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Abstract. Let V,W∞, andW be operator ideals of completely contin-
uous, weakly ∞-compact, and weakly compact operators, respectively.
We prove that V =W∞ ◦W−1. As an immediate application, the recent
result by Dowling, Freeman, Lennard, Odell, Randrianantoanina, and
Turett follows: the weak Grothendieck compactness principle holds only
in Schur spaces.

1. Introduction

Let L,K,W, and V denote the operator ideals of bounded linear, compact,
weakly compact, and completely continuous operators. Let X and Y be
Banach spaces. Recall that a linear map T : X → Y is completely continuous,
i.e., T ∈ V(X,Y ), if T takes weakly null sequences in X to null sequences
in Y .

Recall that K ⊂ V and K ⊂ W, but V and W are incomparable [9,
1.11.8]. The starting point for the present note was the following well-known
formula [9, 3.2.3]:

V = K ◦W−1.
Recall that the right-hand quotient A◦B−1 of two operator ideals A and

B is the operator ideal that consists of all operators T ∈ L(X,Y ) such that
TS ∈ A(Z, Y ) whenever S ∈ B(Z,X) for some Banach space Z [9, 3.1.1].

Let (xn) ⊂ X be a bounded sequence. It is well known and easy to see
that (xn) defines an operator Φ(xn) ∈ L(`1, X) through the equality

Φ(xn)(ak) =

∞∑
k=1

akxk, (ak) ∈ `1.

The main tool in the proof of the formula V = K ◦ W−1 in [9, 3.2.3] is
the simple fact that Φ(xn) : c∗0 → X is weak∗-to-weak continuous if (xn) is
weakly null.

Let BX denote the closed unit ball of X. A subset K of X is called rel-
atively weakly ∞-compact if K ⊂ Φ(xn)(B`1) for some weakly null sequence
(xn) in X. An operator T ∈ L(X,Y ) is weakly ∞-compact if T (BX) is a rel-
atively weakly∞-compact subset of Y . Weakly∞-compact (more generally,
weakly p-compact) operators were considered by Castillo and Sanchez [4] in
1993 and by Sinha and Karn [10] in 2002 (for an even more general version
of weakly (p, r)-compact operators, see [3]).

Denote by W∞ the class of all weakly ∞-compact operators acting be-
tween arbitrary Banach spaces. An easy straightforward verification (as
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in [1, Propositions 2.1 and 2.2]) shows that W∞ is a surjective operator
ideal. The main result of this note reads as follows.

Theorem 1.1. V =W∞ ◦W−1.

An immediate consequence is that the weak Grothendieck compact prin-
ciple holds only in Schur spaces. Recall that X has the Schur property (is a
Schur space) if weakly null sequences in X are norm null.

Corollary 1.2. [7, Theorem 1] Every weakly compact subset of a Banach
space X is contained in the closed convex hull of a weakly null sequence if
and only if X has the Schur property.

Our method of proof relies on the Davis–Figiel–Johnson–Pe lczyński fac-
torization theorem [5], providing also an alternative proof for the Dowling–
Freeman–Lennard–Odell–Randrianantoanina–Turett theorem [7], where Schauder
basis theory was used.

2. Proof of Theorem 1.1

The following fact is well known; we include a proof for completeness.

Proposition 2.1. If (xn) is a weakly null sequence in a Banach space X,
then Φ(xn)(B`1) is weakly compact and coincides with the closed absolutely
convex hull of (xn).

Proof. (cf. [2, proof of the “if” part of Theorem 3]). The set Φ(xn)(B`1) is
clearly absolutely convex. It is also weakly compact because Φ(xn) : c∗0 →
X is weak∗-to-weak continuous and B`1 = Bc∗0

is weak∗ compact. Hence,
Φ(xn)(B`1) is a closed absolutely convex subset of X containing (xn). Since
Φ(xn)(B`1) is obviously contained in the closed absolutely convex hull of
(xn), it coincides with the latter set. �

Let X be a Banach space. By the Grothendieck compactness principle,
any compact subset of X is contained in Φ(xn)(B`1) for some null sequence
(xn) in X. Therefore, the relatively compact sets are relatively weakly ∞-
compact, and we get from Proposition 2.1 the following (known) result.

