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Abstract. The two main results are:
A. If a Banach space X is complementably universal for all

subspaces of c0 which have the bounded approximation property,
then X∗ is non separable (and hence X does not embed into c0),

B. There is no separable Banach space X such that every com-
pact operator (between Banach spaces) factors through X.

Theorem B solves a problem that dates from the 1970s.

1. Introduction

Given a class O of (bounded, linear) operators, it is natural to try
to find a single (usually separable) Banach space U such that all the
operators in O factor through U . In this case we say that O factors
through U . We say that O λ-factors through U provided that for each
S ∈ O there exist operators A,B such that S = BA, U is the co-domain
of A and the domain of B, and ‖A‖‖B‖ ≤ λ. If there is a λ so that the
class O λ-factors through U , we say that O uniformly factors through
U .

These concepts were, essentially, introduced by A. Pe lczyński in [14].
He used the following definition: A Banach space U is said to be com-
plementably universal for a class B of Banach spaces provided every
space in B is isomorphic to a complemented subspace of U , i.e. if for
every B ∈ B, the identity on B factors through U . We shall also say
that U is λ-complementably universal for the class B if for every B ∈ B,
the identity on B λ-factors through U .

For Bbas = the class of all separable Banach spaces that have a
(Schauder) basis, there is such a separable U ; namely, the separable
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universal basis space of [14]. Kadec [11] subsequently constructed a sep-
arable Banach space with the bounded approximation property (BAP)
which is complementably universal for the class of all separable Banach
spaces which have the BAP. Actually, the spaces constructed by Kadec
and Pe lczyński are isomorphic (see [8] and [15]).

In part one of this paper ([9]) we proved the non existence of a
separable Banach space which is complementably universal for each of
the following classes of Banach spaces:

1. BAP = all separable Banach spaces which have the approximation
property (AP),

2. Bp = all subspaces of `p for 2 < p <∞.
In particular, there is no separable Banach space which is comple-

mentably universal for the class of all separable Banach spaces.
In section 2 we first observe that for 1 < p <∞, there is a subspace

of `p which is complementably universal for the class of all subspaces
of `p which have the AP. We also note that there is a subspace of c0
which is complementably universal for the class of all subspaces of c0
whose duals have the AP. These observations, which are very simple
given results from the 1970s, were known to the authors when [9] was
written and likely are known to other old timers.

The first main result of this paper is Theorem 2.2, which says that if
U is a Banach space which is complementably universal for the class of
subspaces of c0 which have BAP, then U∗ is non separable (and hence
U cannot be isomorphic to a subspace of c0). This is done by using,
as was done in [9], a variation of Davie’s construction to produce a
collection of subspaces of c0 so that there is no separable Banach space
which is complementably universal for their conjugate spaces. We then
use an observation of Johnson and Schechtman, contained in [7], that
a subspace X of c0 is contained in another subspace Y of c0 which has
the BAP (even a finite dimensional decomposition) and such that X∗

is isomorphic to a complemented subspace of Y ∗.
Pe lczyński’s universal basis space U has the property that every op-

erator that is uniformly approximable by finite rank operators fac-
tors through U . Many other spaces, including some separable reflexive
spaces, [6], have the same property. All these results from the 1960s
and 1970s left open the problem whether there is a separable Banach
space Z so that every compact operator factors through Z. Our sec-
ond main result, Theorem 2.5, is that there is no such space. We are
indebted to Mariusz Wodzicki for reminding us in 1995 that whether
such a space exists was still open.
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We use standard Banach space theory terminology, as may be found
in [12]. K denotes the class of all compact operators (between Banach
spaces).

2. Results

We begin with a theorem which perhaps should be termed a “folklore
result”. It is at any rate a simple consequence of results proved in
the 1970s and was known to the authors when [9] was written. First
we set some notation. For 1 ≤ p ≤ ∞, let {Gp

n}∞n=1 be sequence of
finite dimensional subspaces of `p such that for every ε > 0, every
finite dimensional subspace of `p is 1 + ε–isomorphic to one (and hence
infinitely many) of the spaces in {Gp

n}∞n=1. Let Yp be the `p sum of
{Gp

n}∞n=1 and Y0 the c0 sum of {G0
n}∞n=1.

Theorem 2.1. (a) The space Yp, 1 < p <∞, is complementably uni-
versal for the family of all subspaces of `p which have the approximation
property.
(b) The space Y0 is complementably universal for the family of all sub-
spaces of c0 whose duals have the approximation property.

