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Abstract

Let X be a normed space that satisfies the Johnson-Lindenstrauss lemma (J-L lemma, in short) in the
sense that for any integer n and any x1, . . . , xn ∈ X there exists a linear mapping L : X → F, where F ⊆ X
is a linear subspace of dimension O(log n), such that ‖xi − x j‖ ≤ ‖L(xi) − L(x j)‖ ≤ O(1) · ‖xi − x j‖ for
all i, j ∈ {1, . . . , n}. We show that this implies that X is almost Euclidean in the following sense: Every
n-dimensional subspace of X embeds into Hilbert space with distortion 22O(log∗ n)

. On the other hand, we
show that there exists a normed space Y which satisfies the J-L lemma, but for every n there exists an
n-dimensional subspace En ⊆ Y whose Euclidean distortion is at least 2Ω(α(n)), where α is the inverse
Ackermann function.

1 Introduction

The J-L lemma [24] asserts that if H is a Hilbert space, ε > 0, n ∈ N, and x1, . . . , xn ∈ H then there exists a
linear mapping (even a multiple of an orthogonal projection) L : H → F, where F ⊆ H is a linear subspace
of dimension O(c(ε) log n), such that for all i, j ∈ {1, . . . , n} we have

‖xi − x j‖ ≤ ‖L(xi) − L(x j)‖ ≤ (1 + ε)‖xi − x j‖. (1)

This fact has found many applications in mathematics and computer science, in addition to the original
application in [24] to a Lipschitz extension problem. The widespread applicability of the J-L lemma in com-
puter science can be (somewhat simplistically) attributed to the fact that it can be viewed as a compression
scheme which helps to reduce significantly the space required for storing multidimensional data. We shall
not attempt to list here all the applications of the J-L lemma to areas ranging from nearest neighbor search
to machine learning—we refer the interested reader to [27, 20, 28, 18, 43, 19, 1] and the references therein
for a partial list of such applications.

The applications of (1) involve various requirements from the mapping L. While some applications just
need the distance preservation condition (1) and not the linearity of L, most applications require L to be
linear. Also, many applications are based on additional information that comes from the proof of the J-L
lemma, such as the fact that L arises with high probability from certain distributions over linear mappings.
The linearity of L is useful, for example, for fast evaluation of the images L(xi), and also because these
images behave well when additive noise is applied to the initial vectors x1, . . . , xn.
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Due to the usefulness of the J-L lemma there has been considerable effort by researchers to prove such
a dimensionality reduction theorem in other normed spaces. All of these efforts have thus far resulted in
negative results which show that the J-L lemma fails to hold true in certain non-Hilbertian settings. In [13]
Charikar and Sahai proved that there is no dimension reduction via linear mappings in L1. This negative
result was extended to any Lp, p ∈ [1,∞] \ {2}, by Lee, Mendel and Naor in [30]. Negative results for
dimension reduction without the requirement that the embedding L is linear are known only for the spaces
L1 [9, 31, 30] and L∞ [7, 25, 3, 33]. Here we show that the negative results for linear dimension reduction in
Lp spaces are a particular case of a much more general phenomenon: A normed space that satisfies the J-L
lemma is very close to being Euclidean in the sense that all of its n-dimensional subspaces are isomorphic to
Hilbert space with distortion 22O(log∗(n))

. Here, and in what follows, if x ≥ 1 then log∗(x) is the unique integer
k such that if we define a1 = 1 and ai+1 = eai (i.e. ai is an exponential tower of height i), then ak < x ≤ ak+1.

In order to state our results we recall the following notation: The Euclidean distortion of a finite di-
mensional normed space X, denoted c2(X), is the infimum over all D > 0 such that there exists a linear
mapping S : X → `2 which satisfies ‖x‖ ≤ ‖S (x)‖ ≤ D‖x‖ for all x ∈ X. Note that in the computer science
literature the notation c2(X) deals with bi-Lipschitz embeddings, but in the context of normed spaces it can
be shown that the optimal bi-Lipschitz embedding may be chosen to be linear (this is explained for example
in [6, Chapter 7]). The parameter c2(X) is also known as the Banach-Mazur distance between X and Hilbert
space.