Corollary 2.2. K ⊂ W∞ ⊂ W.

From the proof of Proposition 3.1 below, it can be seen that these inclu-
sions are strict.

Since K ⊂ W∞, we clearly have that K ◦W−1 ⊂ W∞ ◦ W−1. Since also
V ⊂ K ◦W−1 (this is the obvious “part” of the equality V = K ◦W−1),

V ⊂ W∞ ◦W−1.
For the proof of Theorem 1.1, it remains to show that

W∞ ◦W−1 ⊂ V.

Proof. Let X and Y be Banach spaces and let T ∈ W∞ ◦ W−1(X,Y ). As-
sume for contradiction that T 6∈ V(X,Y ). Then there exists a weakly null
sequence (xn) in X such that (Txn) is not a null sequence in Y . Passing
to a subsequence of (xn), we may assume that ‖Txn‖ ≥ δ, n ∈ N, for some
δ > 0. Hence, (Txn) is not relatively compact.
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Since Φ(xn) ∈ W(`1, X) (see Proposition 2.1), by the Davis–Figiel–Johnson–
Pe lczyński factorization theorem [5], there exist a reflexive space R and
weakly compact operators Φ: `1 → R with ‖Φ‖ = 1 and J : R→ X such that
Φ(xn) = JΦ. From the definition ofW∞◦W−1, we get that TJ ∈ W∞(R, Y )

because T ∈ W∞ ◦ W−1(X,Y ) and J ∈ W(R,X). Hence, there exists a
weakly null sequence (yn) in Y such that TJ(BR) ⊂ Φ(yn)(B`1). In partic-
ular, Txn = TΦ(xn)en = TJΦen ∈ Φ(yn)(B`1), n ∈ N, where (en) is the unit
vector basis in `1.

Denote by Φ(yn) the injective associate of Φ(yn), which means that Φ(yn) =

Φ(yn)q, where q : `1 → Z := `1/ ker Φ(yn) is the quotient mapping. Since

ranTJ ⊂ ran Φ(yn) = ran Φ(yn), we can consider the linear operator Φ
−1
(yn)TJ : R→

Z. This operator is bounded: if r ∈ BR, then TJr = Φ(yn)α for some

α ∈ B`1 and
∥∥∥Φ
−1
(yn)TJr

∥∥∥ = ‖qα‖ ≤ 1.

We claim that Z has the Schur property. Indeed, by Grothendieck’s re-
sult [8, Theorem 10] (see also Remark 2.3 below), the dual W ∗ of any closed
subspace W of c0 has the Schur property. It remains to observe that
ker Φ(yn) is weak∗ closed in `1 = c∗0 (because Φ(yn) is weak∗-to-weak continu-

ous), hence ker Φ(yn) = W⊥ for some closed subspace W of c0, and Z = W ∗.
Since R is reflexive and Z has the Schur property, L(R,Z) = K(R,Z). In

particular, Φ
−1
(yn)TJ and therefore also Φ(yn)Φ

−1
(yn)TJ = TJ are compact op-

erators. It follows that (Txn) = (TJΦen) ⊂ (TJ)(BR) is relatively compact,
a contradiction that completes the proof of Theorem 1.1. �

Remark 2.3. LetW be a closed subspace of c0. To prove that the dual W ∗ has
the Schur property, Grothendieck [8, Theorem 10] first establishes that W
has the Dunford–Pettis property (DPP). Grothendieck’s easy and beautiful
proof can be found in Diestel’s survey article [6, pages 25–26, see also The-
orem 4]. Since W does not contain a copy of `1, relying on Rosenthal’s `1
theorem, Diestel [6, Theorem 3] quickly concludes that W ∗ has the Schur
property. Let us provide a version of Grothendieck’s proof [8, pages 171–
172], showing that the DPP of W implies that W ∗ has the Schur property.

