William B. Johnson • Gideon Schechtman

Multiplication operators on $L\left(L_{p}\right)$ and ℓ_{p}-strictly singular operators

Received July 30, 2007 and in revised form September 21, 2007

Abstract

A classification of weakly compact multiplication operators on $L\left(L_{p}\right), 1<p<\infty$, is given. This answers a question raised by Saksman and Tylli in 1992. The classification involves the concept of ℓ_{p}-strictly singular operators, and we also investigate the structure of general ℓ_{p}-strictly singular operators on L_{p}. The main result is that if an operator T on $L_{p}, 1<p<2$, is ℓ_{p}-strictly singular and $T_{\mid X}$ is an isomorphism for some subspace X of L_{p}, then X embeds into L_{r} for all $r<2$, but X need not be isomorphic to a Hilbert space.

It is also shown that if T is convolution by a biased coin on L_{p} of the Cantor group, $1 \leq p<2$, and $T_{\mid X}$ is an isomorphism for some reflexive subspace X of L_{p}, then X is isomorphic to a Hilbert space. The case $p=1$ answers a question asked by Rosenthal in 1976.

Keywords. Elementary operators, multiplication operators, strictly singular operators, L_{p} spaces, biased coin

1. Introduction

Given (always bounded, linear) operators A, B on a Banach space X, define L_{A}, R_{B} on $L(X)$ (the space of bounded linear operators on X) by $L_{A} T=A T, R_{B} T=T B$. Operators of the form $L_{A} R_{B}$ on $L(X)$ are called multiplication operators. The beginning point of this paper is a problem raised in 1992 by E. Saksman and H.-O. Tylli [ST1] (see also [ST2, Problem 2.8]):

Characterize the multiplication operators on $L\left(L_{p}\right), 1<p \neq 2<\infty$, which are weakly compact.

Here L_{p} is $L_{p}(0,1)$ or, equivalently, $L_{p}(\mu)$ for any purely non-atomic separable probability μ.

In Theorem 1 we answer the Saksman-Tylli question. The characterization is rather simple but gives rise to questions about operators on L_{p}, some of which were asked by Tylli. First we set some terminology. Given an operator $T: X \rightarrow Y$ and a Banach space Z, say that T is Z-strictly singular provided there is no subspace Z_{0} of X which

[^0]Mathematics Subject Classification (2000): 46B20, 46E30
is isomorphic to Z for which $T_{\mid Z_{0}}$ is an isomorphism. An operator $S: Z \rightarrow W$ factors through an operator $T: X \rightarrow Y$ provided there are operators $A: Z \rightarrow X$ and $B:$ $Y \rightarrow W$ so that $S=B T A$. If S factors through the identity operator on X, we say that S factors through X.

If T is an operator on $L_{p}, 1<p<\infty$, then T is ℓ_{p}-strictly singular (respectively, ℓ_{2} strictly singular) if and only if $I_{\ell_{p}}$ (respectively, $I_{\ell_{2}}$) does not factor through T. This is true because every subspace of L_{p} which is isomorphic to ℓ_{p} (respectively, ℓ_{2}) has a subspace which is still isomorphic to ℓ_{p} (respectively, ℓ_{2}) and is complemented in L_{p}. Actually, a stronger fact is true: if $\left\{x_{n}\right\}_{n=1}^{\infty}$ is a sequence in L_{p} which is equivalent to the unit vector basis for either ℓ_{p} or ℓ_{2}, then $\left\{x_{n}\right\}_{n=1}^{\infty}$ has a subsequence which spans a complemented subspace of L_{p}. For $p>2$, an even stronger theorem was proved by Kadec-Pełczyński [KP]. When $1<p<2$ and $\left\{x_{n}\right\}_{n=1}^{\infty}$ is a sequence in L_{p} which is equivalent to the unit vector basis for ℓ_{2}, one takes $\left\{y_{n}\right\}_{n=1}^{\infty}$ in $L_{p^{\prime}}$ (where $p^{\prime}=p /(p-1)$ is the conjugate index to p) which are uniformly bounded and biorthogonal to $\left\{x_{n}\right\}_{n=1}^{\infty}$. By passing to a subsequence which is weakly convergent and subtracting the limit from each y_{n}, one may assume that $y_{n} \rightarrow 0$ weakly and hence, by the Kadec-Pełczyński dichotomy [KP], has a subsequence that is equivalent to the unit vector basis of ℓ_{2} (since it is clearly impossible that $\left\{y_{n}\right\}_{n=1}^{\infty}$ has a subsequence equivalent to the unit vector basis of $\ell_{p^{\prime}}$). This implies that the corresponding subsequence of $\left\{x_{n}\right\}_{n=1}^{\infty}$ spans a complemented subspace of L_{p}. (Pełczyński showed this argument, or something similar, to one of the authors many years ago, and a closely related result was proved in [PR].) Finally, when $1<p<2$ and $\left\{x_{n}\right\}_{n=1}^{\infty}$ is a sequence in L_{p} which is equivalent to the unit vector basis for ℓ_{p}, see the comments after the statement of Lemma 1.

Notice that the comments in the preceding paragraph imply that an operator on L_{p}, $1<p<\infty$, is ℓ_{p}-strictly singular (respectively, ℓ_{2}-strictly singular) if and only if T^{*}
 on $L_{p}, 1<p<\infty$, is strictly singular if it is both ℓ_{p}-strictly singular and ℓ_{2}-strictly singular (and hence T is strictly singular if and only if T^{*} is strictly singular). For $p>2$ this is immediate from [|KP], and Lutz Weis [We] proved the case $p<2$.

Although Saksman and Tylli did not know a complete characterization of the weakly compact multiplication operators on $L\left(L_{p}\right)$, they realized that a classification must involve ℓ_{p} - and ℓ_{2}-strictly singular operators on L_{p}. This led Tylli to ask us about possible classifications of the ℓ_{p} - and ℓ_{2}-strictly singular operators on L_{p}. The ℓ_{2} case is known. It is enough to consider the case $2<p<\infty$. If T is an operator on $L_{p}, 2<p<\infty$, and T is ℓ_{2}-strictly singular, then it is an easy consequence of the Kadec-Pełczyński dichotomy that $I_{p, 2} T$ is compact, where $I_{p, r}$ is the identity mapping from L_{p} into L_{r}. But then by [Jo], T factors through ℓ_{p}. Tylli then asked whether the following conjecture is true:

Tylli Conjecture. If T is an ℓ_{p}-strictly singular operator on $L_{p}, 1<p<\infty$, then T is in the closure (in the operator norm) of the operators on L_{p} that factor through ℓ_{2}. (It is clear that the closure is needed because not all compact operators on $L_{p}, p \neq 2$, factor through ℓ_{2}.)

We then formulated a weaker conjecture:

Weak Tylli Conjecture. If T is an ℓ_{p}-strictly singular operator on $L_{p}, 1<p<\infty$, and $J: L_{p} \rightarrow \ell_{\infty}$ is an isometric embedding, then $J T$ is in the closure of the operators from L_{p} into ℓ_{∞} that factor through ℓ_{2}.

It is of course evident that an operator on $L_{p}, p \neq 2$, that satisfies the conclusion of the Weak Tylli Conjecture must be ℓ_{p}-strictly singular. There is a slight subtlety in these conjectures: while the Tylli Conjecture for p is equivalent to the Tylli Conjecture for p^{\prime}, it is not at all clear and is even false that the Weak Tylli Conjecture for p is equivalent to the Weak Tylli Conjecture for p^{\prime}. In fact, we observe in Lemma 2 (it is simple) that for $p>2$ the Weak Tylli Conjecture is true, while the example in Section 4 shows that the Tylli Conjecture is false for all $p \neq 2$ and the Weak Tylli Conjecture is false for $p<2$.

There are however some interesting consequences of the Weak Tylli Conjecture that are true when $p<2$. In Theorem 4 we prove that if T is an ℓ_{p}-strictly singular operator on $L_{p}, 1<p<2$, then T is ℓ_{r}-strictly singular for all $p<r<2$. In view of theorems of Aldous [Al] (see also [KM]) and Rosenthal [Ro3], this proves that if such a T is an isomorphism on a subspace Z of L_{p}, then Z embeds into L_{r} for all $r<2$. The Weak Tylli Conjecture would imply that Z is isomorphic to ℓ_{2}, but the example in Section 4 shows that this need not be true. When we discovered Theorem 4, we thought its proof bizarre and assumed that a more straightforward argument would yield a stronger theorem. The example suggests that in fact the proof may be "natural".