Proof: To prove (a), first fix 1 < p <∞ and let X be a subspace of
`p which has a finite dimensional decomposition. Then by [10] (or see
[12, Theorem 2.d.1]), X is isomorphic to the `p sum of a sequence of
finite dimensional spaces. It follows from the construction of Yp that
X is isomorphic to a complemented subspace of Yp. In the general
case, where X is a subspace of `p which has the AP, by a theorem of
Grothendieck [12, Theorem 1.e.15], X has the metric approximation
property and hence the BAP . It then follows from the argument for
Theorem 4 of [5] that X ⊕p Yp is a Π–space; that is, that there exists a
sequence of finite rank projections on X⊕pYp which converges strongly
to the identity operator. Since the dual of X ⊕p Yp also has the BAP,
Theorem 1.3 in [8] yields that X ⊕p Yp has a finite dimensional decom-
position. Therefore, by the first step of the proof, X⊕pYp is isomorphic
to a complemented subspace of Yp.

The proof of (b) uses the same ingredients. If X is a subspace of
c0 which has a shrinking finite dimensional decomposition, then again
by [9] (or see [12, Theorem 2.d.1]), X is isomorphic to the c0 sum of
a sequence of finite dimensional spaces and hence is isomorphic to a
complemented subspace of Y0. If X is a subspace of c0 whose dual has
the approximation property, then Grothendieck’s theorem [12, Theo-
rem 1.e.15] implies that X∗ has the BAP. One then uses [5] and [8] in
the same way as in the `p case to conclude that X is isomorphic to a
complemented subspace of Y0.
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Theorem 2.1 suggests the following problem: What can one say
about a separable Banach space which is complementably universal
for the collection of all subspaces of c0 which have the BAP? By the
results of Kadec [11] and Pe lczyński [14] mentioned in the introduction,
such spaces do exist. The most natural question is whether a subspace
of c0 can have this universal property. One of the main results of this
note gives a negative answer to this question:

Theorem 2.2. Let U be a Banach space which is complementably uni-
versal for the family of all subspaces of c0 which have the BAP. Then
U∗ is non separable.

The main technical tool for proving Theorem 2.2 is Theorem 2.3.

Theorem 2.3. There is no separable Banach space which is comple-
mentably universal for the family D0 of duals to subspaces of c0.

Let us observe here that, since D0 is closed under l1-sums, by Propo-
sition 2 in [6] it suffices to prove the following statement:

Theorem 2.4. There is no separable Banach space which is uniformly
complementably universal for D0 .

Theorem 2.4 is proved in section 4 . The proof is similar to the proof
in [9] that no separable Banach space is complementably universal for
the collection of subspaces of `p when 2 < p < ∞, and indeed the
argument in section 4 gives this result from [9]. Since the argument we
need here is more involved, we chose to give a detailed, complete and
streamlined proof of Theorem 2.4.

Once Theorem 2.3 is known, we complete the proof of Theorem 2.2
with the following proposition which is proved but not stated in [7,
section 2].

Proposition 1. Let X be a subspace of c0. Then there is a subspace
Y of c0 which has a finite dimensional decomposition and such that X∗

is isomorphic to a complemented subspace of Y ∗.

It is obvious that Theorem 2.2 follows from the conjunction of The-
orem 2.3 and Proposition 1. Here we repeat part of the discussion
in [7, section 2] which yields Proposition 1 and refer to [7] for ad-
ditional details. Let E1 ⊂ E2 ⊂ . . . be a sequence of finite di-
mensional subspaces of X whose union is dense in X and let Y be
the subspace of the `∞ sum (

∑
nEn)∞ of {En}∞n=1 consisting of se-

quences (e1, e2, . . . ) for which limn→∞ en exists in X. The space Y
has a monotone finite dimensional decomposition.. Indeed, for each
positive integer n define a contractive projection Pn on Y by setting



COMPLEMENTABLY UNIVERSAL BANACH SPACES, II 5

P (e1, e2, . . . ) = (e1, e2, . . . , en−1, en, en, . . . ). It is easy to check that
{Pn}∞n=1 is the sequence of partial sum projections for a finite dimen-
sional decomposition of Y . Now define an operator Q from Y into
X by setting Q(e1, e2, . . . ) = limn en. It is easy to check that Q is a
quotient mapping from Y onto X with kernel the c0 sum of {En}∞n=1.
This is a construction used to good effect by Lusky [13]. The main
new points in [7] are the observations that the separable injectivity of
c0 yields that Y is isomorphic to a subspace of c0, and that, by [6], the
range of Q∗ (which is isometric to X∗) is norm one complemented in
Y ∗. This completes the proof of Proposition 1 and hence also the proof
of Theorem 2.2.

