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Abstract. A classification of weakly compact multiplication operators on L(Lp), 1 < p < ∞, is
given. This answers a question raised by Saksman and Tylli in 1992. The classification involves the
concept of `p-strictly singular operators, and we also investigate the structure of general `p-strictly
singular operators on Lp . The main result is that if an operator T on Lp , 1 < p < 2, is `p-strictly
singular and T|X is an isomorphism for some subspace X of Lp , then X embeds into Lr for all
r < 2, but X need not be isomorphic to a Hilbert space.

It is also shown that if T is convolution by a biased coin on Lp of the Cantor group, 1 ≤ p < 2,
and T|X is an isomorphism for some reflexive subspace X of Lp , then X is isomorphic to a Hilbert
space. The case p = 1 answers a question asked by Rosenthal in 1976.

Keywords. Elementary operators, multiplication operators, strictly singular operators, Lp spaces,
biased coin

1. Introduction

Given (always bounded, linear) operators A, B on a Banach space X, define LA, RB
on L(X) (the space of bounded linear operators on X) by LAT = AT , RBT = T B.
Operators of the form LARB on L(X) are called multiplication operators. The beginning
point of this paper is a problem raised in 1992 by E. Saksman and H.-O. Tylli [ST1] (see
also [ST2, Problem 2.8]):

Characterize the multiplication operators on L(Lp), 1 < p 6= 2 < ∞, which are
weakly compact.

HereLp isLp(0, 1) or, equivalently,Lp(µ) for any purely non-atomic separable prob-
ability µ.

In Theorem 1 we answer the Saksman–Tylli question. The characterization is rather
simple but gives rise to questions about operators on Lp, some of which were asked by
Tylli. First we set some terminology. Given an operator T : X → Y and a Banach
space Z, say that T is Z-strictly singular provided there is no subspace Z0 of X which
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is isomorphic to Z for which T|Z0 is an isomorphism. An operator S : Z → W factors
through an operator T : X → Y provided there are operators A : Z → X and B :
Y → W so that S = BTA. If S factors through the identity operator on X, we say that S
factors through X.

If T is an operator on Lp, 1 < p <∞, then T is `p-strictly singular (respectively, `2-
strictly singular) if and only if I`p (respectively, I`2 ) does not factor through T . This is true
because every subspace of Lp which is isomorphic to `p (respectively, `2) has a subspace
which is still isomorphic to `p (respectively, `2) and is complemented in Lp. Actually, a
stronger fact is true: if {xn}∞n=1 is a sequence in Lp which is equivalent to the unit vector
basis for either `p or `2, then {xn}∞n=1 has a subsequence which spans a complemented
subspace of Lp. For p > 2, an even stronger theorem was proved by Kadec–Pełczyński
[KP]. When 1 < p < 2 and {xn}∞n=1 is a sequence in Lp which is equivalent to the unit
vector basis for `2, one takes {yn}∞n=1 in Lp′ (where p′ = p/(p − 1) is the conjugate
index to p) which are uniformly bounded and biorthogonal to {xn}∞n=1. By passing to a
subsequence which is weakly convergent and subtracting the limit from each yn, one may
assume that yn → 0 weakly and hence, by the Kadec–Pełczyński dichotomy [KP], has a
subsequence that is equivalent to the unit vector basis of `2 (since it is clearly impossible
that {yn}∞n=1 has a subsequence equivalent to the unit vector basis of `p′ ). This implies
that the corresponding subsequence of {xn}∞n=1 spans a complemented subspace of Lp.
(Pełczyński showed this argument, or something similar, to one of the authors many years
ago, and a closely related result was proved in [PR].) Finally, when 1 < p < 2 and
{xn}

∞

n=1 is a sequence in Lp which is equivalent to the unit vector basis for `p, see the
comments after the statement of Lemma 1.

Notice that the comments in the preceding paragraph imply that an operator on Lp,
1 < p < ∞, is `p-strictly singular (respectively, `2-strictly singular) if and only if T ∗

is `p′ -strictly singular (respectively, `2-strictly singular). Better known is that an operator
on Lp, 1 < p < ∞, is strictly singular if it is both `p-strictly singular and `2-strictly
singular (and hence T is strictly singular if and only if T ∗ is strictly singular). For p > 2
this is immediate from [KP], and Lutz Weis [We] proved the case p < 2.

Although Saksman and Tylli did not know a complete characterization of the weakly
compact multiplication operators on L(Lp), they realized that a classification must in-
volve `p- and `2-strictly singular operators on Lp. This led Tylli to ask us about possible
classifications of the `p- and `2-strictly singular operators on Lp. The `2 case is known. It
is enough to consider the case 2 < p <∞. If T is an operator on Lp, 2 < p <∞, and T
is `2-strictly singular, then it is an easy consequence of the Kadec–Pełczyński dichotomy
that Ip,2T is compact, where Ip,r is the identity mapping from Lp into Lr . But then by
[Jo], T factors through `p. Tylli then asked whether the following conjecture is true:

Tylli Conjecture. If T is an `p-strictly singular operator on Lp, 1 < p < ∞, then T is
in the closure (in the operator norm) of the operators on Lp that factor through `2. (It is
clear that the closure is needed because not all compact operators on Lp, p 6= 2, factor
through `2.)

We then formulated a weaker conjecture:
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Weak Tylli Conjecture. If T is an `p-strictly singular operator on Lp, 1 < p <∞, and
J : Lp → `∞ is an isometric embedding, then JT is in the closure of the operators from
Lp into `∞ that factor through `2.

