. Introduction

The first Banach space not isomorphic to a Hilbert space, all of whose
subspaces have the approximation property, was constructed in [8]. We
say that such a space has the hereditary approximation property (HAP)
or is a HAPpy space. Later on Pisier [23], [24] developed the theory of
spaces called weak Hilbert spaces that share many properties of Hilbert
space and proved that they all have the HAP.

The spaces constructed in [8] as well as all weak Hilbert spaces are
asymptotically Hilbertian. A space X is asymptotically Hilbertian pro-
vided there is a constant β such that for every n there is a finite codi-
mensional subspace of X all of whose n dimensional subspaces are
β-isomorphic to the n-dimensional Hilbert space `n2 . It was noted in
[8] that an asymptotically Hilbertian space is superreflexive (= isomor-
phic to a uniformly convex space) and cannot have a symmetric or even
subsymmetric basis unless it is isomorphic to `2. This induced the first
named author to conclude [8] with two problems:
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(S) Is there a HAPpy space that has a symmetric basis but is not
isomorphic to `2?

(R) Is every HAPpy space reflexive?
In this paper we give an affirmative answer to (S) by constructing

a HAPpy Orlicz sequence space that is not isomorphic to `2. Problem
(R) remains open.

Before stating in more detail the results herein, we recall some def-
initions and set our notation. “Space” means “infinite dimensional
Banach space” unless specified otherwise. L(X) denotes the space of
bounded operators on the space X while F (X) denotes the finite rank
operators in L(X). The identity operator on X is written IdX . BX

denotes the unit ball of X.
Recall that a Banach space X is said to have the approximation

property (AP) if for every compact set K in X and for every ε > 0,
there is a T ∈ F (X) such that ‖Tx− x‖ ≤ ε for every x ∈ K.

As was already mentioned, we say that a Banach space has the hered-
itary approximation property (HAP) if all of its subspaces have the AP.
Results of Davie/Figiel and the second author combined with results
of Krivine and Maurey and Pisier (cf. [16, Theorem 1.g.6]) imply that
if X has the HAP then X is of type 2 − ε and of cotype 2 + ε for
every ε > 0. This means that X has to be “very close” to a Hilbert
space since a space that is both of type 2 and cotype 2 is isomorphic
to a Hilbert space (this is a remarkable result of Kwapień from 1972
[3, Corollary 12.20]).

Both the AP and the HAP are in a natural way related to the trace
formula. Let us recall here some main points (this topic is discussed in
more detail in [24, Chap. 4]):

For x∗ ∈ X∗, x ∈ X let x∗ ⊗ x ∈ F (X) be defined by

(x∗ ⊗ x)(y) = x∗(y)x.

A T ∈ B(X) is called nuclear if T =
∞∑
i=1

x∗i ⊗xi with
∑
‖x∗i ‖‖xi‖ <∞.

Let N(T ) denote the space of all nuclear operators on X. It is tempting
to define the trace of a T ∈ N(X) by

tr T =
∞∑
i=1

x∗i (xi).

Grothendieck [5] (cf. [16, Theorem 1.a.4.]) discovered that tr T is well
defined for every T ∈ N(X) if and only if X has the approximation
property, i.e. X does not have the AP iff there are x∗i ∈ X∗, xi ∈ X so
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that ∑
‖x∗i ‖‖xi‖ <∞,

∑
x∗i (x)xi = 0 for every x ∈ X,

but
∑

x∗i (xi) 6= 0.
(1)

Suppose now that X is a complex Banach space with the AP. It is
natural to ask whether the trace formula holds for every T ∈ N(X).
More precisely, let T ∈ N(X) be such that

∑
|λj(T )| < ∞ , where

λ1(T ), λ2(T ), . . . are all the eigenvalues of T , with their multiplicities
(this assumption is necessary, because for every X not isomorphic to
a Hilbert space there is a T ∈ N(X) such that

∑
|λj(T )| = ∞, by a

result of [9]). We ask whether then

(2) tr T =
∑

λj(T ).