In Section 5 we discuss convolution by a biased coin on L_{p} of the Cantor group, $1 \leq p<2$. We prove that if $T_{\mid X}$ is an isomorphism for some reflexive subspace X of $L_{p}, 1 \leq p<2$, then X is isomorphic to a Hilbert space. This answers an old question of H. P. Rosenthal [Ro4].

The standard Banach space theory terminology and background we use can be found in [LT].

2. Weakly compact multiplication operators on $L\left(L_{p}\right)$

We use freely the result [ST2, Proposition 2.5] that if A, B are in $L(X)$ where X is a reflexive Banach space with the approximation property, then the multiplication operator $L_{A} R_{B}$ on $L(X)$ is weakly compact if and only if for every T in $L(X)$, the operator $A T B$ is compact. For completeness, in Section 6 we give another proof of this under the weaker assumption that X is reflexive and has the compact approximation property. This theorem implies that for such an $X, L_{A} R_{B}$ is weakly compact on $L(X)$ if and only if $L_{B^{*}} R_{A^{*}}$ is a weakly compact operator on $L\left(X^{*}\right)$. Consequently, to classify weakly compact multiplication operators on $L\left(L_{p}\right), 1<p<\infty$, it is enough to consider the case $p>2$. For $p \leq r$ we denote the identity operator from ℓ_{p} into ℓ_{r} by $i_{p, r}$. It is immediate from [KP] that an operator T on $L_{p}, 2<p<\infty$, is compact if and only if $i_{2, p}$ does not factor through T.

Theorem 1. Let $2<p<\infty$ and let A, B be bounded linear operators on L_{p}. Then the multiplication operator $L_{A} R_{B}$ on $L\left(L_{p}\right)$ is weakly compact if and only if one of the following (mutually exclusive) conditions hold:
(a) $i_{2, p}$ does not factor through A (i.e., A is compact).
(b) $i_{2, p}$ factors through A but $i_{p, p}$ does not factor through A (i.e., A is ℓ_{p}-strictly singular) and $i_{2,2}$ does not factor through B (i.e., B is ℓ_{2}-strictly singular).
(c) $i_{p, p}$ factors through A but $i_{2, p}$ does not factor through B (i.e., B is compact).

Proof. The proof is a straightforward application of the Kadec-Pełczyński dichotomy principle [KP]: if $\left\{x_{n}\right\}_{n=1}^{\infty}$ is a semi-normalized (i.e., bounded and bounded away from zero) weakly null sequence in $L_{p}, 2<p<\infty$, then there is a subsequence which is equivalent to either the unit vector basis of ℓ_{p} or of ℓ_{2} and spans a complemented subspace of L_{p}. Notice that this immediately implies the "i.e.'s" in the statement of the theorem so that (a) and (c) imply that $L_{A} R_{B}$ is weakly compact. Now assume that (b) holds and let T be in $L\left(L_{P}\right)$. If $A T B$ is not compact, then there is a normalized weakly null sequence $\left\{x_{n}\right\}_{n=1}^{\infty}$ in L_{p} so that $A T B x_{n}$ is bounded away from zero. By passing to a subsequence, we may assume that $\left\{x_{n}\right\}_{n=1}^{\infty}$ is equivalent to either the unit vector basis of ℓ_{p} or of ℓ_{2}. If $\left\{x_{n}\right\}_{n=1}^{\infty}$ is equivalent to the unit vector basis of ℓ_{p}, then since $T B x_{n}$ is bounded away from zero, we can assume by passing to another subsequence that also $T B x_{n}$ is equivalent to the unit vector basis of ℓ_{p}, and similarly for $A T B x_{n}$, which contradicts the assumption that A is ℓ_{p}-strictly singular. On the other hand, if $\left\{x_{n}\right\}_{n=1}^{\infty}$ is equivalent to the unit vector basis of ℓ_{2}, then since B is ℓ_{2}-strictly singular we can assume by passing to a subsequence that $B x_{n}$ is equivalent to the unit vector basis of ℓ_{p} and continue as in the previous case to get a contradiction.

Now suppose that (a), (b), and (c) are all false. If $i_{p, p}$ factors through A and $i_{2, p}$ factors through B then there is sequence $\left\{x_{n}\right\}_{n=1}^{\infty}$ equivalent to the unit vector basis of ℓ_{2} or of ℓ_{p} so that $B x_{n}$ is equivalent to the unit vector basis of ℓ_{2} or of ℓ_{p} (of course, only three of the four cases are possible) and $B x_{n}$ spans a complemented subspace of L_{p}. Moreover, there is a sequence $\left\{y_{n}\right\}_{n=1}^{\infty}$ in L_{p} so that both y_{n} and $A y_{n}$ are equivalent to the unit vector basis of ℓ_{p}. Since $B x_{n}$ spans a complemented subspace of L_{p}, the mapping $B x_{n} \mapsto y_{n}$ extends to a bounded linear operator T on L_{p} and $A T B$ is not compact. Finally, suppose that $i_{2, p}$ factors through A but $i_{p, p}$ does not factor through A and $i_{2,2}$ factors through B. Then there is a sequence $\left\{x_{n}\right\}_{n=1}^{\infty}$ so that x_{n} and $B x_{n}$ are both equivalent to the unit vector basis of ℓ_{2} and $B x_{n}$ spans a complemented subspace of L_{p}. There is also a sequence $\left\{y_{n}\right\}_{n=1}^{\infty}$ equivalent to the unit vector basis of ℓ_{2} so that $A y_{n}$ is equivalent to the unit vector basis of ℓ_{2} or of ℓ_{p}. The mapping $B x_{n} \mapsto y_{n}$ extends to a bounded linear operator T on L_{p} and $A T B$ is not compact.

It is perhaps worthwhile to restate Theorem 1 in a way that the cases where $L_{A} R_{B}$ is weakly compact are not mutually exclusive.

Theorem 2. Let $2<p<\infty$ and let A, B be bounded linear operators on L_{p}. Then the multiplication operator $L_{A} R_{B}$ on $L\left(L_{p}\right)$ is weakly compact if and only if one of the following conditions hold:
(a) A is compact.
(b) A is ℓ_{p}-strictly singular and B is ℓ_{2}-strictly singular.
(c) B is compact.

3. ℓ_{p}-strictly singular operators on L_{p}

We recall the well known
Lemma 1. Let W be a bounded convex symmetric subset of $L_{p}, 1 \leq p \neq 2<\infty$. The following are equivalent:
(1) No sequence in W equivalent to the unit vector basis for ℓ_{p} spans a complemented subspace of L_{p}.
(2) For every C there exists n so that no length n sequence in W is C-equivalent to the unit vector basis of ℓ_{p}^{n}.
(3) For each $\varepsilon>0$ there is M_{ε} so that $W \subset \varepsilon B_{L_{p}}+M_{\varepsilon} B_{L_{\infty}}$.
(4) $|W|^{p}$ is uniformly integrable, i.e., $\lim _{t \downarrow 0} \sup _{x \in W} \sup _{\mu(E)<t}\left\|\mathbf{1}_{E} x\right\|_{p}=0$.

When $p=1$, the assumptions that W is convex and symmetric are not needed, and the conditions in Lemma 1 are equivalent to the non-weak-compactness of the weak closure of W. This case is essentially proved in $[\overline{\mathrm{KP}]}$ and proofs can also be found in books; see, e.g., Wo, Theorem 3.C.12]. (Condition (3) does not appear in Wo], but it is easy to check the equivalence of (3) and (4). Also, in the proof in [W0, Theorem 3.C.12] that not (4) implies not (1), Wojtaszczyk only constructs a basic sequence in W that is equivalent to the unit vector basis for ℓ_{1}; however, it is clear that the constructed basic sequence spans a complemented subspace.)