It is of course evident that an operator on Lp, p 6= 2, that satisfies the conclusion of
the Weak Tylli Conjecture must be `p-strictly singular. There is a slight subtlety in these
conjectures: while the Tylli Conjecture for p is equivalent to the Tylli Conjecture for p′,
it is not at all clear and is even false that the Weak Tylli Conjecture for p is equivalent to
the Weak Tylli Conjecture for p′. In fact, we observe in Lemma 2 (it is simple) that for
p > 2 the Weak Tylli Conjecture is true, while the example in Section 4 shows that the
Tylli Conjecture is false for all p 6= 2 and the Weak Tylli Conjecture is false for p < 2.

There are however some interesting consequences of the Weak Tylli Conjecture that
are true when p < 2. In Theorem 4 we prove that if T is an `p-strictly singular operator
on Lp, 1 < p < 2, then T is `r -strictly singular for all p < r < 2. In view of theorems
of Aldous [Al] (see also [KM]) and Rosenthal [Ro3], this proves that if such a T is an
isomorphism on a subspace Z of Lp, then Z embeds into Lr for all r < 2. The Weak Tylli
Conjecture would imply that Z is isomorphic to `2, but the example in Section 4 shows
that this need not be true. When we discovered Theorem 4, we thought its proof bizarre
and assumed that a more straightforward argument would yield a stronger theorem. The
example suggests that in fact the proof may be “natural”.

In Section 5 we discuss convolution by a biased coin on Lp of the Cantor group,
1 ≤ p < 2. We prove that if T|X is an isomorphism for some reflexive subspace X of
Lp, 1 ≤ p < 2, then X is isomorphic to a Hilbert space. This answers an old question of
H. P. Rosenthal [Ro4].

The standard Banach space theory terminology and background we use can be found
in [LT].

2. Weakly compact multiplication operators on L(Lp)

We use freely the result [ST2, Proposition 2.5] that if A, B are in L(X) where X is a
reflexive Banach space with the approximation property, then the multiplication operator
LARB on L(X) is weakly compact if and only if for every T in L(X), the operator
ATB is compact. For completeness, in Section 6 we give another proof of this under
the weaker assumption that X is reflexive and has the compact approximation property.
This theorem implies that for such an X, LARB is weakly compact on L(X) if and only
if LB∗RA∗ is a weakly compact operator on L(X∗). Consequently, to classify weakly
compact multiplication operators on L(Lp), 1 < p < ∞, it is enough to consider the
case p > 2. For p ≤ r we denote the identity operator from `p into `r by ip,r . It is
immediate from [KP] that an operator T on Lp, 2 < p < ∞, is compact if and only if
i2,p does not factor through T .

Theorem 1. Let 2 < p < ∞ and let A, B be bounded linear operators on Lp. Then
the multiplication operator LARB on L(Lp) is weakly compact if and only if one of the
following (mutually exclusive) conditions hold:
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(a) i2,p does not factor through A (i.e., A is compact).
(b) i2,p factors through A but ip,p does not factor through A (i.e., A is `p-strictly singu-

lar) and i2,2 does not factor through B (i.e., B is `2-strictly singular).
(c) ip,p factors through A but i2,p does not factor through B (i.e., B is compact).

Proof. The proof is a straightforward application of the Kadec–Pełczyński dichotomy
principle [KP]: if {xn}∞n=1 is a semi-normalized (i.e., bounded and bounded away from
zero) weakly null sequence in Lp, 2 < p < ∞, then there is a subsequence which is
equivalent to either the unit vector basis of `p or of `2 and spans a complemented subspace
of Lp. Notice that this immediately implies the “i.e.’s” in the statement of the theorem so
that (a) and (c) imply that LARB is weakly compact. Now assume that (b) holds and let
T be in L(LP ). If ATB is not compact, then there is a normalized weakly null sequence
{xn}

∞

n=1 in Lp so that ATBxn is bounded away from zero. By passing to a subsequence,
we may assume that {xn}∞n=1 is equivalent to either the unit vector basis of `p or of `2.
If {xn}∞n=1 is equivalent to the unit vector basis of `p, then since T Bxn is bounded away
from zero, we can assume by passing to another subsequence that also T Bxn is equivalent
to the unit vector basis of `p, and similarly for ATBxn, which contradicts the assumption
that A is `p-strictly singular. On the other hand, if {xn}∞n=1 is equivalent to the unit vector
basis of `2, then since B is `2-strictly singular we can assume by passing to a subsequence
that Bxn is equivalent to the unit vector basis of `p and continue as in the previous case
to get a contradiction.

Now suppose that (a), (b), and (c) are all false. If ip,p factors throughA and i2,p factors
through B then there is sequence {xn}∞n=1 equivalent to the unit vector basis of `2 or of `p
so that Bxn is equivalent to the unit vector basis of `2 or of `p (of course, only three of the
four cases are possible) and Bxn spans a complemented subspace of Lp. Moreover, there
is a sequence {yn}∞n=1 in Lp so that both yn and Ayn are equivalent to the unit vector basis
of `p. Since Bxn spans a complemented subspace of Lp, the mapping Bxn 7→ yn extends
to a bounded linear operator T on Lp and ATB is not compact. Finally, suppose that i2,p
factors through A but ip,p does not factor through A and i2,2 factors through B. Then
there is a sequence {xn}∞n=1 so that xn and Bxn are both equivalent to the unit vector basis
of `2 and Bxn spans a complemented subspace of Lp. There is also a sequence {yn}∞n=1
equivalent to the unit vector basis of `2 so that Ayn is equivalent to the unit vector basis
of `2 or of `p. The mapping Bxn 7→ yn extends to a bounded linear operator T on Lp
and ATB is not compact. ut

It is perhaps worthwhile to restate Theorem 1 in a way that the cases where LARB is
weakly compact are not mutually exclusive.