If the trace formula (2) holds for every T ∈ N(Y ) with summable eigen-
values, then Y is a HAPpy space. Indeed, suppose Y fails the HAP,
and let X ⊂ Y be a subspace without the AP. By the Grothendieck
result quoted above, there are x∗i ∈ X∗i , xi ∈ X so that (1) holds. Let
y∗i ∈ Y ∗ be a Hahn-Banach extension of x∗i and let T ∈ N(Y ) be de-
fined by T =

∑
y∗i ⊗ xi. Then tr T =

∑
y∗i (xi) =

∑
x∗i (xi) 6= 0. On

the other hand, Tx = 0 for every x ∈ X , TY ⊂ X, therefore T 2 = 0,
hence 0 is the only eigenvalue of T . Therefore (2) does not hold.

To put it tersely, the AP is necessary (and sufficient) for the formula
(2) to make sense, while the HAP is necessary for the formula (2) to
be true. We do not know if it is sufficient.

The information about the class L of Banach spaces satisfying (2)
is still very scarce. Lidskii proved in [14] that Hilbert spaces belong
to L. We do not know whether the non weak Hilbert HAPpy spaces
constructed in [8] belong to L. Pisier [23], [24] proved that the weak
Hilbert spaces belong to L, and, for the time being, there are no other
examples, although it might be true that every HAPpy space is in L.

Rather more is known about the class of spaces that satisfy the HAP.
Unfortunately, this class is very difficult to work with, partly because
the HAP is not very stable. For example, there are two HAPpy spaces
whose direct sum fails the HAP [1]. In fact, all the known exam-
ples of HAPpy spaces come from verifying that some hereditary (i.e.
which passes to subspaces) property implies the AP and constructing
spaces that satisfy the property. Examples of such properties are sev-
eral conditions that are equivalent to the weak Hilbert property [24]
and properties of being sufficiently asymptotically Hilbertian [8]. To be
more precise, it is enough that X satisfies the condition that for some
β and infinitely many n, there is a log n codimensional subspace all of
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whose 4n dimensional subspaces are β-isomorphic to `4
n

2 [8]. A space
that satisfies this need not be a weak Hilbert space. On the other hand,
it is open whether every weak Hilbert space satisfies the condition, al-
though it is true for a weak Hilbert space that has an unconditional
basis [21].

In this paper we give another hereditary condition that implies the
AP but does not imply the asymptotically Hilbertian property. The
condition is that dn(X) goes to infinity sufficiently slowly , where dn(X)
is the supremum over the n-dimensional subspaces E of X of the iso-
morphism constant from E to `n2 (cf. (7)). Hence, in order to get an
affirmative answer to problem (S), it is enough, given any sequence
δk →∞, to produce a Banach space with symmetric basis X non iso-
morphic to `2 such that dk(X) ≤ δk for every k. It is more or less
obvious that this can be done, but we were unable to find such con-
structions in the literature. The simplest ones we know are of modified
Tsirelson/Schlumprecht type, presented in section 3 as example (A).
We also show in example (B) that there are Orlicz spaces other than
`2 that have this property. This looks rather obvious but is tedious to
verify.

2. Basic Theorem

Let X be a Banach space. Let n be a natural number. For m ≥ n
let

(3) f(n,m) = fX(n,m) =

sup E⊂X,dimE=n inf{‖T‖ : T|E = IdE and rk T ≤ m}.

Observe that if dimE = n, then f(n, n) is the minimal norm of a
projection of X onto E, thus

f(n, n) = λn(X),

where, as usual, λn(X) is the supremum over all n dimensional sub-
spaces E of the relative projection constant of E in X.

Also, by taking a weak cluster point of an appropriate sequence of
T ’s, we see that the infimum on the right side of (3) is a minimum
provided X is reflexive.

With this notation the space X is said to have the λ-uniform ap-
proximation property (λ-UAP) if for every n ∈ N there is j(n) so that
f(n, j(n)) ≤ λ. In this case j(n) is called a λ-uniformity function of
X.

We say that the space X has the uniform approximation property
(UAP) if it has the λ-uniform approximation property for some λ <∞.
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A HAPpy space X will be said to have the hereditary UAP (denoted
HUAP)- or to be uniformly HAPpy if all of its subspaces have the UAP.