Theorem 1.1. For every D,K > 0 there exists a constant c = c(K,D) > 0 with the following property. Let X
be a Banach space such that for every n ∈ N and every x1, . . . , xn ∈ X there exists a linear subspace F ⊆ X, of
dimension at most K log n, and a linear mapping S : X → F such that ‖xi−x j‖ ≤ ‖S (xi)−S (x j)‖ ≤ D‖xi−x j‖

for all i, j ∈ {1, . . . , n}. Then for every k ∈ N and every k-dimensional subspace E ⊆ X, we have

c2(E) ≤ 22c log∗(k)
. (2)

The proof of Theorem 1.1 builds on ideas from [13, 30], while using several fundamental results from
the local theory of Banach spaces. Namely, in [30] the L1 point-set from [13] was analyzed via an analytic
argument which extends to any Lp space, p , 2, rather than the linear programming argument in [13]. In
Section 2 we construct a variant of this point-set in any Banach space, and use it in conjunction with some
classical results in Banach space theory to prove Theorem 1.1.

The fact that the bound on c2(E) in (2) is not O(1) is not just an artifact of our iterative proof technique:
There do exist non-Hilbertian Banach spaces which satisfy the J-L lemma!

Theorem 1.2. There exist two universal constants D,K > 0 and a Banach space X such that for every n ∈ N
and every x1, . . . , xn ∈ X there exists a linear subspace F ⊆ X, of dimension at most K log n, and a linear
mapping S : X → F such that ‖xi − x j‖ ≤ ‖S (xi) − S (x j)‖ ≤ D‖xi − x j‖ for all i, j ∈ {1, . . . , n}. Moreover,
for every integer n the space X has an n-dimensional subspace Fn ⊆ X with

c2(Fn) ≥ 2cα(n), (3)

where c > 0 is a universal constant and α(n)→ ∞ is the inverse Ackermann function.

We refer the readers to Section 3 for the definition of the inverse Ackermann function. The Banach
space X in Theorem 1.2 is the 2-convexification of the Tsirelson space [14], denoted T (2), which we shall
now define. The definition below, due to Figiel and Johnson [16], actually gives the dual to the space
constructed by Tsirelson (see the book [12] for a comprehensive discussion). Let c00 denote the space of
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all finitely supported sequences of real numbers. The standard unit basis of c00 is denoted by {ei}
∞
i=1. Given

A ⊆ N we denote by PA the restriction operator to A, i.e. PA
(∑∞

i=1 xiei
)

=
∑

i∈A xiei. Given two finite
subsets A, B ⊆ N we write A < B if max A < min B . Define inductively a sequence of norms {‖ · ‖m}∞m=0 by
‖x‖0 = ‖x‖c0 = max j≥1 |x j|, and

‖x‖m+1 = max

‖x‖m, 1
2

sup


n∑

j=1

∥∥∥PA j(x)
∥∥∥

m : n ∈ N, A1, . . . , An ⊆ N finite, {n} < A1 < A2 < · · · < An


 (4)

Then for each x ∈ c00 the sequence {‖x‖m}∞m=0 is nondecreasing and bounded from above by ‖x‖`1 =
∑∞

j=1 |x j|.
It follows that the limit ‖x‖T B limm→∞ ‖x‖m exists. The space X = T (2) from Theorem 1.2 is the completion
of c00 under the norm: ∥∥∥∥∥∥∥∥

∞∑
j=1

x je j

∥∥∥∥∥∥∥∥
T (2)

B

∥∥∥∥∥∥∥∥
∞∑
j=1

|x j|
2e j

∥∥∥∥∥∥∥∥
1/2

T

. (5)

The proof of the fact that T (2) satisfies the J-L lemma consists of a concatenation of several classical results,
some of which are quite deep. The lower bound (3) follows from the work of Bellenot [5]. The details are
presented in Section 3.

2 Proof of Theorem 1.1

Let (X, ‖ · ‖) be a normed space. The Gaussian type 2 constant of X, denoted T2(X), is the infimum over all
T > 0 such that for every n ∈ N and every x1, . . . , xn ∈ X we have,

E

∥∥∥∥∥∥∥
n∑

i=1

gixi

∥∥∥∥∥∥∥
2

≤ T 2
n∑

i=1

‖xi‖
2. (6)

Here, and in what follows, g1, . . . , gn denote i.i.d. standard Gaussian random variables. The cotype 2
constant of X, denoted C2(X), is the infimum over all C > 0 such that for every n ∈ N and every x1, . . . , xn ∈

X we have,

n∑
i=1

‖xi‖
2 ≤ C2E

∥∥∥∥∥∥∥
n∑

i=1

gixi

∥∥∥∥∥∥∥
2

. (7)