Theorem 2. Let 2 < p < ∞ and let A, B be bounded linear operators on Lp. Then
the multiplication operator LARB on L(Lp) is weakly compact if and only if one of the
following conditions hold:

(a) A is compact.
(b) A is `p-strictly singular and B is `2-strictly singular.
(c) B is compact.
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3. `p-strictly singular operators on Lp

We recall the well known

Lemma 1. Let W be a bounded convex symmetric subset of Lp, 1 ≤ p 6= 2 < ∞. The
following are equivalent:

(1) No sequence in W equivalent to the unit vector basis for `p spans a complemented
subspace of Lp.

(2) For every C there exists n so that no length n sequence in W is C-equivalent to the
unit vector basis of `np.

(3) For each ε > 0 there is Mε so that W ⊂ εBLp +MεBL∞ .
(4) |W |p is uniformly integrable, i.e., limt↓0 supx∈W supµ(E)<t ‖1Ex‖p = 0.

When p = 1, the assumptions that W is convex and symmetric are not needed, and the
conditions in Lemma 1 are equivalent to the non-weak-compactness of the weak closure
of W . This case is essentially proved in [KP] and proofs can also be found in books; see,
e.g., [Wo, Theorem 3.C.12]. (Condition (3) does not appear in [Wo], but it is easy to check
the equivalence of (3) and (4). Also, in the proof in [Wo, Theorem 3.C.12] that not (4)
implies not (1), Wojtaszczyk only constructs a basic sequence in W that is equivalent to
the unit vector basis for `1; however, it is clear that the constructed basic sequence spans
a complemented subspace.)

For p > 2, Lemma 1 and stronger versions of condition (1) can be deduced from
[KP]. For 1 < p < 2, one needs to modify slightly the proof in [Wo] for the case p = 1.
The only essential modification comes in the proof that not (4) implies not (1), and this
is where it is needed that W is convex and symmetric. Just as in [Wo], one shows that
not (4) implies that there is a sequence {xn}∞n=1 in W and a sequence {En}∞n=1 of disjoint
measurable sets so that inf ‖1Enxn‖p > 0. By passing to a subsequence, we can assume
that {xn}∞n=1 converges weakly to, say, x. Suppose first that x = 0. Then by passing to
a further subsequence, we may assume that {xn}∞n=1 is a small perturbation of a block
basis of the Haar basis for Lp and hence is an unconditionally basic sequence. Since
Lp has type p, this implies that there is a constant C so that for all sequences {an}∞n=1
of scalars, ‖

∑
anxn‖p ≤ C(

∑
|an|

p)1/p. Let P be the norm one projection from Lp
onto the closed linear span Y of the disjoint sequence {1Enxn}∞n=1. Then Pxn is weakly
null in a space isometric to `p, and ‖Pxn‖p is bounded away from zero, so there is a
subsequence {Pxn(k)}∞k=1 which is equivalent to the unit vector basis for `p and whose
closed span is the range of a projection Q from Y . The projection QP from Lp onto the
the closed span of {Pxn(k)}∞k=1 maps xn(k) to Pxn(k), and because of the upper p estimate
on {xn(k)}∞k=1, maps the closed span of {xn(k)}∞k=1 isomorphically onto the closed span of
{Pxn(k)}

∞

k=1. This implies that {xn(k)}∞k=1 is equivalent to the unit vector basis for `p and
spans a complemented subspace. Suppose now that the weak limit x of {xn}∞n=1 is not
zero. Choose a subsequence {xn(k)}∞k=1 so that inf ‖1En(2k+1)(xn(2k)− xn(2k+1))‖p > 0 and
replace {xn}∞n=1 with {(xn(2k) − xn(2k+1))/2}∞k=1 in the argument above.

Notice that the argument outlined above gives that if {xn}∞n=1 is a sequence in Lp,
1 < p 6= 2 < ∞, which is equivalent to the unit vector basis of `p, then there is a
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subsequence {yn}∞n=1 whose closed linear span in Lp is complemented. This is how one
proves that the identity on `p factors through any operator on Lp which is not `p-strictly
singular.

The Weak Tylli Conjecture for p > 2 is an easy consequence of the following lemma.

Lemma 2. Let T be an operator from an L1 space V into Lp, 1 < p < 2, so that
W := T BV satisfies condition (1) in Lemma 1. Then for each ε > 0 there is an operator
S : V → L2 so that ‖T − I2,pS‖ < ε.

Proof. Let ε > 0. By condition (3) in Lemma 1, for each norm one vector x in V there
is a vector Ux in L2 with ‖Ux‖2 ≤ ‖Ux‖∞ ≤ Mε and ‖T x − Ux‖p ≤ ε. By the
definition of L1 space, we can write V as a directed union

⋃
α Eα of finite-dimensional

spaces that are uniformly isomorphic to `nα1 , nα = dimEα , and let (xαi )
nα
i=1 be norm

one vectors in Eα which are, say, λ-equivalent to the unit vector basis for `nα1 with λ
independent of α. Let Uα be the linear extension to Eα of the mapping xαi 7→ Uxαi ,
considered as an operator into L2. Then ‖T|Eα − I2,pUα‖ ≤ λε and ‖Uα‖ ≤ λMε.
A standard Lindenstrauss compactness argument produces an operator S : V → L2 so
that ‖S‖ ≤ λMε and ‖T −I2,pS‖ ≤ λε. Indeed, extend Uα to all of V by letting Uαx = 0
if x 6∈ Eα . The net Tα has a subnet Sβ so that for each x in V , Sβx converges weakly
in L2; call the limit Sx. It is easy to check that S has the properties claimed. ut

Theorem 3. Let T be an `p-strictly singular operator on Lp, 2 < p < ∞, and let J
be an isometric embedding of Lp into an injective Z. Then for each ε > 0 there is an
operator S : Lp → Z so that S factors through `2 and ‖JT − S‖ < ε.