There are two basic ingredients in the proof of Theorem 2.1. The
first is the averaging argument of Lindenstrauss and Tzafriri [18] to
prove that a uniformly convex space with the UAP actually has the
(1 + ε)-UAP for every ε > 0. An important difference is that in [18]
uniformly bounded operators were averaged to produce an operator
with norm close to one. Here we get the same conclusion but average
operators whose norms grow slowly.

The second ingredient in the proof of Theorem 2.1 is the argument
in [8] that spaces that are sufficiently Hilbertian must have many finite
rank projections with controlled norms.

We begin with a simple lemma that is a variation of one in [18].

Lemma 1. Assume that X is a Banach space and δ > 0, ε > 0 satisfy

(4) x, y ∈ BX , ‖x− y‖ > ε⇒ ‖x+y
2
‖ < 1− 2δ.

Let A = 3
δ
. If T ∈ F (X) with rk T = k and

K = {x ∈ BX : ‖Tx‖ ≥ (1− δ)‖T‖},
then K can be covered by [Ak] sets of diameter ε.

Proof. By a standard volumetric estimate, TBX can be covered by
[Ak] balls of diameter 2‖T‖δ, centered at a maximal ‖T‖δ-separated

subset of TBX ; say TBX ⊂
⋃[Ak]
i=1 Bi, diam Bi ≤ 2‖T‖δ. Let Ki =

(T−1Bi) ∩K. We claim that diam Ki ≤ ε.
For assume that there are x, y ∈ Ki with ‖x − y‖ > ε. By (4),
‖x+y

2
‖ < 1 − 2δ, hence ‖Tx+Ty

2
‖ < (1 − 2δ)‖T‖. Since Tx, Ty ∈ Bi,

we have ‖Tx−Ty
2
‖ ≤ 1

2
diam Bi ≤ ‖T‖δ. Summing these inequalities, we

have by the triangle inequality that ‖Tx‖ < (1− δ)‖T‖, hence x /∈ K,
a contradiction.

Notice that if X is uniformly convex and 1 > ε > 0, condition (4) is
satisfied for all sufficiently small δ > 0.

Lemma 1 is used to prove that, under certain (extremal) conditions,
for a fixed n we can shrink fX(n, j) (see (3)) by a constant factor by
changing j to a suitable larger integer.

To formulate the next lemma about a uniformly convex space X, we
make the following technical assumptions:
δ > 0 and 0 < ε < 3/4 satisfy (4),
δ is so small that we have

(5) 5
8

+ 1
2
(1 + δ

2
)ε ≤ 1− δ

4
.

Then we denote
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A = 3
δ
, α = (1 + δ

2
)−1, β = 1− δ

4
.

Lemma 2. (The main lemma.) Let X be a uniformly convex space,
let A,α, β be as above. If for some n, j with n ≤ j ≤ N we have
fX(n, j) = f(n, j) ≥ αf([Aj] + n,N), then

f(n,N + j) ≤ max(4, βf(n, j)).

Proof. Let E ⊂ X, dimE = n. We shall find U such that U|E =
IdE, rk U ≤ N + j and ‖U‖ ≤ βf(n, j).

Let T be such that T|E = IdE, rk T ≤ j and ‖T‖ ≤ f(n, j) (remem-
ber that X is reflexive). Without loss of generality we can assume that
‖T‖ ≥ αf([Aj] + n,N), and also assume that ‖T‖ ≥ 4 since otherwise
we are done.

Let K = {x ∈ BX : ‖Tx‖ ≥ (1−δ)‖T‖} and get K1, . . . , K[Aj ] ⊂ BX

from Lemma 1 so that K ⊂
⋃[Aj ]
i=1 Ki and diam Ki ≤ ε. For i =

1, . . . , [Aj] pick any yi ∈ Ki. Let S be an operator of rank at most N
so that S|E = IdE, Syi = yi for i = 1, . . . , [Aj] and ‖S‖ ≤ f([Aj]+n,N).
Thus

(6) ‖S‖ ≤ α−1‖T‖ = (1 + δ
2
)‖T‖.