A famous theorem of Kwapien [29] (see also the exposition in [36, Theorem 3.3]) states that

c2(X) ≤ T2(X) ·C2(X). (8)

An important theorem of Tomczak-Jaegermann [40] states that if the Banach space X is d-dimensional then
there exist x1, . . . , xd, y1 . . . , yd ∈ X \ {0} for which

E

∥∥∥∥∥∥∥
d∑

i=1

gixi

∥∥∥∥∥∥∥
2

≥
T2(X)2

2π

d∑
i=1

‖xi‖
2 and

d∑
i=1

‖yi‖
2 ≥

C2(X)2

2π
E

∥∥∥∥∥∥∥
d∑

i=1

giyi

∥∥∥∥∥∥∥
2

. (9)
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In other words, for d-dimensional spaces it suffices to consider n = d in (6) and (7) in order to com-
pute T2(X) and C2(X) up to a universal factor. For our purposes it suffices to use the following sim-
pler fact due to Figiel, Lindenstrauss and Milman [17, Lemma 6.1]: If dim(X) = d then there exist
x1, . . . , xd(d+1)/2, y1, . . . , yd(d+1)/2 ∈ X \ {0} for which

E

∥∥∥∥∥∥∥
d(d+1)/2∑

i=1

gixi

∥∥∥∥∥∥∥
2

= T2(X)2
d(d+1)/2∑

i=1

‖xi‖
2 and

d(d+1)/2∑
i=1

‖yi‖
2 = C2(X)2E

∥∥∥∥∥∥∥
d(d+1)/2∑

i=1

giyi

∥∥∥∥∥∥∥
2

. (10)

We note, however, that it is possible to improve the constant terms in Theorem 1.1 if we use (9) instead
of (10) in the proof below. We shall now sketch the proof of (10), taken from [17, Lemma 6.1], since this
type of finiteness result is used crucially in our proof of Theorem 1.1.

We claim that if m > d(d + 1)/2 and u1, . . . , um ∈ X then there are v1, . . . , vm−1,w1, . . . ,wm−1 ∈ X such
that

E

∥∥∥∥∥∥∥
m−1∑
i=1

givi

∥∥∥∥∥∥∥
2

+ E

∥∥∥∥∥∥∥
m−1∑
i=1

giwi

∥∥∥∥∥∥∥
2

= E

∥∥∥∥∥∥∥
m∑

i=1

giui

∥∥∥∥∥∥∥
2

and
m−1∑
i=1

‖vi‖
2 +

m−1∑
i=1

‖wi‖
2 =

m∑
i=1

‖ui‖
2. (11)

Note that (11) clearly implies (10) since it shows that in the definitions (6) and (7) we can take n = d(d+1)/2
(in which case the infima in these definitions are attained by a simple compactness argument).

To prove (11) we can think of X as Rd, equipped with a norm ‖ · ‖. The random vector
∑m

i=1 giui =(∑d
i=1 giui j

)d

j=1
has a Gaussian distribution with covariance matrix A = (

∑m
i=1 ui juik)d

j,k=1 =
∑m

i=1 ui ⊗ui. Thus
the symmetric matrix A is in the cone generated by the symmetric matrices {ui ⊗ ui}

m
i=1. By Caratheodory’s

theorem for cones (see e.g. [15]) we may reorder the vectors ui so as to find scalars c1 ≥ c2 ≥ · · · ≥ cm ≥ 0
with ci = 0 for i > d(d + 1)/2, such that A =

∑m
i=1 ciui ⊗ ui. This sum contains at most d(d + 1)/2

nonzero summands. Define vi B
√

ci/c1 · ui (so that there are at most d(d + 1)/2 ≤ m − 1 nonzero vi) and
wi =

√
1 − ci/c1 · ui (so that w1 = 0). The second identity in (11) is trivial with these definitions. Now,

the random vector
∑m

i=1 givi has covariance matrix 1
c1

∑m
i=1 ciui ⊗ ui = 1

c1
A and the random vector

∑m
i=1 giwi

has covariance matrix
∑m

i=1(1 − ci/c1)ui ⊗ ui = (1 − 1/c1)A. Thus E
∥∥∥∑m−1

i=1 givi
∥∥∥2

= 1
c1
E

∥∥∥∑m
i=1 giui

∥∥∥2 and

E
∥∥∥∑m−1

i=1 giwi
∥∥∥2

= (1 − 1/c1)E
∥∥∥∑m

i=1 giui
∥∥∥2. This completes the proof of (11).