Proof. Lemma 2 gives the conclusion when J is the adjoint of a quotient mapping from
`1 or L1 onto Lp′ . The general case then follows from the injectivity of Z. ut

The next proposition, when souped up via “abstract nonsense” and known results, gives
our main result about `p-strictly singular operators on Lp. Note that it shows that an `p-
strictly singular operator on Lp, 1 < p < 2, cannot be the identity on the span of a
sequence of r-stable independent random variables for any p < r < 2. We do not know
another way of proving even this special case of our main result.

Proposition 1. Let T be an `p-strictly singular operator on Lp, 1 < p < 2. If X is a
subspace of Lp and T|X = aIX with a 6= 0, then X embeds into Ls for all s < 2.

Proof. By making a change of density, we can by [JJ] assume that T is also a bounded
linear operator on L2, so assume, without loss of generality, that ‖T ‖p ∨ ‖T ‖2 = 1, so
that, in particular, a ≤ 1. Lemma 1 gives for each ε > 0 a constant Mε so that

T BLp ⊂ εBLp +MεBL2 . (1)

Indeed, otherwise condition (1) in Lemma 1 gives a bounded sequence {xn}∞n=1 in
Lp so that {T xn}∞n=1 is equivalent to the unit vector basis of `p. By passing to a subse-
quence of differences of {xn}∞n=1, we can assume, without loss of generality, that {xn}∞n=1
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is a small perturbation of a block basis of the Haar basis for Lp and hence is an un-
conditionally basic sequence. Since Lp has type p, the sequence {xn}∞n=1 has an upper
p estimate, which means that there is a constant C so that for all sequences {an}∞n=1 of
scalars, ‖

∑
anxn‖ ≤ C‖(

∑
|an|

p)1/p‖. Since {T xn}∞n=1 is equivalent to the unit vector
basis of `p, {xn}∞n=1 also has a lower p estimate and hence {xn}∞n=1 is equivalent to the
unit vector basis of `p. This contradicts the `p-strict singularity of T .

Iterating this we get, for every n and 0 < ε < 1/2,

anBX ⊂ T
nBLp ⊂ ε

nBLp + 2MεBL2

or, setting A := 1/a,
BX ⊂ A

nεnBLp + 2AnMεBL2 .

For f a unit vector inX write f = fn+gn with ‖fn‖2 ≤ 2AnMε and ‖gn‖p ≤ (Aε)n.
Then fn+1 − fn = gn − gn+1, and since evidently fn can be chosen to be of the form
(f ∨ −kn) ∧ kn (with appropriate interpretation when the set [fn = ±kn] has positive
measure), the choice of fn, gn can be made so that

‖fn+1 − fn‖2 ≤ ‖fn+1‖2 ≤ 2MεA
n+1, ‖gn − gn+1‖p ≤ ‖gn‖p ≤ (Aε)

n.

(Alternatively, to avoid thinking, just take any f = fn + gn so that ‖fn‖2 ≤ 2AnMε

and ‖gn‖p ≤ (Aε)n. Each left side of the two displayed inequalities is less than twice the
corresponding right side as long as Aε ≤ 1.)

For p < s < 2 write 1/s = θ/2+ (1− θ)/p. Then

‖fn+1 − fn‖s ≤ ‖fn+1 − fn‖
θ
2‖gn − gn+1‖

1−θ
p ≤ (2MεA)

θ (Aε1−θ )n,

which is summable if ε1−θ < 1/A. But ‖f − fn‖p → 0 so f = f1 +
∑
∞

n=1 fn+1 − fn
in Lp and hence also in Ls if ε1−θ < 1/A. So for some constant Cs we conclude for all
f ∈ X that ‖f ‖p ≤ ‖f ‖s ≤ Cs‖f ‖p. ut

We can now prove our main theorem. For background on ultrapowers of Banach spaces,
see [DJT, Chapter 8].

Theorem 4. Let T be an `p-strictly singular operator on Lp, 1 < p < 2. If X is a
subspace of Lp and T|X is an isomorphism, then X embeds into Lr for all r < 2.

Proof. In view of Rosenthal’s theorem [Ro3], it is enough to prove that X has type s
for all s < 2. By the Krivine–Maurey–Pisier theorem, [Kr] and [MP] (or, alternatively,
Aldous’ theorem, [Al] or [KM]), we only need to check that for p < s < 2, X does
not contain almost isometric copies of `ns for all n. (To apply the Krivine–Maurey–Pisier
theorem we use that the second condition in Lemma 1, applied to the unit ball of X,
implies that X has type s for some p < s ≤ 2.) So suppose that for some p < s < 2,
X contains almost isometric copies of `ns for all n. By applying Krivine’s theorem [Kr]
we get for each n a sequence (f ni )

n
i=1 of unit vectors in X which is 1 + ε-equivalent to

the unit vector basis for `ns and, for some constant C (which we can take independently
of n), the sequence (CTf ni )

n
i=1 is also 1+ ε-equivalent to the unit vector basis for `ns . By
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replacing T by CT , we might as well assume that C = 1. Now consider an ultrapower
TU , where U is a free ultrafilter on the natural numbers. The domain and codomain of TU
is the (abstract) Lp space (Lp)U , and TU is defined by TU (f1, f2, . . . ) = (Tf1, Tf2, . . . )