Set now U = 1
2
(T + S). Evidently U|E = IdE and rk U ≤ N + j.

Let x ∈ BX .
If x ∈ Ki, then, by (6) and (5),

‖Ux‖ ≤ 1
2
(‖Tx‖+ ‖Syi‖+ ‖S(x− yi)‖) ≤ 1

2
(‖T‖+ 1 + (1 + δ

2
)ε‖T‖)

≤ 1
2
‖T‖(1 + 1

4
+ (1 + δ

2
)ε) ≤ β‖T‖.

If x ∈ BX\
⋃[Aj ]
i=1 Ki, then, by (6),

‖Ux‖ ≤ 1
2
[(1− δ)‖T‖+ (1 + δ

2
)‖T‖].

In both cases we obtain ‖Ux‖ ≤ β‖T‖ ≤ βf(n, j).

Denote dn(X) = sup {d(E, ln2 ) : E ⊂ X, dimE = n}. Here d(E,F ) is
the isomorphism constant from E to F , i.e. the infimum of ‖T‖·‖T−1‖
as T ranges over all isomorphisms from E onto F . In the sequel we
are concerned with spaces X for which dn(X)→∞ very slowly. Pisier
[22, p. 348] proved that such a space is superreflexive and hence has
an equivalent uniformly convex norm, under which the space satisfies
(4) and (5) for some ε and δ.

In the proof of Theorem 2.1 we also need the concept of projection
constant. For a subspace E of X, recall that λ(E) = λ(E;X) is the
infimum of ‖P‖ as P ranges over all projections from X onto E. The
parameter λn(X) is the supremum of λ(E;X) as E ranges over the n
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dimensional subspaces of X. Already in [8] the relation between λn(X)
and dm(X) played an important role.

Here we use the fact that λn(X) ≤ Cd4n(X), although the weaker
estimate proved in [8] would serve equally well. The improved estimate
follows from the following lemma proved by Vitali Milman a couple of
years after the results in [8] were obtained.

Lemma 3. If E embeds isometrically into `N∞ and E ⊂ X, then
λ(E;X) is the infimum of λ(E;F ) as F ranges over the N dimen-
sional subspaces of X that contain E.

Proof. The number λ(E;X) is, by duality, the supremum of |tr (T )| as
T ranges over operators from E to X that have nuclear norm less than
one and map E into E (or, by a small perturbation argument, map E
onto E). Given such a T with TE = E and regarding E as a subspace
of `N∞, we can extend T to an operator T̃ : `N∞ → X that also has nuclear

norm less than one. The nuclear norm of T̃ is
∑N

k=1 ‖T̃ (ek)‖, where (ek)

is the unit vector basis of `N∞. But T̃ can be written as
∑N

k=1 e
∗
k⊗ T̃ (ek)

and
∑N

k=1 ‖e∗k‖·‖T̃ (ek)‖ < 1, so T has nuclear norm less than one when
considered as an operator into the (at most N dimensional) subspace
span (T̃ ek)

N
k=1.

Corollary 1. For every space X, λn(X) ≤ 2d4n(X).

Proof. Let E be any n dimensional subspace of X. Then E is less than
2-isomorphic to a subspace of `4

n

∞ , so Lemma 3 gives a 4n dimensional
subspace F of X that contains E and so that λ(E;X) < 2λ(E;F ).
But clearly λ(E;F ) ≤ d(F, `4

n

2 ) ≤ d4n(X).

Let us notice that for type 2 spaces a much better estimate is valid,
namely λn(X) ≤ Cdn(X), where C is the type 2 constant of X (cf.
[27]).

Given a map D : N → N and a natural number k, by D〈k〉 let
us denote the k iterate of D, i.e. D〈k〉 = D ◦ D ◦ · · · ◦ D, k times.
Let D(j) = 3[Aj] and let γ(j) be the 3j + 1 iterate of D of 1, i.e.

γ(j) = D〈3
j+1〉(1).