We now state our second main result.

Theorem 2.5. The class of all compact operators (between Banach
spaces) does not factor through a separable Banach space.

Evidently, it is enough to prove the following

Theorem 2.6. The class of all compact operators of norm ≤ 1 does
not uniformly factor through a separable Banach space.

The proofs of Theorems 2.4 and 2.6 are based on a construction which
has two essential components: linear-algebraic, described in section 5
and probabilistic, described in section 6.

3. Preliminaries

We shall use the following lemma, which is a refinement of Lemma
2 in [9]:

Lemma 1. Let A be an uncountable set, let B,Z be Banach spaces
and let Dε be a subspace of B, Rε be a subspace of Z for ε ∈ A.
Suppose that there are δ > 0, λ > 0 and a finite dimensional space
E with E ⊂

⋂
ε∈A

Dε, E ⊂
⋂
ε∈A

Rε, so that the following condition is

satisfied:
(]1) if ε,η ∈ A, ε 6= η and T : Dε → Rη is such that

‖T|E − IdE‖ < δ, then ‖T‖ > λ .
Let Tε : Dε → Rε be bounded operators such that Tε|E = IdE for

every ε ∈ A. Then the family of operators {Tε : ε ∈ A} does not
λ-factor through a separable Banach space.

Proof. Suppose U is a separable Banach space such that for every ε ∈
A, the operator Tε has a factorization Tε = QεSε with Sε : Dε → U
and Qε : U → Rε so that ‖Sε‖ ≤ λ,‖Qε‖ ≤ 1. Since the space
L(E,U) is separable and A is uncountable, there are ε,η ∈ A, ε 6= η
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such that ‖(Sε − Sη)|E‖ < δ. Let us define T = QεSη. We have
(QεSε)|E = IdE, thus

T|E − IdE = Qε(Sη − Sε)|E

and therefore ‖T|E − IdE‖ ≤ ‖Qε‖‖(Sε − Sη)|E‖ < δ. Therefore, by
(]1), ‖T‖ > λ. This is a contradiction with

‖T‖ ≤ ‖Qε‖‖Sη‖ ≤ λ.

The next lemma is a “complementably universal” version of Lemma 1:

Lemma 2. Let A be an uncountable set, let B be a Banach space
and let Bε be a subspace of B for ε ∈ A. Suppose that there are
δ > 0, λ > 0 and a finite dimensional space E, E ⊂

⋂
ε∈A

Bε so that the

following condition is satisfied:
(]2) if ε,η ∈ A, ε 6= η and T : Bε → Bη is such that

‖T|E − IdE‖ < δ, then ‖T‖ > λ .
Then there is no separable Banach space which is λ-complementably

universal for the family {Bε : ε ∈ A} .

The construction of appropriate families {Bε : ε ∈ A} (for Theo-
rems 2.2 and 2.3) and {Dε, Rε : ε ∈ A} (for Theorems 2.5 and 2.6)
has two essential components: a linear-algebraic one (section 5) and a
probabilistic one (section 6).

Now we would like to make explicit some tensor product notation.
Given finite sets I ⊂ J , let ΠI denote the coordinate projection in

RJ onto the coordinates in I.
Let E,F be vector spaces, let e1, . . . , eM ; f1, . . . , fN be bases in E,F ,

respectively. Let I ⊂ J be finite sets and let xi ∈ E, wi ∈ F for i ∈ J
with

xi =
M∑
m=1

x(i,m)em, wi =
N∑
n=1

w(i, n)fn.

Then

(1)
∑
i∈I

wi ⊗ xi =
N∑
n=1

fn ⊗X∗ΠIW (fn)

where, formally, X : E → RJ and W : F → RJ are defined by Xem =
(x(i,m))i∈J for m = 1, . . . ,M and Wfn = (w(i, n))i∈J for n = 1, . . . , N.

Let Z, Y be Banach spaces. For β = Σψi⊗ zi ∈ Y ∗⊗Z let us denote
supp β = span {zi} and β⊥ =

⋂
ψ⊥i = {y ∈ Y : ψi(y) = 0 for all i}
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(these notions depend on a specific representation of the tensor β but
this will not interfere with our considerations).