We are now in position to prove Theorem 1.1. Define

∆(n) B ∆X(n) B sup
{
c2(F) : F ⊆ X linear subspace, dim(F) ≤ n

}
. (12)

Note that by John’s theorem [21] (see also the beautiful exposition in [4]) ∆(n) ≤
√

n. Our goal is to obtain
a much better bound on ∆(n). To this end let F ⊆ X be a linear subspace of dimension k ≤ n. Let m be
the integer satisfying 2m−1 < k(k + 1)/2 ≤ 2m. We shall use the vectors from (10). By adding some zero
vectors so as to have 2m vectors, and labeling them (for convenience) by the subsets of {1, . . . ,m}, we obtain
{xA}A⊆{1,...,m}, {yA}A⊆{1,...,m} ⊆ X such that

E

∥∥∥∥∥∥∥∥
∑

A⊆{1,...,m}

gAxA

∥∥∥∥∥∥∥∥
2

= T2(F)2
∑

A⊆{1,...,m}

‖xA‖
2 > 0 (13)

∑
A⊆{1,...,m}

‖yA‖
2 = C2(F)2E

∥∥∥∥∥∥∥∥
∑

A⊆{1,...,m}

gAyA

∥∥∥∥∥∥∥∥
2

> 0. (14)
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For every ε = (ε1, . . . , εm) ∈ {−1, 1} and A ⊆ {1, . . . ,m} consider the Walsh function WA(ε) =
∏

i∈A εi. For
every g = {gA}A⊆{1,...,m} define Φg,Ψg : {−1, 1}m → F by

Φg(ε) B
∑

A⊆{1,...,m}

gAWA(ε)xA and Ψg(ε) B
∑

A⊆{1,...,m}

gAWA(ε)yA. (15)

Thus Φg,Ψg are random F-valued functions given by the random Fourier expansions in (15)—the random-
ness is with respect to the i.i.d. Gaussians g = {gA}A⊆{1,...,m}. These random functions induce the following
two random subsets of F:

Ug B {Φg(ε)}ε∈{−1,1}m ∪ {xA}A⊆{1,...,m} ∪ {0} and Vg B {Ψg(ε)}ε∈{−1,1}m ∪ {yA}A⊆{1,...,m} ∪ {0}.

Then |Ug|, |Vg| ≤ 2m+1 + 1 ≤ 2k(k + 1) + 1 ≤ 2(n + 1)2. By the assumptions of Theorem 1.1 it follows that
there exist two subspaces Eg, E′g ⊆ X with dim(Eg), dim(E′g) ≤ K log

(
2(n + 1)2

)
≤ 4K log(n + 1) and two

linear mappings Lg : X → Eg, L′g : X → E′g, which satisfy

x, y ∈ Ug =⇒ ‖x − y‖ ≤ ‖Lg(x) − Lg(y)‖ ≤ D‖x − y‖. (16)

and

x, y ∈ Vg =⇒ ‖x − y‖ ≤ ‖L′g(x) − L′g(y)‖ ≤ D‖x − y‖. (17)

Moreover, by the definition of ∆(·) there are two linear mappings S g : Eg → `2 and S ′g : E′g → `2 which
satisfy

x ∈ Eg =⇒ ‖x‖ ≤ ‖S g(x)‖2 ≤ 2∆
(
4K log(n + 1)

)
‖x‖, (18)

and

x ∈ E′g =⇒ ‖x‖ ≤ ‖S ′g(x)‖2 ≤ 2∆
(
4K log(n + 1)

)
‖x‖. (19)

By the orthogonality of the Walsh functions we see that

Eε

∥∥∥∥S g
(
Lg

(
Φg(ε)

))∥∥∥∥2

2
= Eε

∥∥∥∥∥∥∥∥
∑

A⊆{1,...,m}

gAWA(ε)S g(Lg(xA))

∥∥∥∥∥∥∥∥
2

2

=
∑

A⊆{1,...,m}

g2
A

∥∥∥S g(Lg(xA))
∥∥∥2

2 , (20)

and

Eε

∥∥∥∥S ′g
(
Lg

(
Ψg(ε)