Theorem 2.1. Let X be a Banach space, let 0 < α ≤ β < 1 and A > 1
be as in Lemma 2. If

(7) dγ(j)(X) = o(β−j),

then X has the 4-UAP . Consequently, X has the HUAP and there
exists a function j(n) that is a 4-uniformity function for all Y ⊂ X.
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Proof. For a fixed n ∈ N, we define by recursion some numbers κj(n),
which play the role of N in Lemma 2. Formally, we define:

κ0(n) = n, κj+1(n) = κj(n) + κj(2A(κj(n))).

For M ∈ N, let us denote

sj(M) = max{f(n, κj(n)) : κj(n) ≤M}.
We claim that

(8) sj+1(M) ≤ max(4, βsj(M)).

Indeed, let n be such that κj+1(n) ≤M . We shall show that

f(n, κj+1(n)) ≤ βsj(M).

First, since f(n, κj+1(n)) ≤ f(n, κj(n)), without loss of generality we
can assume that f(n, κj(n)) ≥ βsj(M).

In particular, since κj(2A(κj(n)) ≤ κj+1(n) ≤M , we get

f(n, κj(n)) ≥ βf(B(κj(n)), κj(B(κj(n)))).

Also β ≥ α; therefore, by Lemma 2,

f(n, κj(n) + κj(B(κj(n)))) ≤ max(4, βsj(M))

which is (8).
Let n, j ∈ N, let M = κj(n). Since s0(M) ≥ s1(M) ≥ . . . , by

induction we get from (8) that

sj(κj(n)) ≤ max(4, βjs0(κj(n))).

By Corollary 1 , we have

s0(M) = f(M,M) = λM(X) ≤ 2d4M (X),

thus
sj(κj(n)) ≤ max(4, 2βjd

4κj(n)(X)),

in particular

(9) f(n, κj(n)) ≤ max(4, 2βjd
4κj(n)(X)).

Let us now estimate κj(n). By induction we obtain that κj(n) ≤
D〈3

j〉(n). For a given n, let J be such that n ≤ D〈3
J 〉(1), thus κj(n) ≤

D〈3
(j+J)〉(1). Observe that 4k ≤ D(k), thus

4κj(n) ≤ D(κj(n)) ≤ D〈3
(j+J)+1〉(1) = γ(j + J).

Hence

βjd
4κj(n)(X) ≤ βjdγ(j+J)(X) = 2β−Jβj+Jdγ(j+J)(X)1/2

and, by (7), this tends to 0. Therefore, by (9), f(n, κj(n)) ≤ 4 for
sufficiently large j.
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3. Main Application

As was mentioned in the introduction, it has been an open question
for 30+ years whether there exists a HAPpy space with symmetric
basis that is not isomorphic to a Hilbert space. We prove the existence
of such spaces. By Theorem 2.1, it is just enough, given any sequence
δk → ∞, to produce a Banach space with symmetric basis X non
isomorphic to `2 such that dk(X) ≤ δk for every k. We give two such
examples:

(A) We build a space X(2) of modified Tsirelson/Schlumprecht type
([8]), [26]) that has a symmetric basis and so that dn(X(2)) tends to
infinity as slowly as we wish.

(B) We show that there are Orlicz sequence spaces that have the
same property; the arguments in this case are more involved than in
(A).

Let us mention that if we are just looking for a nonhilbertian space X
with symmetric basis so that dn(X) satisfy the estimate of Theorem 2.1,
such a space has already appeared in the literature: the space S(T 2),
constructed by Cassazza and Nielsen in [2] satisfies this estimate, as
follows from Proposition 3.9. in [2].

(A) Given any positive sequence bn ↓ 0, let a = an ↓ 0 be a strictly
decreasing sequence such that an > δbn for some positive δ, an = 1,
anam ≤ anm, and nan is concave. We build a space of sequences X =
X(a) so that the unit vector basis is a 1-symmetric basis for X, X 6= `1
even up to an equivalent renorming, and so that for any choice (xk) of
n disjoint vectors in X we have ‖

∑n
k=1 xk‖ ≥ an

∑n
k=1 ‖xk‖. Then any

collection of n disjointly supported unit vectors in the 2-convexification
X(2) of X is a−nn equivalent to an orthonormal basis (see ([4] or [17,
Section 1.d]) for a discussion of p-convexification). As was explained
already in [8], this does the job (the reason being that an n dimensional
subspace of a Banach lattice is a small perturbation of a subspace of
the span of some set of nn disjoint vectors).