for any (equivalence class of a) bounded sequence (f1, f2, . . . ). It is evident that TU is an
isometry on the ultraproduct of span (f ni )

n
i=1, n = 1, 2, . . . , and hence TU is an isometry

on a subspace of (Lp)U which is isometric to `s . Since condition (2) in Lemma 1 is
obviously preserved when taking an ultrapower of a set, we see that TU is `p-strictly
singular. Finally, by restricting TU to a suitable subspace, we get an `p-strictly singular
operator S on Lp and a subspace Y of Lp so that Y is isometric to `s and S|Y is an
isometry. By restricting the domain of S, we can assume that Y has full support and the
functions in Y generate the Borel sets. It then follows from the Plotkin–Rudin theorem
[Pl], [Ru] (see [KK, Theorem 1]) that S|Y extends to an isometry W from Lp into Lp.
Since any isometric copy of Lp in Lp is norm one complemented (see [La, §17]), there
is a norm one operator V : Lp → Lp so that VW = ILp . Then V S|Y = IY and V S is
`p-strictly singular, which contradicts Proposition 1. ut

Remark 1. The `1-strictly singular operators on L1 also form an interesting class. They
are the weakly compact operators onL1. In terms of factorization, they are just the closure
in the operator norm of the integral operators on L1 (see, e.g., the proof of Lemma 2).

4. The example

Rosenthal [Ro1] proved that if {xn}∞n=1 is a sequence of three-valued, symmetric, inde-
pendent random variables, then for all 1 < p < ∞, the closed span in Lp of {xn}∞n=1 is
complemented by means of the orthogonal projection P , and ‖P ‖p depends only on p,
not on the specific sequence {xn}∞n=1. Moreover, he showed that if p > 2, then for any
sequence {xn}∞n=1 of symmetric, independent random variables in Lp, ‖

∑
xn‖p is equiv-

alent (with constant depending only on p) to (
∑
‖xn‖

p
p )

1/p
∨ (

∑
‖xn‖

2
2)

1/2. Thus if
{xn}

∞

n=1 is normalized in Lp, p > 2, and wn := ‖xn‖2, then ‖
∑
anxn‖p is equivalent to

‖{an}
∞

n=1‖p,w := (
∑
|an|

p)1/p ∨ (
∑
|an|

2w2
n)

1/2. The completion of the finitely nonzero
sequences of scalars under the norm ‖·‖p,w is calledXp,w. It follows that ifw = {wn}∞n=1
is any sequence of numbers in [0, 1]. Then Xp,w is isomorphic to a complemented sub-
space of Lp. Suppose now that w = {wn}∞n=1 and v = {vn}∞n=1 are two such sequences
of weights and vn ≥ wn. Then the diagonal operator D from Xp,w to Xp,v that sends the
nth unit vector basis vector en to (wn/vn)en is contractive, and it is more or less obvious
that D is `p-strictly singular if wn/vn → 0 as n→∞. Since Xp,w and Xp,v are isomor-
phic to complemented subspaces of Lp, the adjoint operator D∗ is `p′ -strictly singular
and (identifying X∗p,w and X∗p,v with subspaces of Lp′ ) extends to an `p′ -strictly singular
operator on Lp′ . Our goal in this section is to produce weights w and v so that D∗ is an
isomorphism on a subspace of X∗p,v which is not isomorphic to a Hilbert space.

For all 0 < r < 2 there is a positive constant cr such that

|t |r = cr

∫
∞

0

1− cos tx
xr+1 dx
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for all t ∈ R. It follows that for any closed interval [a, b] ⊂ (0,∞) and for all ε > 0
there are 0 < x1 < · · · < xn+1 such that max1≤j≤n

∣∣ xj+1−xj

xr+1
j

∣∣ ≤ ε and

∣∣∣∣cr n∑
j=1

xj+1 − xj

xr+1
j

(1− cos txj )− |t |r
∣∣∣∣ < ε (2)

for all t with |t | ∈ [a, b].
Let 0 < q < r < 2 and define vj and aj , j = 1, . . . , n, by

v
2q/(2−q)
j = cr

xj+1 − xj

xr+1
j

,
aj

v
2/(2−q)
j

= xj .

Let Yj , j = 1, . . . , n, be independent, symmetric, three-valued random variables such
that |Yj | = v

−2/(2−q)
j 1Bj with Prob(Bj ) = v

2q/(2−q)
j , so that in particular ‖Yj‖q = 1 and

vj = ‖Yj‖q/‖Yj‖2. Then the characteristic function of Yj is

ϕYj (t) = 1−v2q/(2−q)
j +v

2q/(2−q)
j cos(tv−2/(2−q)

j ) = 1−v2q/(2−q)
j (1−cos(tv−2/(2−q)

j ))

and

ϕ∑ ajYj (t) =

n∏
j=1

(1− v2q/(2−q)
j (1− cos(tajv

−2/(2−q)
j )))

=

n∏
j=1

(
1− cr

xj+1 − xj

xr+1
j

(1− cos(txj ))
)
. (3)

To evaluate this product we use the estimates on xj+1−xj

xr+1
j

to deduce that, for each j

∣∣∣∣log
(

1− cr
xj+1 − xj

xr+1
j

(1− cos(txj ))
)
+ cr

xj+1 − xj

xr+1
j

(1− cos(txj ))
∣∣∣∣

≤ Cεc2
r

xj+1 − xj

xr+1
j

(1− cos(txj ))

for some absolute C <∞. Then, by (2),∣∣∣∣ n∑
j=1

log
(

1− cr
xj+1 − xj

xr+1
j

(1− cos(txj ))
)
+ cr

n∑
j=1

xj+1 − xj

xr+1
j

(1− cos(txj ))
∣∣∣∣

≤ Cεcr(ε + b
r).