For $p>2$, Lemma 1 and stronger versions of condition (1) can be deduced from [KP]. For $1<p<2$, one needs to modify slightly the proof in Wol for the case $p=1$. The only essential modification comes in the proof that not (4) implies not (1), and this is where it is needed that W is convex and symmetric. Just as in Wo, one shows that not (4) implies that there is a sequence $\left\{x_{n}\right\}_{n=1}^{\infty}$ in W and a sequence $\left\{E_{n}\right\}_{n=1}^{\infty}$ of disjoint measurable sets so that $\inf \left\|1_{E_{n}} x_{n}\right\|_{p}>0$. By passing to a subsequence, we can assume that $\left\{x_{n}\right\}_{n=1}^{\infty}$ converges weakly to, say, x. Suppose first that $x=0$. Then by passing to a further subsequence, we may assume that $\left\{x_{n}\right\}_{n=1}^{\infty}$ is a small perturbation of a block basis of the Haar basis for L_{p} and hence is an unconditionally basic sequence. Since L_{p} has type p, this implies that there is a constant C so that for all sequences $\left\{a_{n}\right\}_{n=1}^{\infty}$ of scalars, $\left\|\sum a_{n} x_{n}\right\|_{p} \leq C\left(\sum\left|a_{n}\right|^{p}\right)^{1 / p}$. Let P be the norm one projection from L_{p} onto the closed linear span Y of the disjoint sequence $\left\{\mathbf{1}_{E_{n}} x_{n}\right\}_{n=1}^{\infty}$. Then $P x_{n}$ is weakly null in a space isometric to ℓ_{p}, and $\left\|P x_{n}\right\|_{p}$ is bounded away from zero, so there is a subsequence $\left\{P x_{n(k)}\right\}_{k=1}^{\infty}$ which is equivalent to the unit vector basis for ℓ_{p} and whose closed span is the range of a projection Q from Y. The projection $Q P$ from L_{p} onto the the closed span of $\left\{P x_{n(k)}\right\}_{k=1}^{\infty}$ maps $x_{n(k)}$ to $P x_{n(k)}$, and because of the upper p estimate on $\left\{x_{n(k)}\right\}_{k=1}^{\infty}$, maps the closed span of $\left\{x_{n(k)}\right\}_{k=1}^{\infty}$ isomorphically onto the closed span of $\left\{P x_{n(k)}\right\}_{k=1}^{\infty}$. This implies that $\left\{x_{n(k)}\right\}_{k=1}^{\infty}$ is equivalent to the unit vector basis for ℓ_{p} and spans a complemented subspace. Suppose now that the weak limit x of $\left\{x_{n}\right\}_{n=1}^{\infty}$ is not zero. Choose a subsequence $\left\{x_{n(k)}\right\}_{k=1}^{\infty}$ so that inf $\left\|1_{E_{n(2 k+1)}}\left(x_{n(2 k)}-x_{n(2 k+1)}\right)\right\|_{p}>0$ and replace $\left\{x_{n}\right\}_{n=1}^{\infty}$ with $\left\{\left(x_{n(2 k)}-x_{n(2 k+1)}\right) / 2\right\}_{k=1}^{\infty}$ in the argument above.

Notice that the argument outlined above gives that if $\left\{x_{n}\right\}_{n=1}^{\infty}$ is a sequence in L_{p}, $1<p \neq 2<\infty$, which is equivalent to the unit vector basis of ℓ_{p}, then there is a
subsequence $\left\{y_{n}\right\}_{n=1}^{\infty}$ whose closed linear span in L_{p} is complemented. This is how one proves that the identity on ℓ_{p} factors through any operator on L_{p} which is not ℓ_{p}-strictly singular.

The Weak Tylli Conjecture for $p>2$ is an easy consequence of the following lemma.
Lemma 2. Let T be an operator from an \mathcal{L}_{1} space V into $L_{p}, 1<p<2$, so that $W:=T B_{V}$ satisfies condition (1) in Lemma Then for each $\varepsilon>0$ there is an operator $S: V \rightarrow L_{2}$ so that $\left\|T-I_{2, p} S\right\|<\varepsilon$.

Proof. Let $\varepsilon>0$. By condition (3) in Lemma 1, for each norm one vector x in V there is a vector $U x$ in L_{2} with $\|U x\|_{2} \leq\|U x\|_{\infty} \leq M_{\varepsilon}$ and $\|T x-U x\|_{p} \leq \varepsilon$. By the definition of \mathcal{L}_{1} space, we can write V as a directed union $\bigcup_{\alpha} E_{\alpha}$ of finite-dimensional spaces that are uniformly isomorphic to $\ell_{1}^{n_{\alpha}}, n_{\alpha}=\operatorname{dim} E_{\alpha}$, and let $\left(x_{i}^{\alpha}\right)_{i=1}^{n_{\alpha}}$ be norm one vectors in E_{α} which are, say, λ-equivalent to the unit vector basis for $\ell_{1}^{n_{\alpha}}$ with λ independent of α. Let U_{α} be the linear extension to E_{α} of the mapping $x_{i}^{\alpha} \mapsto U x_{i}^{\alpha}$, considered as an operator into L_{2}. Then $\left\|T_{\mid E_{\alpha}}-I_{2, p} U_{\alpha}\right\| \leq \lambda \varepsilon$ and $\left\|U_{\alpha}\right\| \leq \lambda M_{\varepsilon}$. A standard Lindenstrauss compactness argument produces an operator $S: V \rightarrow L_{2}$ so that $\|S\| \leq \lambda M_{\varepsilon}$ and $\left\|T-I_{2, p} S\right\| \leq \lambda \varepsilon$. Indeed, extend U_{α} to all of V by letting $U_{\alpha} x=0$ if $x \notin E_{\alpha}$. The net T_{α} has a subnet S_{β} so that for each x in $V, S_{\beta} x$ converges weakly in L_{2}; call the limit $S x$. It is easy to check that S has the properties claimed.

Theorem 3. Let T be an ℓ_{p}-strictly singular operator on $L_{p}, 2<p<\infty$, and let J be an isometric embedding of L_{p} into an injective Z. Then for each $\varepsilon>0$ there is an operator $S: L_{p} \rightarrow Z$ so that S factors through ℓ_{2} and $\|J T-S\|<\varepsilon$.

Proof. Lemma 2 gives the conclusion when J is the adjoint of a quotient mapping from ℓ_{1} or L_{1} onto $L_{p^{\prime}}$. The general case then follows from the injectivity of Z.

The next proposition, when souped up via "abstract nonsense" and known results, gives our main result about ℓ_{p}-strictly singular operators on L_{p}. Note that it shows that an $\ell_{p^{-}}$ strictly singular operator on $L_{p}, 1<p<2$, cannot be the identity on the span of a sequence of r-stable independent random variables for any $p<r<2$. We do not know another way of proving even this special case of our main result.

Proposition 1. Let T be an ℓ_{p}-strictly singular operator on $L_{p}, 1<p<2$. If X is a subspace of L_{p} and $T_{\mid X}=a I_{X}$ with $a \neq 0$, then X embeds into L_{s} for all $s<2$.

Proof. By making a change of density, we can by [JJ] assume that T is also a bounded linear operator on L_{2}, so assume, without loss of generality, that $\|T\|_{p} \vee\|T\|_{2}=1$, so that, in particular, $a \leq 1$. Lemma 1 gives for each $\epsilon>0$ a constant M_{ϵ} so that

$$
\begin{equation*}
T B_{L_{p}} \subset \epsilon B_{L_{p}}+M_{\epsilon} B_{L_{2}} \tag{1}
\end{equation*}
$$

Indeed, otherwise condition (1) in Lemma 1 gives a bounded sequence $\left\{x_{n}\right\}_{n=1}^{\infty}$ in L_{p} so that $\left\{T x_{n}\right\}_{n=1}^{\infty}$ is equivalent to the unit vector basis of ℓ_{p}. By passing to a subsequence of differences of $\left\{x_{n}\right\}_{n=1}^{\infty}$, we can assume, without loss of generality, that $\left\{x_{n}\right\}_{n=1}^{\infty}$
is a small perturbation of a block basis of the Haar basis for L_{p} and hence is an unconditionally basic sequence. Since L_{p} has type p, the sequence $\left\{x_{n}\right\}_{n=1}^{\infty}$ has an upper p estimate, which means that there is a constant C so that for all sequences $\left\{a_{n}\right\}_{n=1}^{\infty}$ of scalars, $\left\|\sum a_{n} x_{n}\right\| \leq C\left\|\left(\sum\left|a_{n}\right|^{p}\right)^{1 / p}\right\|$. Since $\left\{T x_{n}\right\}_{n=1}^{\infty}$ is equivalent to the unit vector basis of $\ell_{p},\left\{x_{n}\right\}_{n=1}^{\infty}$ also has a lower p estimate and hence $\left\{x_{n}\right\}_{n=1}^{\infty}$ is equivalent to the unit vector basis of ℓ_{p}. This contradicts the ℓ_{p}-strict singularity of T.