The space X is the completion of c00 under the unique norm that
satisfies the implicit equation

(10) ‖x‖ = ‖x‖c0 ∨ sup {an
n∑
k=1

‖Akx‖ : n = 1, 2, 3, . . . ; (Ak) disjoint}.

(Multiplication of x by the indicator function of A is denoted by Ax.)
The now standard argument for the existence of the norm ‖ · ‖ goes
back to [4]. Define two sequences of norms on c00 by recursion. Set
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‖x‖1 = ‖x‖′1 = ‖x‖c0 and

‖x‖m+1 = ‖x‖m ∨ sup {an
n∑
k=1

‖Akx‖m : n = 2, 3, . . . ; (Ak) disjoint}

‖x‖′m+1 = ‖x‖′c0 ∨ sup {an
n∑
k=1

‖Akx‖′m : n = 2, 3, . . . ; (Ak) disjoint}.

An easy induction argument shows that ‖x‖n = ‖x‖′n from which it
follows that ‖ · ‖n converges to a norm that satisfies (10).

It is obvious that the unit vector basis is a normalized 1-symmetric
basis for X and that for any choice of (xk) of n disjoint vectors in X
we have ‖

∑n
k=1 xk‖ ≥ an

∑n
k=1 ‖xk‖. Just as in [26, Lemma 4], the

submultiplicativity of an and the concavity of nan easily implies that
‖
∑n

i=1 ei‖ = nan, so the constructed space is not `1 under an equivalent
norm.

(B) Perhaps this theorem is known but we were unable to find it in
the literature:

Theorem 3.1. Let 1 < δk → ∞. There exists an Orlicz space `M of
type 2, non isomorphic to `2 so that dk(`M) ≤ δk for every k.

M will be defined by M(x) = F (x2) where F : [0, 1] → [0, 1] is
a convex function such that F (0) = 0, F (1) = 1(i.e. `M is the 2-
convexification of `F ) .

Observe that for every x, y, F (x) + F (y) ≤ F (x + y) (in particular,

2F (x) ≤ F (2x)) and that F (x)
x

is an increasing function of x.

For 0 ≤ a < b ≤ 1, let Fa,b(t) = t−a
b−aF (b) + b−t

b−aF (a) and let us denote

Φk(a) =
1

a
F−1(2Fa

2
,2ka(a)).

Lemma 4.
dk(`M) ≤ ( sup

0<a≤ 1
2k

Φk(a) + 1)1/2.

Proof. It is well known [24, Lemma 13.3(ii)] that dk(`M) ≤ µ, provided

(11) ‖(
k∑
i=1

y2
i )

1/2‖ ≥ µ−1(
k∑
i=1

‖yi‖2)1/2

for every y1, . . . , yk ∈ X (notice that `M is 2-convex, so that

‖(
k∑
i=1

y2
i )

1/2‖ ≤ (
k∑
i=1

‖yi‖2)1/2).
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Let us fix y1, . . . , yk ∈ X with
∑
‖yi‖2 = 1. Set ti = ‖yi‖2, thus∑

ti = 1. Let us denote ai(j) = t−1
i yi(j)

2. By the definition of the
norm in X we have for i = 1, . . . , k

(12)
∞∑
j=1

F (ai(j)) = 1.

Without loss of generality assume that t1 ≥ t2 ≥ · · · . Let 1 ≤ m ≤ k be
such that t1+· · ·+tm−1 <

1
2
≤ t1+· · ·+tm. Then tm+tm+1+· · ·+tk > 1

2
,

hence tm ≥ 1
2k

, whence t1 ≥ · · · ≥ tm ≥ 1
2k

and t1 + · · ·+ tm ≥ 1
2
.

Let α = 2sup {Φk(a) : 0 < a < 1
2k
}. Then for every 0 ≤ a ≤ 1, all

ai ∈ (a
2
, 2ka), and all ti with Σti ≤ 1 and Σtiai ≤ a,∑

tiF (ai) ≤ F (α/2a).