Using (2) again we get∣∣∣∣ n∑
j=1

log
(

1− cr
xj+1 − xj

xr+1
j

(1− cos(txj ))
)
+ |t |r

∣∣∣∣ ≤ (C + 1)ε(ε + br)
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(assuming as we may that b ≥ 1), and from (3) we get

ϕ∑ ajYj (t) = (1+O(ε)) exp(−|t |r)

for all |t | ∈ [a, b], where the function hiding under the O notation depends on r and b
but on nothing else. It follows that, given any η > 0, one can find a, b and ε such that for
the corresponding {aj , Yj } there is a symmetric r-stable Y (with characteristic function
e−|t |

r
) satisfying ∥∥∥Y − n∑

j=1

ajYj

∥∥∥
q
≤ η.

This follows from classical translation of various convergence notions; see e.g. [Ro2,
p. 154].

Let now 0 < δ < 1. Put wj = δvj , j = 1, . . . , n, and let Zj , j = 1, . . . , n, be
independent, symmetric, three-valued random variables such that |Zj | = w

−2/(2−q)
j 1Cj

with Prob(Cj ) = w
2q/(2−q)
j , so that in particular ‖Zj‖q = 1 and wj = ‖Zj‖q/‖Zj‖2. In

a similar manner to the argument above we see that

ϕ∑ δajZj (t) =

n∏
j=1

(1− w2q/(2−q)
j (1− cos(tδajw

−2/(2−q)
j )))

=

n∏
j=1

(1− δ2q/(2−q)v
2q/(2−q)
j (1− cos(tδ−q/(2−q)ajv

−2/(2−q)
j )))

= (1+O(ε)) exp(−δq(2−r)/(2−q)|t |r)

for all |t | ∈ [δq/(2−q)a, δq/(2−q)b], where the O now depends also on δ.
Assuming δq(2−r)/(2−q) > 1/2 and for a choice of a, b and ε depending on δ, r, q

and η we find that there is a symmetric r-stable random variable Z (with characteristic
function e−δ

q(2−r)/(2−q)
|t |r ) such that∥∥∥Z − n∑

j=1

δajZj

∥∥∥
q
≤ η.

Note that the ratio between theLq norms of Y andZ is bounded away from zero and infin-
ity by universal constants and each of these norms is also universally bounded away from
zero. Consequently, if ε is small enough the ratio between the Lq norms of

∑n
j=1 ajYj

and
∑n
j=1 δajZj is bounded away from zero and infinity by universal constants.

Let now δi be any sequence decreasing to zero and ri any sequence such that q<ri ↑2
and δq(2−ri )/(2−q)i > 1/2. Then for any sequence εi ↓ 0 we can find two sequences of
symmetric, independent, three-valued random variables {Yi} and {Wi}, all normalized
in Lq , with the following additional properties:

• Put vj = ‖Yj‖q/‖Yj‖2 and wj = ‖Zj‖q/‖Zj‖2. Then there are disjoint finite subsets
of the integers σi , i = 1, 2, . . . , such that wj = δivj for j ∈ σi .
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• There are independent random variables {Ȳi} and {Z̄i} with Ȳi and Z̄i ri-stable with
bounded, from zero and infinity, ratio of Lq norms and there are coefficients {aj } such
that ∥∥Ȳi −∑

j∈σi

ajYj

∥∥∥
q
< εi and

∥∥∥Z̄i −∑
j∈σi

δiajZj

∥∥∥
q
< εi .

From [Ro1] we know that the spans of {Yj } and {Zj } are complemented in Lq , 1 <
q < 2, and the dual spaces are naturally isomorphic to Xp,{vj } and Xp,{wj } respectively;
both the isomorphism constants and the complementation constants depend only on q.
Here p = q/(q − 1) and

‖{αj }‖Xp,{uj }
= max

{(∑
|αj |

p
)1/p

,
(∑

u2
j α

2
j

)1/2}
.

Under this duality the adjoint D∗ to the operator D that sends Yj to δiZj for j ∈ σi is
formally the same diagonal operator between Xp,{wi } and Xp,{vi }. The relation wj = δivj
for j ∈ σi easily implies that this is a bounded operator; δi → 0 implies that this op-
erator is `q -strictly singular. If εi → 0 fast enough, D∗ preserves a copy of span{Ȳi}.
Finally, if ri tends to 2 not too fast this span is not isomorphic to a Hilbert space. In-
deed, let 1 ≤ sj ↑ 2 be arbitrary and let {nj }∞j=1 be a sequence of positive integers with

n
1/sj−1/2
j ≥ j , j = 1, 2, . . . , say. For 1 ≤ k ≤ nj , put rn1+···+nj−1+k = sj . Then the span

of {Yi}
n1+···+nj
i=n1+···+nj−1+1 is isomorphic, with constant independent of j , to `

nj
sj and this last

space is of distance at least j from a Euclidean space.
It follows that if J : Lq → `∞ is an isometric embedding, then JD∗ cannot be

arbitrarily approximated by an operator which factors through a Hilbert space, and hence
the Weak Tylli Conjecture is false in the range 1 < q < 2.