Iterating this we get, for every n and $0<\epsilon<1 / 2$,

$$
a^{n} B_{X} \subset T^{n} B_{L_{p}} \subset \epsilon^{n} B_{L_{p}}+2 M_{\epsilon} B_{L_{2}}
$$

or, setting $A:=1 / a$,

$$
B_{X} \subset A^{n} \epsilon^{n} B_{L_{p}}+2 A^{n} M_{\epsilon} B_{L_{2}}
$$

For f a unit vector in X write $f=f_{n}+g_{n}$ with $\left\|f_{n}\right\|_{2} \leq 2 A^{n} M_{\epsilon}$ and $\left\|g_{n}\right\|_{p} \leq(A \epsilon)^{n}$. Then $f_{n+1}-f_{n}=g_{n}-g_{n+1}$, and since evidently f_{n} can be chosen to be of the form $\left(f \vee-k_{n}\right) \wedge k_{n}$ (with appropriate interpretation when the set $\left[f_{n}= \pm k_{n}\right]$ has positive measure), the choice of f_{n}, g_{n} can be made so that

$$
\left\|f_{n+1}-f_{n}\right\|_{2} \leq\left\|f_{n+1}\right\|_{2} \leq 2 M_{\epsilon} A^{n+1}, \quad\left\|g_{n}-g_{n+1}\right\|_{p} \leq\left\|g_{n}\right\|_{p} \leq(A \epsilon)^{n}
$$

(Alternatively, to avoid thinking, just take any $f=f_{n}+g_{n}$ so that $\left\|f_{n}\right\|_{2} \leq 2 A^{n} M_{\epsilon}$ and $\left\|g_{n}\right\|_{p} \leq(A \epsilon)^{n}$. Each left side of the two displayed inequalities is less than twice the corresponding right side as long as $A \varepsilon \leq 1$.)

For $p<s<2$ write $1 / s=\theta / 2+(1-\theta) / p$. Then

$$
\left\|f_{n+1}-f_{n}\right\|_{s} \leq\left\|f_{n+1}-f_{n}\right\|_{2}^{\theta}\left\|g_{n}-g_{n+1}\right\|_{p}^{1-\theta} \leq\left(2 M_{\epsilon} A\right)^{\theta}\left(A \epsilon^{1-\theta}\right)^{n}
$$

which is summable if $\epsilon^{1-\theta}<1 / A$. But $\left\|f-f_{n}\right\|_{p} \rightarrow 0$ so $f=f_{1}+\sum_{n=1}^{\infty} f_{n+1}-f_{n}$ in L_{p} and hence also in L_{s} if $\epsilon^{1-\theta}<1 / A$. So for some constant C_{s} we conclude for all $f \in X$ that $\|f\|_{p} \leq\|f\|_{s} \leq C_{s}\|f\|_{p}$.

We can now prove our main theorem. For background on ultrapowers of Banach spaces, see [DJT, Chapter 8].

Theorem 4. Let T be an ℓ_{p}-strictly singular operator on $L_{p}, 1<p<2$. If X is a subspace of L_{p} and $T_{\mid X}$ is an isomorphism, then X embeds into L_{r} for all $r<2$.

Proof. In view of Rosenthal's theorem [Ro3], it is enough to prove that X has type s for all $s<2$. By the Krivine-Maurey-Pisier theorem, $[\mathrm{Kr}]$ and [MP] (or, alternatively, Aldous' theorem, [$\overline{\mathrm{Al}}]$ or [$\overline{\mathrm{KM}]) \text {, we only need to check that for } p<s<2, X \text { does }}$ not contain almost isometric copies of ℓ_{s}^{n} for all n. (To apply the Krivine-Maurey-Pisier theorem we use that the second condition in Lemma 1, applied to the unit ball of X, implies that X has type s for some $p<s \leq 2$.) So suppose that for some $p<s<2$, X contains almost isometric copies of ℓ_{s}^{n} for all n. By applying Krivine's theorem [Kr] we get for each n a sequence $\left(f_{i}^{n}\right)_{i=1}^{n}$ of unit vectors in X which is $1+\epsilon$-equivalent to the unit vector basis for ℓ_{s}^{n} and, for some constant C (which we can take independently of n), the sequence $\left(C T f_{i}^{n}\right)_{i=1}^{n}$ is also $1+\epsilon$-equivalent to the unit vector basis for ℓ_{s}^{n}. By
replacing T by $C T$, we might as well assume that $C=1$. Now consider an ultrapower $T_{\mathcal{U}}$, where \mathcal{U} is a free ultrafilter on the natural numbers. The domain and codomain of $T_{\mathcal{U}}$ is the (abstract) L_{p} space $\left(L_{p}\right)_{\mathcal{U}}$, and $T_{\mathcal{U}}$ is defined by $T_{\mathcal{U}}\left(f_{1}, f_{2}, \ldots\right)=\left(T f_{1}, T f_{2}, \ldots\right)$ for any (equivalence class of a) bounded sequence (f_{1}, f_{2}, \ldots). It is evident that $T_{\mathcal{U}}$ is an isometry on the ultraproduct of span $\left(f_{i}^{n}\right)_{i=1}^{n}, n=1,2, \ldots$, and hence $T_{\mathcal{U}}$ is an isometry on a subspace of $\left(L_{p}\right) \mathcal{U}$ which is isometric to ℓ_{s}. Since condition (2) in Lemma 1 is obviously preserved when taking an ultrapower of a set, we see that $T_{\mathcal{U}}$ is ℓ_{p}-strictly singular. Finally, by restricting $T_{\mathcal{U}}$ to a suitable subspace, we get an ℓ_{p}-strictly singular operator S on L_{p} and a subspace Y of L_{p} so that Y is isometric to ℓ_{s} and $S_{\mid Y}$ is an isometry. By restricting the domain of S, we can assume that Y has full support and the functions in Y generate the Borel sets. It then follows from the Plotkin-Rudin theorem [Pl$],[\mathrm{Ru}]$ (see [KK Theorem 1]) that $S_{\mid Y}$ extends to an isometry W from L_{p} into L_{p}. Since any isometric copy of L_{p} in L_{p} is norm one complemented (see [La, §17]), there is a norm one operator $V: L_{p} \rightarrow L_{p}$ so that $V W=I_{L_{p}}$. Then $V S_{\mid Y}=I_{Y}$ and $V S$ is ℓ_{p}-strictly singular, which contradicts Proposition 1 .

Remark 1. The ℓ_{1}-strictly singular operators on L_{1} also form an interesting class. They are the weakly compact operators on L_{1}. In terms of factorization, they are just the closure in the operator norm of the integral operators on L_{1} (see, e.g., the proof of Lemma2).