We shall prove that

(13)
∞∑
j=1

F (
α + 1

2

m∑
i=1

tixi(j)) ≥
1

2
,

hence
∞∑
j=1

F ((α + 1)
m∑
i=1

tiai(j))) ≥ 1, thus ‖
m∑
i=1

y2
i ‖ ≥ (α + 1)−

1
2 .

Let us observe that, by (12),

∞∑
j=1

m∑
i=1

tiF (ai(j)) =
m∑
i=1

ti ≥
1

2
.

It is clear that (13) follows from the following inequality, valid for any
0 ≤ a1, . . . , am ≤ 1:

(14) F
(α + 1

2

m∑
i=1

tiai

)
≥

m∑
i=1

tiF (ai)

To prove (14), let a =
m∑
i=1

tiai. Let us observe that for every i, ai ≤

t−1
i a ≤ 2ka. Since

∑
i:ai<

a
2

tiai <
a
2
, we have

∑
i:ai≥a2

tiai >
a
2
. Therefore

∑
tiF (ai) =

∑
i:ai≥a2

+
∑
i:ai<

a
2

≤ F (
α

2
a) + F (

a

2
) ≤ F (

α + 1

2
a).
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Lemma 5. Let F (e−t) = e−t−ϕ(t) where ϕ : [0,∞) → [0,∞) is an
increasing, convex, continuous function and lim

t→∞
ϕ(t) =∞. Then

dk(`M) ≤ 2kF−1(
1

k
) for k = 1, 2, . . .

Proof. Let us first observe that for every 0 ≤ γ ≤ 1, the function

Ψ(x) = F (γx)
F (x)

is decreasing on [0, 1]. Indeed, put γ = e−s, x = e−t,

then Ψ(x) = γeϕ(t)−ϕ(s+t) and the exponent is a decreasing function of
t since ϕ′(t)− ϕ′(s+ t) < 0.

We have

Fa
2
,2ka(a) =

1

4k − 1
F (2ka)+(1− 1

4k − 1
)F (

a

2
) ≤ 2

4k − 1
F (2ka) ≤ 1

k
F (2ka),

because F (a
2
) ≤ 1

4k
F (2ka), since F (x)

x
is an increasing function of x.

Consequently, Φk(a) ≤ α if F (αa) ≤ 1
k
F (2ka), thus d = sup

0≤α≤ 1
2k

Φk(a) ≤

α provided F (αa)
F (2ka)

≥ 1
k

for every a ≤ 1
2k

. Since F (αa)
F (2ka)

is a decreasing

function of a, its minimum in [0, 1
2k

] is F ( α
2k

), thus α is given by F ( α
2k

) =
1
k
, i.e., α = 2kF−1( 1

k
).

Proof of Theorem 1.2. Let tk = − lnn δk
2k

. We can assume, without loss
of generality, that 0 = t0 < t1 < t2 < . . . . Let ϕ be piecewise linear in
the intervals [tk−1, tk] and let it satisfy the conditions

(15) e−ϕ(tk) ≥ 1
2
δk

(16)
ϕ(tk+1)− ϕ(tk)

tk+1 − tk
≥ ϕ(tk)− ϕ(tk−1

tk − tk−1

(condition (16) implies the convexity of ϕ). �

4. More Applications

Nielsen and Tomczak [21] proved that if X is a weak Hilbert space
that has an unconditional basis, then dn(X) satisfies the estimate
needed to apply Theorem 2.1. It is obvious that dn(`2(X)) = dn(X),
so we get

Corollary 2. If X is a weak Hilbert space that has an unconditional
basis, then `2(X) has the HUAP.
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The interest in Corollary 2 is that `2(X) is a weak Hilbert space only
when X is isomorphic to a Hilbert space [23, Theorem 12.3].