))∥∥∥∥2

2
= Eε

∥∥∥∥∥∥∥∥
∑

A⊆{1,...,m}

gAWA(ε)S g(Lg(yA))

∥∥∥∥∥∥∥∥
2

2

=
∑

A⊆{1,...,m}

g2
A

∥∥∥S g(Lg(yA))
∥∥∥2

2 . (21)

A combination of the bounds in (16) and (18) shows that for all A ⊆ {1, . . . ,m} we have
∥∥∥S g(Lg(xA))

∥∥∥
2 ≤

2D∆
(
4K log(n + 1)

)
‖xA‖ and for all ε ∈ {−1, 1}m we have

∥∥∥∥S g
(
Lg

(
Φg(ε)

))∥∥∥∥
2
≥

∥∥∥Φg(ε)
∥∥∥. Thus (20) implies

that

Eε
∥∥∥Φg(ε)

∥∥∥2
≤ 4D2∆

(
4K log(n + 1)

)2
∑

A⊆{1,...,m}

g2
A‖xA‖

2. (22)
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Arguing similarly, while using (17), (19) and (21), we see that

Eε
∥∥∥Ψg(ε)

∥∥∥2
≥

1

4D2∆
(
4K log(n + 1)

)2

∑
A⊆{1,...,m}

g2
A‖yA‖

2. (23)

Taking expectation with respect to the Gaussians {gA}A⊆{1,...,m} in (22) we see that

4D2∆
(
4K log(n + 1)

)2
∑

A⊆{1,...,m}

‖xA‖
2 ≥ EgEε

∥∥∥∥∥∥∥∥
∑

A⊆{1,...,m}

gAWA(ε)xA

∥∥∥∥∥∥∥∥
2

= Eg

∥∥∥∥∥∥∥∥
∑

A⊆{1,...,m}

gAxA

∥∥∥∥∥∥∥∥
2

, (24)

where we used the fact that for each fixed ε ∈ {−1, 1}m the random variables {WA(ε)gA}A⊆{1,...,m} have the
same joint distribution as the random variables {gA}A⊆{1,...,m}. Similarly, taking expectation in (23) yields

∑
A⊆{1,...,m}

‖yA‖
2 ≤ 4D2∆

(
4K log(n + 1)

)2 Eg

∥∥∥∥∥∥∥∥
∑

A⊆{1,...,m}

gAyA

∥∥∥∥∥∥∥∥
2

. (25)

Combining (24) with (13) and (25) with (14) we get the bounds:

T2(F),C2(F) ≤ 2D∆
(
4K log(n + 1)

)
.

In combination with Kwapien’s theorem (8) we deduce that

c2(F) ≤ T2(F)C2(F) ≤ 4D2∆
(
4K log(n + 1)

)2 .

Since F was an arbitrary subspace of X of dimension at most n, it follows that

∆(n) ≤ 4D2∆
(
4K log(n + 1)

)2 . (26)

Iterating (26) log∗(n) times implies that

∆(n) ≤ 22c(K,D) log∗(n)
,

as required. �

3 Proof of Theorem 1.2

We shall now explain why the 2-convexification of the Tsirelson space T (2), as defined in the introduction,
satisfies the J-L lemma. First we give a definition. Given an increasing sequence h(n) with 0 ≤ h(n) ≤ n,
say that a Banach space is h-Hilbertian provided that for every finite dimensional subspace E of X there are
subspaces F and G of E such that E = F ⊕ G, dim(F) = O(h(dim E)) and c2(G) = O(1)1. If the Banach
space X is log-Hilbertian, then X satisfies the J-L lemma. Indeed, take x1, . . . , xn ∈ X and let E be their span.
Write E = F⊕G as above and decompose each of the xi accordingly, i.e. xi = yi⊕zi where yi ∈ F and zi ∈ G.
Since c2(G) = O(1), by the J-L lemma we can find a linear operator L : G → G′, where G′ ⊆ G is a subspace
of dimension O(log n), such that ‖zi − z j‖ = Θ(‖L(zi) − L(z j)‖) for all i, j ∈ {1, . . . , n}. The linear operator

1Here the direct sum notation means as usual that for every y⊕ z ∈ F ⊕G we have ‖y⊕ z‖X = Θ (‖y‖X + ‖z‖X), where the implied
constants are independent of E
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L′ : E → F ⊕G′ given by L′(y⊕ z) = y⊕ L(z) has rank O(log n) and satisfies ‖xi− x j‖ = Θ(‖L′(xi)− L′(x j)‖),
as required.