5. Convolution by a biased coin

In this section we regard Lp as Lp(1), where 1 = {−1, 1}N is the Cantor group and the
measure is the Haar measure µ on1; i.e., µ =

∏
∞

n=1 µn, where µn(−1) = µn(1) = 1/2.
For 0 < ε < 1, let νε be the ε-biased coin tossing measure, i.e., νε =

∏
∞

n=1 νε,n, where
νε,n(1) = (1+ ε)/2 and νε,n(−1) = (1− ε)/2. Let Tε be convolution by νε, so that for a
µ-integrable function f on1, (Tεf )(x) = (f ∗ νε)(x) =

∫
1
f (xy) dνε(y). The operator

Tε is a contraction on Lp for all 1 ≤ p ≤ ∞. Let us recall how Tε acts on the characters
on 1. For t = {tn}∞n=1 ∈ 1, let rn(t) = tn. The characters on 1 are finite products of
these Rademacher functions rn (where the void product is the constant one function). For
A a finite subset of N, setwA =

∏
n∈A rn and letWn be the linear span of {wA : |A| = n}.

Then TεwA = ε|A|wA.
We are interested in studying Tε on Lp, 1 ≤ p < 2. The background we mention

below is all contained in Bonami’s paper [Bo] (or see [Ro4]). On Lp, 1 < p < 2, Tε is `p-
strictly singular; in fact, Tε even maps Lp into Lr for some r = r(p, ε) > p. Indeed, by
interpolation it is sufficient to check that Tε maps Ls into L2 for some s = s(ε) < 2. But
there is a constant Cs which tends to 1 as s ↑ 2 so that for all f ∈ Wn, ‖f ‖2 ≤ Cns ‖f ‖s
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and the orthogonal projection Pn onto (the closure of) Wn satisfies ‖Pn‖p ≤ Cns . From
this it is easy to check that if εC2

s < 1, then Tε mapsLs intoL2. We remark in passing that
Bonami [Bo] found for each p (including p ≥ 2) and ε the largest value of r = r(p, ε)
such that Tε maps Lp into Lr .

Thus Theorem 4 shows that if X is a subspace of Lp, 1 < p < 2, and Tε (considered
as an operator from Lp to Lp) is an isomorphism on X, then X embeds into Ls for all
s < 2. Since, as we mentioned above, Tε maps Ls into L2 for some s < 2, it then follows
from an argument in [Ro4] thatX must be isomorphic to a Hilbert space. (Actually, as we
show after the proof, Lemma 3 is that we can prove Theorem 5 without using Theorem 4.)
Since [Ro4] is not generally available, we repeat Rosenthal’s argument in Lemma 3 below.

Now Tε is not `1-strictly singular onL1. Nevertheless, we still find that ifX is a reflex-
ive subspace of L1, and Tε (considered as an operator from L1 to L1) is an isomorphism
on X, then X is isomorphic to a Hilbert space. Indeed, Rosenthal showed (see Lemma 3)
that then there is another subspace X0 of L1 which is isomorphic to X so that X0 is con-
tained in Lp for some 1 < p < 2, the Lp and L1 norms are equivalent on X0, and Tε is
an isomorphism on X0. This implies that as an operator on Lp, Tε is an isomorphism on
X0 and hence X0 is isomorphic to a Hilbert space. (To apply Lemma 3, use the fact [Ro3]
that if X is a relexive subspace of L1, then X embeds into Lp for some 1 < p < 2.)

We summarize this discussion in the first sentence of Theorem 5. The case p = 1
solves Problem B from Rosenthal’s 1976 paper [Ro4].

Theorem 5. Let 1 ≤ p < 2, let 0 < ε < 1, and let Tε be considered as an operator
on Lp. IfX is a reflexive subspace of Lp and the restriction of Tε toX is an isomorphism,
then X is isomorphic to a Hilbert space. Moreover, if p > 1, then X is complemented
in Lp.

We now prove Rosenthal’s lemma [Ro4, proof of Theorem 5] and defer the proof of the
“moreover” statement in Theorem 5 until after the proof of the lemma.

Lemma 3. Suppose that T is an operator on Lp, 1 ≤ p < r < s < 2, X is a subspace
of Lp which is isomorphic to a subspace of Ls , and T|X is an isomorphism. Then there is
another subspace X0 of Lp which is isomorphic to X so that X0 is contained in Lr , the
Lr and Lp norms are equivalent on X0, and T is an isomorphism on X0.

Proof. We want to find a measurable set E so that

(1) X0 := {1Ex : x ∈ X} is isomorphic to X,
(2) X0 ⊂ Lr ,
(3) T|X0 is an isomorphism.

(We did not say that ‖ ·‖p and ‖ ·‖r are equivalent onX0 since that follows formally from
the closed graph theorem. The isomorphism X → X0 guaranteed by (a) is of course the
mapping x 7→ 1Ex.)

Assume, without loss of generality, that ‖T ‖ = 1. Take a > 0 so that ‖T x‖p ≥ a‖x‖p
for all x in X. Since `p does not embed into Ls we see from (4) in Lemma 1 that there is
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η > 0 so that if E has measure larger than 1 − η, then ‖1∼Ex‖p ≤ (a/2)‖x‖p for all x
in X. Obviously (1) and (3) are satisfied for any such E. It is proved in [Ro3] that there is
a strictly positive g with ‖g‖1 = 1 so that x/g is in Lr for all x in X. Now simply choose
t <∞ so that E := [g < t] has measure at least 1− η; then E satisfies (1)–(3). ut

Next we remark how to avoid using Theorem 4 in proving Theorem 5. Suppose that Tε is
an isomorphism on a reflexive subspace X of Lp, 1 ≤ p < 2. Let s be the supremum of
those r ≤ 2 such thatX is isomorphic to a subspace of Lr , so 1 < s ≤ 2. It is sufficient to
show that s = 2. But if s < 2, the interpolation formula implies that if r < s is sufficiently
close to s, then Tε maps Lr into Lt for some t > s and hence, by Lemma 3, X embeds
into Lt .