The DPP of W means that every weakly compact operator with domain
W is completely continuous, hence compact (because W ∗ is separable). It
follows easily that then W ∗ has the Schur property: given (w∗n) weakly
null in W ∗, consider the weakly compact operator S : W → c0 defined by
Sw = (〈w∗n, w〉), and use that S∗ = Φ(w∗n)

is a compact operator.

3. Applications of Theorem 1.1

It is well known that K ⊂ V. As we see now, W∞ lies strictly between K
and V.

Proposition 3.1. K ⊂ W∞ ⊂ V and both inclusions are strict.

Proof. It is obvious that A ⊂ A ◦ B−1 for any two operator ideals A and B.
Hence, W∞ ⊂ W∞ ◦W−1 = V by Theorem 1.1, and the inclusion K ⊂ W∞
was observed in Corollary 2.2.

To see that K 6=W∞, consider the identity embedding j : `1 → c0 that is
not compact but is weakly ∞-compact, because j = Φ(en), where (en) is the
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unit vector basis of c0. On the other hand, the identity operator on `1 is
completely continuous (because `1 has the Schur property) but since it is not
weakly compact, it is not weakly ∞-compact either (recall that W∞ ⊂ W).
(Another way to see thatW∞ 6= V is to use thatW∞ =Wsur

∞ , the surjective
hull, but V 6= Vsur = L.) Now it is easy to see that the inclusion W∞ ⊂ W
in Corollary 2.2 is strict: the identity operator on `2 is weakly compact but
since it is not completely continuous, it is not weakly ∞-compact. �

Let X and Y be Banach spaces and T ∈ L(X,Y ). It is well known
(and clear thanks to the Eberlein–Šmulian theorem) that T ∈ V(X,Y ) if
and only if T takes relatively weakly compact subsets of X into relatively
compact subsets of Y .

Theorem 3.2. Let X and Y be Banach spaces and T ∈ L(X,Y ). Then
T ∈ V(X,Y ) if and only if T takes relatively weakly compact subsets of X
into relatively weakly ∞-compact subsets of Y .

Proof. The “only if” part is obvious because relatively compact sets are
relatively weakly ∞-compact. From the definition of W∞ ◦W−1, it is clear
that if T takes relatively weakly compact sets into relatively weakly ∞-
compact sets, then T ∈ W∞ ◦W−1(X,Y ). By Theorem 1.1, this means that
T ∈ V(X,Y ). �

Let A be an operator ideal. Recall that the space ideal Space(A) is
defined as the class of all Banach spaces X such that the identity operator
on X belongs to A(X,X). If A and B are operator ideals, then obviously
X ∈ Space(A◦B−1) if and only if B(Z,X) ⊂ A(Z,X) for all Banach spaces
Z.

From the definitions, it is clear that Space(V) is the class of all Banach
spaces with the Schur property. Theorem 1.1 yields that

Space(V) = Space(W∞ ◦W−1).

This can be reformulated as follows. Note that the equivalence (a) ⇔ (b)
below is precisely Corollary 1.2 and, as was mentioned in the Introduction,
it is due to [7, Theorem 1].

Theorem 3.3. For a Banach space X, the following statements are equiv-
alent:

(a) X has the Schur property;
(b) the weak Grothendieck compactness principle holds in X;
(c) W(Z,X) ⊂ W∞(Z,X) for all Banach spaces Z.

Proof. We already observed that (a) ⇔ (c) thanks to Theorem 1.1. The
implications (a)⇒ (b)⇒ (c) are obvious. (But (a)⇔ (b) is also the special
case of Theorem 3.2, when T is the identity operator on X.) �

Remark 3.4. By the Davis–Figiel–Johnson–Pe lczyński factorization theo-
rem, (c) is equivalent to

(d) all injective operators from reflexive Banach spaces to X are weakly
∞-compact.
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