Recall that a Banach space X is complementably universal for a class
M of Banach space provided that every space inM is isomorphic to a
complemented subspace of X. Kadec [13] constructed a separable Ba-
nach space with the BAP that is complementably universal for all sep-
arable Banach spaces that have the BAP, while the authors [11] proved
that there is no separable Banach space that is complementably univer-
sal for all separable Banach spaces that have the AP. Timur Oikhberg
asked the authors whether there is a separable infinite dimensional Ba-
nach space not isomorphic to `2 that is complementably universal for
all subspaces of itself. Notice that if such a space has the BAP, then it
has the HAP, and hence must be “close” to a Hilbert space. Also notice
that such a space cannot have all subspaces complemented, since that
condition implies that the space is isomorphic to `2 [15]. Theorem 2.1
can be used to give an affirmative answer to Oikhberg’s question.

Theorem 4.1. There is a separable, infinite dimensional Banach space
not isomorphic to `2 that is complementably universal for all subspaces
of all of its quotients.

Proof. Let X be any Banach space such that d4n(X) satisfies the es-
timate assumed for dn(X) in Theorem 2.1. Let (Ek) be a sequence
of finite dimensional spaces that is dense (in the sense of the Banach-
Mazur distance) in the collection of all finite dimensional spaces that
are contained in some quotient of `2(X) and let Y be the `2-sum of the
Ek. Then dn(Y ) ≤ 2d4n(X) because an n dimensional subspace of a
quotient of a Banach space Z is 2-isomorphic to a quotient of a 4n di-
mensional subspace of Z. By construction, dn(Y1) ≤ dn(Y ) ≤ 2d4n(X)
for any quotient Y1 of Y , hence every subspace of every quotient of Y
has the AP and hence the BAP since Y is forced to be superreflexive.
The technique at the end of [7] (which also uses a result from [10]) then
yields that if Z is a subspace of a quotient of Y , then Z⊕Y has a finite
dimensional decomposition. The main result in [12] implies that Z⊕Y
is isomorphic to (

∑
Hn)2 for some sequence Hn of finite dimensional

spaces. By construction, the Hn are uniformly isomorphic to a sub-
sequence of En, which gives that Z is isomorphic to a complemented
subspace of Y .

5. Open questions

Question 1. Does the HAP imply the HUAP?
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Question 2. If X has the HAP, do all quotients of X have the AP?
(if yes, then the two conditions would be, of course, equivalent.)

Question 3. Is every HAP space reflexive?

Let us recall that there exist non-reflexive spaces that are of type
2− ε and of cotype 2 + ε for every ε > 0 (cf.[25]).

Question 4. Is the HAP preserved under ultrapowers?

Question 5. If X has the HAP, does X ⊕ `2 necessarily have the
HAP?

Question 6. Does every HAPpy space belong to L?

Question 7. If X /∈ L, does there exist a nilpotent operator on X
with non zero trace?

Question 8. Can the space X(2) (see A. above) be modified so that
no subspace of it is isomorphic to `2?

Question 9. If X ∈ HAP , is `2(X) ∈ HAP?

We do not know the answer to the following special case of Question
9:

Question 9.1. If X is a weak Hilbert space, is `2(X) HAPpy?

Question 10. Is every quotient of a HAPpy space again HAPpy?

In connection with Questions 9.1 and 10, we recall the result of
Mankiewicz and Tomczak-Jaegerman [20] that if X is not isomorphic to
`2, then `2(X) has a quotient whose subspace does not have a basis. On
the other hand, some of the spaces constructed in [8] have the property
that every subspace of every quotient has a basis. This suggests

Question 11. If dn(X) goes to infinity sufficiently slowly and X is
separable, must X have a finite dimensional decomposition?

The result of Maurey and Pisier included in [19] shows that every
weak Hilbert space has a finite dimensional decomposition.

The rate of growth of dn(X) needed in Theorem 2.1 is of (inverse)
Ackermann type. It is interesting to know whether this rate can be im-
proved significantly. We even do not know the answer to the following

Question 12. Must X be HAPpy if dn(X) = o(log(n))?

In connection with Theorem 4.1 we have the following
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Question 13. Does there exist a space with symmetric basis X such
that every subspace of X is isomorphic to a complemented subspace of
X, but X is not isomorphic to a Hilbert space?
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