We now explain why T (2) satisfies the J-L lemma. In [22] Johnson defined the following modification of
the Tsirelson space. As in the case of the Tsirelson space, the construction consists of an inductive definition
of a sequence of norms on c00. Once again we set |||x|||0 = ‖x‖c0 and

|||x|||m+1 = max

|||x|||m, 1
2

sup


(n+1)n∑

j=1

|||PA j(x)|||m : n ∈ N, A1, . . . , A(n+1)n ⊆ [n,∞) finite & disjoint


 (27)

We then define ‖x‖T B limm→∞ |||x|||m, and the modified space T (2) as the completion of c00 under the
norm: ∥∥∥∥∥∥∥∥

∞∑
j=1

x je j

∥∥∥∥∥∥∥∥
T (2)

B

∥∥∥∥∥∥∥∥
∞∑
j=1

|x j|
2e j

∥∥∥∥∥∥∥∥
1/2

T

. (28)

In [23] Johnson proved that a certain subspace Y of T (2) (spanned by a subsequence of the unit vector
basis) is log-Hilbertian. In [10] Casazza, Johnson and Tzafriri showed that it is not necessary to pass to the
subspace Y , and in fact T (2) itself has the desired decomposition property. Finally, a deep result of Casazza
and Odell [11] shows that T (2) is just T (2) with an equivalent norm. This concludes the proof of the fact
that T (2) satisfies the J-L lemma.

It remains to establish the lower bound (3). Note that the fact that c2
(
T (2)

)
= ∞ already follows from

the original paper of Figiel and Johnson [16]—our goal here is to give a quantitative estimate. This will be a
simple consequence of a paper of Bellenot [5]. Define inductively a sequence of functions {gk : N→ N}∞k=0
as follows: g0(n) = n + 1 and gi+1(n) = g(n)

i (n), where g(n)
i denotes the n-fold iterate of gi, i.e. g(n+1)

i ( j) =

gi(g
(n)
i ( j)). The inverse Ackermann function is the inverse of the function n 7→ gn(n), i.e. its value on n ∈ N

is the unique integer k such that gk(k) < n ≤ gk+1(k + 1). Note that in the literature there are several variants
of the inverse Ackermann function, but it is possible to show that they are all the same up to bounded additive
terms—see, for example, [2, Appendix B] for a discussion of such issues. In particular, we define α(n) to be
the inverse of the function h(n) = gn(2), but its asymptotic behavior is the same as the inverse Ackermann
function (since gn(2) > n, and therefore gn(n) < gn(gn(2)) = gn+1(2)). Now, by [5, Proposition 5] for every
k ≥ 1 there exist scalars {x j}

gk(2)
j=1 ⊆ R which are not all equal to 0 such that∥∥∥∥∥∥∥∥

gk(2)∑
j=1

x je j

∥∥∥∥∥∥∥∥
T

≤
k
2k

gk(2)∑
j=3

|x j|. (29)

Hence, by the definition (5) we have for all ε = (ε1, . . . , εgk(2)) ∈ {−1, 1}gk(2),∥∥∥∥∥∥∥∥
gk(2)∑
j=1

ε jx je j

∥∥∥∥∥∥∥∥
2

T (2)

≤
k2

22k

gk(2)∑
j=1

x2
j . (30)

Let F ⊆ T (2) denote the span of {e1, . . . , egk(2)}. Averaging (30) over ε and using the definition of the cotype
2 constant of F, we see that C2(F) ≥ 2k/k, and therefore the Euclidean distortion of F is at least 2k/k. Since
the dimension of F is g2(k), this concludes the proof of (3), and hence also the proof of Theorem 1.2. �
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4 Remarks and open problems

We end this note with some concluding comments and questions that arise naturally from our work.

1. The space T (2) was the first example of what Pisier [37, Chapter 12] calls weak Hilbert spaces. One
of the many equivalents for a Banach space X to be a weak Hilbert is that every finite dimensional
subspace E of X can be written as E = F ⊕ G with dim G ≥ δ dim E for some universal constant
δ > 0 and c2(G) = O(1). It is not known whether every weak Hilbert space is log-Hilbertian or
even h-Hilbertian for some h(n) = o(n). However, Nielsen and Tomczak-Jaegermann [34], using
the same kind of reasoning that works for T (2) (see [10]), proved that a weak Hilbert space with an
unconditional basis is even 2O(α(·))-Hilbertian.