4. The example

Rosenthal [Ro1] proved that if $\left\{x_{n}\right\}_{n=1}^{\infty}$ is a sequence of three-valued, symmetric, independent random variables, then for all $1<p<\infty$, the closed span in L_{p} of $\left\{x_{n}\right\}_{n=1}^{\infty}$ is complemented by means of the orthogonal projection P, and $\|P\|_{p}$ depends only on p, not on the specific sequence $\left\{x_{n}\right\}_{n=1}^{\infty}$. Moreover, he showed that if $p>2$, then for any sequence $\left\{x_{n}\right\}_{n=1}^{\infty}$ of symmetric, independent random variables in $L_{p},\left\|\sum x_{n}\right\|_{p}$ is equivalent (with constant depending only on p) to $\left(\sum\left\|x_{n}\right\|_{p}^{p}\right)^{1 / p} \vee\left(\sum\left\|x_{n}\right\|_{2}^{2}\right)^{1 / 2}$. Thus if $\left\{x_{n}\right\}_{n=1}^{\infty}$ is normalized in $L_{p}, p>2$, and $w_{n}:=\left\|x_{n}\right\|_{2}$, then $\left\|\sum a_{n} x_{n}\right\|_{p}$ is equivalent to $\left\|\left\{a_{n}\right\}_{n=1}^{\infty}\right\|_{p, w}:=\left(\sum\left|a_{n}\right|^{p}\right)^{1 / p} \vee\left(\sum\left|a_{n}\right|^{2} w_{n}^{2}\right)^{1 / 2}$. The completion of the finitely nonzero sequences of scalars under the norm $\|\cdot\|_{p, w}$ is called $X_{p, w}$. It follows that if $w=\left\{w_{n}\right\}_{n=1}^{\infty}$ is any sequence of numbers in $[0,1]$. Then $X_{p, w}$ is isomorphic to a complemented subspace of L_{p}. Suppose now that $w=\left\{w_{n}\right\}_{n=1}^{\infty}$ and $v=\left\{v_{n}\right\}_{n=1}^{\infty}$ are two such sequences of weights and $v_{n} \geq w_{n}$. Then the diagonal operator D from $X_{p, w}$ to $X_{p, v}$ that sends the nth unit vector basis vector e_{n} to $\left(w_{n} / v_{n}\right) e_{n}$ is contractive, and it is more or less obvious that D is ℓ_{p}-strictly singular if $w_{n} / v_{n} \rightarrow 0$ as $n \rightarrow \infty$. Since $X_{p, w}$ and $X_{p, v}$ are isomorphic to complemented subspaces of L_{p}, the adjoint operator D^{*} is $\ell_{p^{\prime}}$-strictly singular and (identifying $X_{p, w}^{*}$ and $X_{p, v}^{*}$ with subspaces of $L_{p^{\prime}}$) extends to an $\ell_{p^{\prime}}$-strictly singular operator on $L_{p^{\prime}}$. Our goal in this section is to produce weights w and v so that D^{*} is an isomorphism on a subspace of $X_{p, v}^{*}$ which is not isomorphic to a Hilbert space.

For all $0<r<2$ there is a positive constant c_{r} such that

$$
|t|^{r}=c_{r} \int_{0}^{\infty} \frac{1-\cos t x}{x^{r+1}} d x
$$

for all $t \in \mathbb{R}$. It follows that for any closed interval $[a, b] \subset(0, \infty)$ and for all $\varepsilon>0$ there are $0<x_{1}<\cdots<x_{n+1}$ such that $\max _{1 \leq j \leq n}\left|\frac{x_{j+1}-x_{j}}{x_{j}^{r+1}}\right| \leq \varepsilon$ and

$$
\begin{equation*}
\left|c_{r} \sum_{j=1}^{n} \frac{x_{j+1}-x_{j}}{x_{j}^{r+1}}\left(1-\cos t x_{j}\right)-|t|^{r}\right|<\varepsilon \tag{2}
\end{equation*}
$$

for all t with $|t| \in[a, b]$.
Let $0<q<r<2$ and define v_{j} and $a_{j}, j=1, \ldots, n$, by

$$
v_{j}^{2 q /(2-q)}=c_{r} \frac{x_{j+1}-x_{j}}{x_{j}^{r+1}}, \quad \frac{a_{j}}{v_{j}^{2 /(2-q)}}=x_{j}
$$

Let $Y_{j}, j=1, \ldots, n$, be independent, symmetric, three-valued random variables such that $\left|Y_{j}\right|=v_{j}^{-2 /(2-q)} \mathbf{1}_{B_{j}}$ with $\operatorname{Prob}\left(B_{j}\right)=v_{j}^{2 q /(2-q)}$, so that in particular $\left\|Y_{j}\right\|_{q}=1$ and $v_{j}=\left\|Y_{j}\right\|_{q} /\left\|Y_{j}\right\|_{2}$. Then the characteristic function of Y_{j} is
$\varphi_{Y_{j}}(t)=1-v_{j}^{2 q /(2-q)}+v_{j}^{2 q /(2-q)} \cos \left(t v_{j}^{-2 /(2-q)}\right)=1-v_{j}^{2 q /(2-q)}\left(1-\cos \left(t v_{j}^{-2 /(2-q)}\right)\right)$
and

$$
\begin{align*}
\varphi_{\sum a_{j} Y_{j}}(t) & =\prod_{j=1}^{n}\left(1-v_{j}^{2 q /(2-q)}\left(1-\cos \left(t a_{j} v_{j}^{-2 /(2-q)}\right)\right)\right) \\
& =\prod_{j=1}^{n}\left(1-c_{r} \frac{x_{j+1}-x_{j}}{x_{j}^{r+1}}\left(1-\cos \left(t x_{j}\right)\right)\right) \tag{3}
\end{align*}
$$

To evaluate this product we use the estimates on $\frac{x_{j+1}-x_{j}}{x_{j}^{r+1}}$ to deduce that, for each j

$$
\begin{array}{r}
\left|\log \left(1-c_{r} \frac{x_{j+1}-x_{j}}{x_{j}^{r+1}}\left(1-\cos \left(t x_{j}\right)\right)\right)+c_{r} \frac{x_{j+1}-x_{j}}{x_{j}^{r+1}}\left(1-\cos \left(t x_{j}\right)\right)\right| \\
\leq C \varepsilon c_{r}^{2} \frac{x_{j+1}-x_{j}}{x_{j}^{r+1}}\left(1-\cos \left(t x_{j}\right)\right)
\end{array}
$$

for some absolute $C<\infty$. Then, by (2),

$$
\begin{aligned}
\left\lvert\, \sum_{j=1}^{n} \log \left(1-c_{r} \frac{x_{j+1}-x_{j}}{x_{j}^{r+1}}\left(1-\cos \left(t x_{j}\right)\right)\right)+c_{r} \sum_{j=1}^{n} \frac{x_{j+1}-x_{j}}{x_{j}^{r+1}}(\right. & \left.1-\cos \left(t x_{j}\right)\right) \mid \\
& \leq C \varepsilon c_{r}\left(\varepsilon+b^{r}\right)
\end{aligned}
$$

Using (2) again we get

$$
\left|\sum_{j=1}^{n} \log \left(1-c_{r} \frac{x_{j+1}-x_{j}}{x_{j}^{r+1}}\left(1-\cos \left(t x_{j}\right)\right)\right)+|t|^{r}\right| \leq(C+1) \varepsilon\left(\varepsilon+b^{r}\right)
$$

(assuming as we may that $b \geq 1$), and from (3) we get

$$
\varphi_{\sum a_{j} Y_{j}}(t)=(1+O(\varepsilon)) \exp \left(-|t|^{r}\right)
$$

for all $|t| \in[a, b]$, where the function hiding under the O notation depends on r and b but on nothing else. It follows that, given any $\eta>0$, one can find a, b and ε such that for the corresponding $\left\{a_{j}, Y_{j}\right\}$ there is a symmetric r-stable Y (with characteristic function $e^{-|t|^{r}}$) satisfying

$$
\left\|Y-\sum_{j=1}^{n} a_{j} Y_{j}\right\|_{q} \leq \eta
$$

This follows from classical translation of various convergence notions; see e.g. Ro2, p. 154].