Finally, we prove the “moreover” statement in Theorem 5. We now know that X is
isomorphic to a Hilbert space. In the proof of Lemma 3, instead of using Rosenthal’s result
from [Ro3], use Grothendieck’s theorem [DJT, Theorem 3.5], which implies that there is
a strictly positive g with ‖g‖1 = 1 so that x/g is inL2 for all x inX. ChoosingE the same
way as in the proof of Lemma 3 with T := Tε, we see that (1)–(3) are true with r = 2.
Now the L2 and Lp norms are equivalent on both X0 and on TεX0. But it is clear that the
only way that Tε can be an isomorphism on a subspace X0 of L2 is for the orthogonal
projection Pn onto the closed span of Wk , 0 ≤ k ≤ n, to be an isomorphism on X0 for
some finite n. But then also in the Lp norm the restriction of Pn to X0 is an isomorphism,
because the Lp norm and the L2 norm are equivalent on the span of Wk , 0 ≤ k ≤ n, and
Pn is bounded on Lp (since p > 1). It follows that the operator S := Pn ◦ 1E on Lp maps
X0 isomorphically onto a complemented subspace of Lp, which implies that X0 is also
complemented in Lp.

Here is the problem that started us thinking about `p-strictly singular operators:

Problem 1. Let 1 < p < 2 and 0 < ε < 1. On Lp(1), does Tε satisfy the conclusion of
the Tylli Conjecture?

After we submitted this paper, G. Pisier [Pi] answered Problem 1 in the affirmative.
Although the example in Section 4 shows that the Tylli Conjecture is false, something

close to it may be true:

Problem 2. Let 1 < p < r < 2. Is every `p-strictly singular operator on Lp in the
closure of the operators on Lp that factor through Lr?

6. Appendix

In this appendix we prove a theorem that is essentially due to Saksman and Tylli. The
only novelty is that we assume the compact approximation property rather than the ap-
proximation property.

Theorem 6. Let X be a reflexive Banach space and let A, B be in L(X). Then

(a) If ATB is a compact operator on X for every T in L(X), then LARB is a weakly
compact operator on L(X).
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(b) If X has the compact approximation property and LARB is a weakly compact opera-
tor on L(X), then ATB is a compact operator on X for every T in L(X).

Proof. To prove (a), recall [Kal] that for a reflexive spaceX, on bounded subsets ofK(X)
the weak topology is the same as the weak operator topology (the operator T 7→ fT ∈

C((BX,weak) × (BX∗ ,weak)), where fT (x, x∗) := 〈x∗, T x〉, is an isometric isomor-
phism from K(X) into a space of continuous functions on a compact Hausdorff space).
Now if (Tα) is a bounded net inL(X), then sinceX is reflexive there is a subnet (which we
still denote by (Tα)) which converges in the weak operator topology to, say, T ∈ L(X).
Then ATαB converges in the the weak operator topology to ATB. But since all these op-
erators are in K(X), ATαB converges weakly to ATB by Kalton’s theorem. This shows
that LARB is a weakly compact operator on L(X).

To prove (b), suppose that we have a T ∈ L(X) with ATB not compact. Then there
is a weakly null normalized sequence {xn}∞n=1 in X and δ > 0 so that for all n, ‖ATBxn‖
> δ. Since a reflexive space with the compact approximation property also has the com-
pact metric approximation property [CJ], there are Cn ∈ K(X) with ‖Cn‖ < 1 + 1/n
and CnBxi = Bxi for i ≤ n. Since the Cn are compact, for each n, ‖CnBxm‖ → 0 as
m→ ∞. Thus A(T Cn)Bxi = ATBxi for i ≤ n and ‖A(T Cn)Bxm‖ → 0 as m→ ∞.
This implies that no convex combination of {A(T Cn)B}∞n=1 can converge in the norm of
L(X) and hence {A(T Cn)B}∞n=1 has no weakly convergent subsequence. This contradicts
the weak compactness of LARB and completes the proof. ut

Acknowledgments. Research of W. B. Johnson was supported in part by NSF DMS-0503688 and
U.S.-Israel Binational Science Foundation.

Research of G. Schechtman was supported in part by Israel Science Foundation and U.S.-
Israel Binational Science Foundation; he was also a participant of NSF Workshop in Analysis and
Probability, Texas A&M University.

References

[Al] Aldous, D. J.: Subspaces of L1, via random measures. Trans. Amer. Math. Soc. 267, 445–
463 (1981) Zbl 0474.46007 MR 0626483

[Bo] Bonami, A.: Étude des coefficients de Fourier des fonctions de Lp(G). Ann. Inst. Fourier
(Grenoble) 20, no. 2, 335–402 (1970) Zbl 0195.42501 MR 0283496

[CJ] Cho, C.-M., Johnson, W. B.: A characterization of subspaces X of lp for which K(X)
is an M-ideal in L(X). Proc. Amer. Math. Soc. 93, 466–470 (1985) Zbl 0537.47010
MR 0774004

[DJT] Diestel, J., Jarchow, H., Tonge, A.: Absolutely Summing Operators. Cambridge Stud. Adv.
Math. 43, Cambridge Univ. Press, Cambridge (1995) Zbl 0855.47016 MR 1342297

[Jo] Johnson, W. B.: Operators into Lp which factor through `p . J. London Math. Soc. (2) 14,
333–339 (1976) Zbl 0413.47025 MR 0425667

[JJ] Johnson, W. B., Jones, L.: Every Lp operator is an L2 operator. Proc. Amer. Math. Soc. 72,
309–312 (1978) Zbl 0391.46026 MR 0507330
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