2. A Banach space X is called asymptotically Hilbertian provied that for each n there is a finite codi-
mensional subspace Y of X so that ∆Y (n) = O(1) (∆Y (n) is defined in (12)). Every weak Hilbert space
is asymptotically Hilbertian [37, Chapter 14]. The results in [23] and the argument at the beginning
of section 3 show that every asymptotically Hilbertian space has a subspace which satisfies the J-L
lemma.

3. Does there exist a function f (n) ↑ ∞ so that if X is a Banach space for which ∆(n) = O( f (n)), where
∆(n) is as in (12), i.e. c2(E) = O( f (dim E)) for all finite dimensional subspaces E of X, then X satisfies
the J-L lemma? An affirmative answer would show that there are natural Banach spaces other than
Hilbert spaces, even some Orlicz sequence spaces, which satisfy the J-L lemma.

4. A question which obviously arises from our results is to determine the true rate of “closeness” (in
the sense of (2)) between spaces satisfying the J-L lemma and Hilbert space. Which of the bounds
∆(n) = 22O(log∗(n))

and ∆(n) = 2Ω(α(n)) is closer to the truth?

5. Our argument also works when the dimension is only assumed to be reduced to a power of log n,
and we get nontrivial bounds even when this dimension is, say, 2(log n)β for some β < 1. However,
except for spaces that are of type 2 or of cotype 2, our proof does not yield any meaningful result
when the dimension is lowered to nγ for some γ ∈ (0, 1). The problem is that in the recursive in-
equality (26) the term ∆

(
4K log(n + 1)

)
is squared. This happens since in Kwapien’s theorem (8) the

Euclidean distortion is bounded by the product of the type 2 and cotype 2 constants rather than by
their maximum. While it is tempting to believe that the true bound in Kwapien’s theorem should be
c2(X) = O (max{T2(X),C2(X)}), it was shown by Tomczak-Jaegermann [41, Proposition 2] that up to
universal constants Kwapien’s bound c2(X) ≤ T2(X)C2(X) cannot be improved.

6. In [35] Pisier proved that if a Banach space X satisfies ∆(n) = o(log n), then X is superreflexive; i.e.,
X admits an equivalent norm which is uniformly convex. Hence any space satisfying the assumptions
of Theorem 1.1 is superreflexive.

7. It is of interest to study dimension reduction into arbitrary low dimensional normed spaces, since this
can serve just as well for the purpose of data compression (see [32]). Assume that X is a Banach
space such that for every n and x1, . . . , xn ∈ X there exists a d(n)-dimensional Banach space Y and a
linear mapping L : X → Y such that ‖xi − x j‖ ≤ ‖L(xi) − L(x j)‖ ≤ D‖xi − x j‖ for all i, j ∈ {1, . . . , n}.
Since by John’s theorem [21] we have c2(Y) ≤

√
d(n) we can argue similarly to the proof in Section 2

(in this simpler case the proof is close to the argument in [30]), while using the result of Tomczak-
Jaegermann (9), to deduce that T2(F),C2(F) ≤ 2π

√
d(n). By Kwapien’s theorem we deduce that
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c2(F) ≤ 4π2d(n). If d(n) ≤ nγ for some γ ∈ (0, 1) which is independent of n and F, the fact that
T2(F),C2(F) ≤ 2πnγ/2 for every n-dimensional subspace F ⊆ X implies (see [42]) that X has type

2
1+γ − ε and cotype 2

1−γ + ε for every ε > 0. In particular, if d(n) = no(1) then X has type 2 − ε and
cotype 2 + ε for every ε > 0.

8. We do not know of any non-trivial linear dimension reduction result in Lp for p ∈ [1,∞) \ {2}. For
example, is it possible to embed with O(1) distortion via a linear mapping any n-point subset of L1 into
a subspace of L1 of dimension, say, n/4, or even into `n/4

1 ? Remarkably even such modest goals seem
to be beyond the reach of current techniques. Clearly n-point subsets of L1 are in their n-dimensional
span, but we do not know if they embed with constant distortion into `d

1 when d = O(n). Schechtman
proved in [38] that we can take d = O(n log n). We refer to [38, 8, 39, 26] for more information on the
harder problem of embedding n-dimensional subspaces of L1 into low dimensional `d

1 . We also refer
to these references for similar results in Lp spaces.
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