Let now $0<\delta<1$. Put $w_{j}=\delta v_{j}, j=1, \ldots, n$, and let $Z_{j}, j=1, \ldots, n$, be independent, symmetric, three-valued random variables such that $\left|Z_{j}\right|=w_{j}^{-2 /(2-q)} \mathbf{1}_{C_{j}}$ with $\operatorname{Prob}\left(C_{j}\right)=w_{j}^{2 q /(2-q)}$, so that in particular $\left\|Z_{j}\right\|_{q}=1$ and $w_{j}=\left\|Z_{j}\right\|_{q} /\left\|Z_{j}\right\|_{2}$. In a similar manner to the argument above we see that

$$
\begin{aligned}
\varphi_{\sum \delta a_{j} Z_{j}}(t) & =\prod_{j=1}^{n}\left(1-w_{j}^{2 q /(2-q)}\left(1-\cos \left(t \delta a_{j} w_{j}^{-2 /(2-q)}\right)\right)\right) \\
& =\prod_{j=1}^{n}\left(1-\delta^{2 q /(2-q)} v_{j}^{2 q /(2-q)}\left(1-\cos \left(t \delta^{-q /(2-q)} a_{j} v_{j}^{-2 /(2-q)}\right)\right)\right) \\
& =(1+O(\varepsilon)) \exp \left(-\delta^{q(2-r) /(2-q)}|t|^{r}\right)
\end{aligned}
$$

for all $|t| \in\left[\delta^{q /(2-q)} a, \delta^{q /(2-q)} b\right]$, where the O now depends also on δ.
Assuming $\delta^{q(2-r) /(2-q)}>1 / 2$ and for a choice of a, b and ε depending on δ, r, q and η we find that there is a symmetric r-stable random variable Z (with characteristic function $e^{-\delta^{q(2-r) /(2-q)}|t|^{r}}$) such that

$$
\left\|Z-\sum_{j=1}^{n} \delta a_{j} Z_{j}\right\|_{q} \leq \eta
$$

Note that the ratio between the L_{q} norms of Y and Z is bounded away from zero and infinity by universal constants and each of these norms is also universally bounded away from zero. Consequently, if ε is small enough the ratio between the L_{q} norms of $\sum_{j=1}^{n} a_{j} Y_{j}$ and $\sum_{j=1}^{n} \delta a_{j} Z_{j}$ is bounded away from zero and infinity by universal constants.

Let now δ_{i} be any sequence decreasing to zero and r_{i} any sequence such that $q<r_{i} \uparrow 2$ and $\delta_{i}^{q\left(2-r_{i}\right) /(2-q)}>1 / 2$. Then for any sequence $\varepsilon_{i} \downarrow 0$ we can find two sequences of symmetric, independent, three-valued random variables $\left\{Y_{i}\right\}$ and $\left\{W_{i}\right\}$, all normalized in L_{q}, with the following additional properties:

- Put $v_{j}=\left\|Y_{j}\right\|_{q} /\left\|Y_{j}\right\|_{2}$ and $w_{j}=\left\|Z_{j}\right\|_{q} /\left\|Z_{j}\right\|_{2}$. Then there are disjoint finite subsets of the integers $\sigma_{i}, i=1,2, \ldots$, such that $w_{j}=\delta_{i} v_{j}$ for $j \in \sigma_{i}$.
- There are independent random variables $\left\{\bar{Y}_{i}\right\}$ and $\left\{\bar{Z}_{i}\right\}$ with \bar{Y}_{i} and $\bar{Z}_{i} r_{i}$-stable with bounded, from zero and infinity, ratio of L_{q} norms and there are coefficients $\left\{a_{j}\right\}$ such that

$$
\left\|\bar{Y}_{i}-\sum_{j \in \sigma_{i}} a_{j} Y_{j}\right\|_{q}<\varepsilon_{i} \quad \text { and } \quad\left\|\bar{Z}_{i}-\sum_{j \in \sigma_{i}} \delta_{i} a_{j} Z_{j}\right\|_{q}<\varepsilon_{i}
$$

From Rol we know that the spans of $\left\{Y_{j}\right\}$ and $\left\{Z_{j}\right\}$ are complemented in $L_{q}, 1<$ $q<2$, and the dual spaces are naturally isomorphic to $X_{p,\left\{v_{j}\right\}}$ and $X_{p,\left\{w_{j}\right\}}$ respectively; both the isomorphism constants and the complementation constants depend only on q. Here $p=q /(q-1)$ and

$$
\left\|\left\{\alpha_{j}\right\}\right\|_{X_{p,\left\{u_{j}\right\}}}=\max \left\{\left(\sum\left|\alpha_{j}\right|^{p}\right)^{1 / p},\left(\sum u_{j}^{2} \alpha_{j}^{2}\right)^{1 / 2}\right\}
$$

Under this duality the adjoint D^{*} to the operator D that sends Y_{j} to $\delta_{i} Z_{j}$ for $j \in \sigma_{i}$ is formally the same diagonal operator between $X_{p,\left\{w_{i}\right\}}$ and $X_{p,\left\{v_{i}\right\}}$. The relation $w_{j}=\delta_{i} v_{j}$ for $j \in \sigma_{i}$ easily implies that this is a bounded operator; $\delta_{i} \rightarrow 0$ implies that this operator is ℓ_{q}-strictly singular. If $\varepsilon_{i} \rightarrow 0$ fast enough, D^{*} preserves a copy of $\operatorname{span}\left\{\bar{Y}_{i}\right\}$. Finally, if r_{i} tends to 2 not too fast this span is not isomorphic to a Hilbert space. Indeed, let $1 \leq s_{j} \uparrow 2$ be arbitrary and let $\left\{n_{j}\right\}_{j=1}^{\infty}$ be a sequence of positive integers with $n_{j}^{1 / s_{j}-1 / 2} \geq j, j=1,2, \ldots$, say. For $1 \leq k \leq n_{j}$, put $r_{n_{1}+\cdots+n_{j-1}+k}=s_{j}$. Then the span of $\left\{Y_{i}\right\}_{i=n_{1}+\cdots+n_{j-1}+1}^{n_{1}+\cdots+n_{j}}$ is isomorphic, with constant independent of j, to $\ell_{s_{j}}^{n_{j}}$ and this last space is of distance at least j from a Euclidean space.

It follows that if $J: L_{q} \rightarrow \ell_{\infty}$ is an isometric embedding, then $J D^{*}$ cannot be arbitrarily approximated by an operator which factors through a Hilbert space, and hence the Weak Tylli Conjecture is false in the range $1<q<2$.

5. Convolution by a biased coin

In this section we regard L_{p} as $L_{p}(\Delta)$, where $\Delta=\{-1,1\}^{\mathbb{N}}$ is the Cantor group and the measure is the Haar measure μ on Δ; i.e., $\mu=\prod_{n=1}^{\infty} \mu_{n}$, where $\mu_{n}(-1)=\mu_{n}(1)=1 / 2$. For $0<\varepsilon<1$, let v_{ε} be the ε-biased coin tossing measure, i.e., $\nu_{\varepsilon}=\prod_{n=1}^{\infty} v_{\varepsilon, n}$, where $\nu_{\varepsilon, n}(1)=(1+\varepsilon) / 2$ and $\nu_{\varepsilon, n}(-1)=(1-\varepsilon) / 2$. Let T_{ε} be convolution by ν_{ε}, so that for a μ-integrable function f on $\Delta,\left(T_{\varepsilon} f\right)(x)=\left(f * \nu_{\varepsilon}\right)(x)=\int_{\Delta} f(x y) d \nu_{\varepsilon}(y)$. The operator T_{ε} is a contraction on L_{p} for all $1 \leq p \leq \infty$. Let us recall how T_{ε} acts on the characters on Δ. For $t=\left\{t_{n}\right\}_{n=1}^{\infty} \in \Delta$, let $r_{n}(t)=t_{n}$. The characters on Δ are finite products of these Rademacher functions r_{n} (where the void product is the constant one function). For A a finite subset of \mathbb{N}, set $w_{A}=\prod_{n \in A} r_{n}$ and let W_{n} be the linear span of $\left\{w_{A}:|A|=n\right\}$. Then $T_{\varepsilon} w_{A}=\varepsilon^{|A|} w_{A}$.

We are interested in studying T_{ε} on $L_{p}, 1 \leq p<2$. The background we mention below is all contained in Bonami's paper [Bo] (or see [Ro4]). On $L_{p}, 1<p<2, T_{\varepsilon}$ is $\ell_{p^{-}}$ strictly singular; in fact, T_{ε} even maps L_{p} into L_{r} for some $r=r(p, \varepsilon)>p$. Indeed, by interpolation it is sufficient to check that T_{ε} maps L_{s} into L_{2} for some $s=s(\varepsilon)<2$. But there is a constant C_{s} which tends to 1 as $s \uparrow 2$ so that for all $f \in W_{n},\|f\|_{2} \leq C_{s}^{n}\|f\|_{s}$
and the orthogonal projection P_{n} onto (the closure of) W_{n} satisfies $\left\|P_{n}\right\|_{p} \leq C_{s}^{n}$. From this it is easy to check that if $\varepsilon C_{s}^{2}<1$, then T_{ε} maps L_{s} into L_{2}. We remark in passing that Bonami [$\overline{\mathrm{Bo}]}$ found for each p (including $p \geq 2$) and ε the largest value of $r=r(p, \varepsilon)$ such that T_{ε} maps L_{p} into L_{r}.

Thus Theorem 4 shows that if X is a subspace of $L_{p}, 1<p<2$, and T_{ε} (considered as an operator from L_{p} to L_{p}) is an isomorphism on X, then X embeds into L_{s} for all $s<2$. Since, as we mentioned above, T_{ε} maps L_{s} into L_{2} for some $s<2$, it then follows from an argument in [Ro4] that X must be isomorphic to a Hilbert space. (Actually, as we show after the proof, Lemma 3 is that we can prove Theorem 5 without using Theorem 4) Since [Ro4] is not generally available, we repeat Rosenthal's argument in Lemma3]below.

Now T_{ε} is not ℓ_{1}-strictly singular on L_{1}. Nevertheless, we still find that if X is a reflexive subspace of L_{1}, and T_{ε} (considered as an operator from L_{1} to L_{1}) is an isomorphism on X, then X is isomorphic to a Hilbert space. Indeed, Rosenthal showed (see Lemma 3) that then there is another subspace X_{0} of L_{1} which is isomorphic to X so that X_{0} is contained in L_{p} for some $1<p<2$, the L_{p} and L_{1} norms are equivalent on X_{0}, and T_{ε} is an isomorphism on X_{0}. This implies that as an operator on L_{p}, T_{ε} is an isomorphism on X_{0} and hence X_{0} is isomorphic to a Hilbert space. (To apply Lemma3, use the fact Ro3] that if X is a relexive subspace of L_{1}, then X embeds into L_{p} for some $1<p<2$.)

We summarize this discussion in the first sentence of Theorem 55 The case $p=1$ solves Problem B from Rosenthal's 1976 paper [Ro4].

Theorem 5. Let $1 \leq p<2$, let $0<\varepsilon<1$, and let T_{ε} be considered as an operator on L_{p}. If X is a reflexive subspace of L_{p} and the restriction of T_{ε} to X is an isomorphism, then X is isomorphic to a Hilbert space. Moreover, if $p>1$, then X is complemented in L_{p}.

We now prove Rosenthal's lemma Ro4, proof of Theorem 5] and defer the proof of the "moreover" statement in Theorem 5 until after the proof of the lemma.

Lemma 3. Suppose that T is an operator on $L_{p}, 1 \leq p<r<s<2, X$ is a subspace of L_{p} which is isomorphic to a subspace of L_{s}, and $T_{X X}$ is an isomorphism. Then there is another subspace X_{0} of L_{p} which is isomorphic to X so that X_{0} is contained in L_{r}, the L_{r} and L_{p} norms are equivalent on X_{0}, and T is an isomorphism on X_{0}.

Proof. We want to find a measurable set E so that
(1) $X_{0}:=\left\{\mathbf{1}_{E} x: x \in X\right\}$ is isomorphic to X,
(2) $X_{0} \subset L_{r}$,
(3) $T_{\mid X_{0}}$ is an isomorphism.
(We did not say that $\|\cdot\|_{p}$ and $\|\cdot\|_{r}$ are equivalent on X_{0} since that follows formally from the closed graph theorem. The isomorphism $X \rightarrow X_{0}$ guaranteed by (a) is of course the mapping $x \mapsto \mathbf{1}_{E} x$.)

Assume, without loss of generality, that $\|T\|=1$. Take $a>0$ so that $\|T x\|_{p} \geq a\|x\|_{p}$ for all x in X. Since ℓ_{p} does not embed into L_{s} we see from (4) in Lemma 1 that there is
$\eta>0$ so that if E has measure larger than $1-\eta$, then $\left\|\mathbf{1}_{\sim E} x\right\|_{p} \leq(a / 2)\|x\|_{p}$ for all x in X. Obviously (1) and (3) are satisfied for any such E. It is proved in [Ro3] that there is a strictly positive g with $\|g\|_{1}=1$ so that x / g is in L_{r} for all x in X. Now simply choose $t<\infty$ so that $E:=[g<t]$ has measure at least $1-\eta$; then E satisfies (1)-(3).
Next we remark how to avoid using Theorem 4 in proving Theorem 5 Suppose that T_{ε} is an isomorphism on a reflexive subspace X of $L_{p}, 1 \leq p<2$. Let s be the supremum of those $r \leq 2$ such that X is isomorphic to a subspace of L_{r}, so $1<s \leq 2$. It is sufficient to show that $s=2$. But if $s<2$, the interpolation formula implies that if $r<s$ is sufficiently close to s, then T_{ε} maps L_{r} into L_{t} for some $t>s$ and hence, by Lemma 3, X embeds into L_{t}.

Finally, we prove the "moreover" statement in Theorem 5. We now know that X is isomorphic to a Hilbert space. In the proof of Lemma3, instead of using Rosenthal's result from [Ro3], use Grothendieck's theorem [DJT, Theorem 3.5], which implies that there is a strictly positive g with $\|g\|_{1}=1$ so that x / g is in L_{2} for all x in X. Choosing E the same way as in the proof of Lemma 3 with $T:=T_{\varepsilon}$, we see that (1)-(3) are true with $r=2$. Now the L_{2} and L_{p} norms are equivalent on both X_{0} and on $T_{\varepsilon} X_{0}$. But it is clear that the only way that T_{ε} can be an isomorphism on a subspace X_{0} of L_{2} is for the orthogonal projection P_{n} onto the closed span of $W_{k}, 0 \leq k \leq n$, to be an isomorphism on X_{0} for some finite n. But then also in the L_{p} norm the restriction of P_{n} to X_{0} is an isomorphism, because the L_{p} norm and the L_{2} norm are equivalent on the span of $W_{k}, 0 \leq k \leq n$, and P_{n} is bounded on L_{p} (since $p>1$). It follows that the operator $S:=P_{n} \circ \mathbf{1}_{E}$ on L_{p} maps X_{0} isomorphically onto a complemented subspace of L_{p}, which implies that X_{0} is also complemented in L_{p}.

Here is the problem that started us thinking about ℓ_{p}-strictly singular operators:
Problem 1. Let $1<p<2$ and $0<\varepsilon<1$. On $L_{p}(\Delta)$, does T_{ε} satisfy the conclusion of the Tylli Conjecture?

After we submitted this paper, G. Pisier [Pi] answered Problem[1] in the affirmative.
Although the example in Section 4 shows that the Tylli Conjecture is false, something close to it may be true:

Problem 2. Let $1<p<r<2$. Is every ℓ_{p}-strictly singular operator on L_{p} in the closure of the operators on L_{p} that factor through L_{r} ?

6. Appendix

In this appendix we prove a theorem that is essentially due to Saksman and Tylli. The only novelty is that we assume the compact approximation property rather than the approximation property.

Theorem 6. Let X be a reflexive Banach space and let A, B be in $L(X)$. Then
(a) If ATB is a compact operator on X for every T in $L(X)$, then $L_{A} R_{B}$ is a weakly compact operator on $L(X)$.
(b) If X has the compact approximation property and $L_{A} R_{B}$ is a weakly compact operator on $L(X)$, then $A T B$ is a compact operator on X for every T in $L(X)$.

Proof. To prove (a), recall [Kal] that for a reflexive space X, on bounded subsets of $K(X)$ the weak topology is the same as the weak operator topology (the operator $T \mapsto f_{T} \in$ $C\left(\left(B_{X}\right.\right.$, weak $) \times\left(B_{X^{*}}\right.$, weak $\left.)\right)$, where $f_{T}\left(x, x^{*}\right):=\left\langle x^{*}, T x\right\rangle$, is an isometric isomorphism from $K(X)$ into a space of continuous functions on a compact Hausdorff space). Now if $\left(T_{\alpha}\right)$ is a bounded net in $L(X)$, then since X is reflexive there is a subnet (which we still denote by $\left(T_{\alpha}\right)$) which converges in the weak operator topology to, say, $T \in L(X)$. Then $A T_{\alpha} B$ converges in the the weak operator topology to $A T B$. But since all these operators are in $K(X), A T_{\alpha} B$ converges weakly to $A T B$ by Kalton's theorem. This shows that $L_{A} R_{B}$ is a weakly compact operator on $L(X)$.

To prove (b), suppose that we have a $T \in L(X)$ with $A T B$ not compact. Then there is a weakly null normalized sequence $\left\{x_{n}\right\}_{n=1}^{\infty}$ in X and $\delta>0$ so that for all $n,\left\|A T B x_{n}\right\|$ $>\delta$. Since a reflexive space with the compact approximation property also has the compact metric approximation property [CJ], there are $C_{n} \in K(X)$ with $\left\|C_{n}\right\|<1+1 / n$ and $C_{n} B x_{i}=B x_{i}$ for $i \leq n$. Since the C_{n} are compact, for each $n,\left\|C_{n} B x_{m}\right\| \rightarrow 0$ as $m \rightarrow \infty$. Thus $A\left(T C_{n}\right) B x_{i}=A T B x_{i}$ for $i \leq n$ and $\left\|A\left(T C_{n}\right) B x_{m}\right\| \rightarrow 0$ as $m \rightarrow \infty$. This implies that no convex combination of $\left\{A\left(T C_{n}\right) B\right\}_{n=1}^{\infty}$ can converge in the norm of $L(X)$ and hence $\left\{A\left(T C_{n}\right) B\right\}_{n=1}^{\infty}$ has no weakly convergent subsequence. This contradicts the weak compactness of $L_{A} R_{B}$ and completes the proof.

Acknowledgments. Research of W. B. Johnson was supported in part by NSF DMS-0503688 and U.S.-Israel Binational Science Foundation.

Research of G. Schechtman was supported in part by Israel Science Foundation and U.S.Israel Binational Science Foundation; he was also a participant of NSF Workshop in Analysis and Probability, Texas A\&M University.

References

[Al] Aldous, D. J.: Subspaces of L^{1}, via random measures. Trans. Amer. Math. Soc. 267, 445463 (1981) Zbl 0474.46007 MR 0626483
[Bo] Bonami, A.: Étude des coefficients de Fourier des fonctions de $L^{p}(G)$. Ann. Inst. Fourier (Grenoble) 20, no. 2, 335-402 (1970) Zbl 0195.42501 MR 0283496
[CJ] Cho, C.-M., Johnson, W. B.: A characterization of subspaces X of l_{p} for which $K(X)$ is an M-ideal in $L(X)$. Proc. Amer. Math. Soc. 93, 466-470 (1985) Zbl 0537.47010 MR 0774004
[DJT] Diestel, J., Jarchow, H., Tonge, A.: Absolutely Summing Operators. Cambridge Stud. Adv. Math. 43, Cambridge Univ. Press, Cambridge (1995) Zbl 0855.47016 MR 1342297
[Jo] Johnson, W. B.: Operators into L_{p} which factor through ℓ_{p}. J. London Math. Soc. (2) 14, 333-339 (1976) Zbl 0413.47025 MR 0425667
[JJ] Johnson, W. B., Jones, L.: Every L_{p} operator is an L_{2} operator. Proc. Amer. Math. Soc. 72, 309-312 (1978) Zbl 0391.46026 MR 0507330
[KP] Kadec, M. I., Pełczyński, A.: Bases, lacunary sequences and complemented subspaces in the spaces L_{p}. Studia Math. 21, 161-176 (1961/1962) Zbl 0102.32202 MR 0152879
[Kal] Kalton, N. J.: Spaces of compact operators. Math. Ann. 208, 267-278 (1974) Zbl 0266.47038 MR 0341154
[KK] Koldobsky, A., König, H.: Aspects of the isometric theory of Banach spaces. In: Handbook of the Geometry of Banach Spaces, Vol. I, North-Holland, Amsterdam, 899-939 (2001) Zbl 1005.46005 MR 1863709
[Kr] Krivine, J.-L.: Sous-espaces de dimension finie des espaces de Banach réticulés. Ann. of Math. (2) 104, 1-29 (1976) Zbl 0329.46008 MR 0407568
[KM] Krivine, J.-L., Maurey, B.: Espaces de Banach stables. Israel J. Math. 39, 273-295 (1981) Zbl 0504.46013 MR 0636897
[La] Lacey, H. E.: The Isometric Theory of Classical Banach Spaces. Grundlehren Math. Wiss. 208, Springer, New York (1974). Zbl 0285.46024 MR 0493279
[LT] Lindenstrauss, J., Tzafriri, L.: Classical Banach Spaces I\&II. Ergeb. Math. Grenzgeb. 92 \& 97, Springer, Berlin (1977 \& 1979) Zbl 0852.46015 MR 0500056 and MR 0540367
[MP] Maurey, B., Pisier, G.: Séries de variables aléatoires vectorielles indépendantes et propriétés géométriques des espaces de Banach. Studia Math. 58, 45-90 (1976) Zbl 0344.47014 MR 0443015
[PR] Pełczyński, A., Rosenthal, H. P.: Localization techniques in L^{p} spaces. Studia Math. 52, 263-289 (1974/75) Zbl 0297.46023 MR 0361729
[Pi] Pisier, G.: Remarks on hypercontractive semigroups and operator ideals. arXiv:0708.3423
[Pl] Plotkin, A. I.: An algebra that is generated by translation operators, and L^{p}-norms. In: Functional Analysis, No. 6: Theory of Operators in Linear Spaces, Ulyanovsk. Gos. Ped. Inst., Ulyanovsk, 112-121 (1976) (in Russian)
[Ro1] Rosenthal, H. P.: On the subspaces of $L^{p}(p>2)$ spanned by sequences of independent random variables. Israel J. Math. 8, 273-303 (1970) Zbl 0213.19303 MR 0271721
[Ro2] Rosenthal, H. P.: On the span in L^{p} of sequences of independent random variables, II. In: Proc. Sixth Berkeley Symposium on Mathematical Statistics and Probability (Berkeley, CA, 1970/1971), Vol. II: Probability Theory, Univ. California Press, Berkeley, CA, 149-167 (1972) Zbl 0255.60003 MR 0440354
[Ro3] Rosenthal, H. P. On subspaces of L^{p}. Ann. of Math. (2) 97, 344-373 (1973) Zbl 0253.46049 MR 0312222
[Ro4] Rosenthal, H. P.: Convolution by a biased coin. The Altgeld Book (1975/76)
[Ru] Rudin, W.: L^{p}-isometries and equimeasurability. Indiana Univ. Math. J. 25, 215-228 (1976) Zbl 0326.46011 MR 0410355
[ST1] Saksman, E., Tylli, H.-O.: Weak compactness of multiplication operators on spaces of bounded linear operators. Math. Scand. 70, 91-111 (1992) Zbl 0760.47019 MR 1174205
[ST2] Saksman, E., Tylli, H.-O.: Multiplications and elementary operators in the Banach space setting. In: Methods in Banach Space Theory (Caceres, 2004), J. F. M. Castillo and W. B. Johnson (eds.), London Math. Soc. Lecture Note Ser. 337, Cambridge Univ. Press, 253-292 (2006) Zbl 1133.47029 MR 2326390
[We] Weis, L.: On perturbations of Fredholm operators in $L_{p}(\mu)$-spaces. Proc. Amer. Math. Soc. 67, 287-292 (1977) Zbl 0377.46016 MR 0467377
[Wo] Wojtaszczyk, P.: Banach Spaces for Analysts. Cambridge Stud. Adv. Math. 25, Cambridge Univ. Press, Cambridge (1991) Zbl 0724.46012 MR 1144277

[^0]: W. B. Johnson: Department Mathematics, Texas A\&M University, College Station, TX 77843, USA; e-mail: johnson@math.tamu.edu
 G. Schechtman: Department of Mathematics, Weizmann Institute of Science, Rehovot, Israel; e-mail: gideon@weizmann.ac.il