As usual, a β ∈ Y ∗ ⊗ Z acts on L(Z ′, Y ′) for any Z ′ ⊃ supp β and
Y ′ ⊂ Y by the formula β(T ) = Σψi(Tzi). For such a T we have

|β(T )| ≤ ‖β‖Y ∗⊗̂Z′‖T‖L(Z′,Y ′).

(Recall that

‖β‖Y ∗⊗̂Z′ = inf{Σ‖ψi‖‖zi‖ : β = Σψi ⊗ zi with ψi ∈ Y ∗, zi ∈ Z ′}.)

Lemma 3. Let Z, Y be Banach spaces, let E ⊂ Z ∩ Y . Let β, γ ∈
Y ∗ ⊗ Z. Assume that E ⊃ supp β and β(IdE) = 1. Suppose that
T : Z ′ → Y ′ where Y ′ ⊂ γ⊥, Z ′ ⊃ supp β + supp γ. Then

‖T‖ ≥ ‖β − γ‖−1
Y ∗⊗̂Z′(1− ‖β‖Y ∗⊗̂Z′‖T|E − IdE‖).

Proof. Since the range of T is γ⊥, γ(T ) = 0 and thus

(β − γ)(T ) = β(T ) = 1 + β(T|E − IdE).

Hence
‖β − γ‖Y ∗⊗̂Z′‖T‖ ≥ 1− ‖β‖Y ∗⊗̂Z′‖T|E − IdE‖,

which proves the lemma.

4. The proofs

In this section we give a schematic outline of the proofs of Theo-
rems 2.4 and 2.6 based on Lemmas 2 and 1. Technical details of the
construction are deferred to sections 5 and 6.

Let R∞ = {(xk)∞k=0 : xk ∈ R3·2k , xk 6= 0 for finitely many k}. In R∞
we have the natural inner product 〈(xk), (zk)〉 =

∑∞
k=0〈xk, zk〉.

Let X = (Σ`3·2
k

1 )c0 , Z = (Σ`3·2
k

∞ )`1 .
Let eki for k = 1, 2, . . . ; i = 1, . . . , 3·2k denote the unit vectors in R∞.
In section 5 we shall describe vectors yki ∈ R∞ for k = 1, 2, . . . , i =

1, 2, . . . , 2k. These vectors satisfy the following conditions:

(2) 〈yki , ymj 〉 = 2δkmδij for all i, j, k,m,

(3) ‖yki ‖Z ≤ 2 · 2−
k
2 , ‖yki ‖X ≤ 3 · 2

k
2 .

Let Y = span {yki : k = 1, 2, . . . ; i = 1, . . . , 2k}. Given an x ∈ R∞, we
identify it with the functional on Y defined by y  〈y, x〉.

Let us denote for k = 1, 2, . . . :

Ik0 = {1, . . . , 2k−1}, Ik1 = {2k−1 + 1, . . . , 2k}.
Let us define for k = 1, 2, . . . and ε = 0, 1:

Y k
ε = span {yki : i ∈ Ikε }
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and

(4) βkε = 2−k
∑
i∈Ikε

yki ⊗ yki ∈ Y ∗ ⊗ Y k
ε ⊂ Y ∗ ⊗ Y.

Observe that, by (2),

(5) βkε (IdY kε ) = 1 for every k, ε.

Let us denote C = {0, 1}N. For ε ∈ C let Yε = span
⋃∞
k=1 Y

k
ε(k). The

family of spaces {Yε : ε ∈ C} will be the basis for our constructions.

In section 5 we shall obtain the following key representation for the
difference βkε − βk+1

η ∈ Y ∗ ⊗ Y :

(6) βkε − βk+1
η = 2−k

2k∑
j=1

ekj ⊗ dkε,η,j

where dkε,η,j for k = 1, 2, . . . ; j = 1, . . . 2k and ε, η = 0, 1 satisfy the
following two conditions:

(7) ‖dkε,η,j‖Z ≤ Ck22−
k
2 ,

the constant C being independent of k, j, ε, η, and

(8) dkε,η,j ∈ Y k
ε + Y k+1

η .

Proof of Theorem 2.4. With the duality generated by the inner product
〈, 〉, we have Z = X∗ (and, obviously, X ⊂ Z∗).

For A ⊂ Z denote A⊥ = {x ∈ X : 〈z, x〉 = 0 for all z ∈ A} and for
A ⊂ X denote A⊥ = {z ∈ Z : 〈z, x〉 = 0 for all x ∈ A}.

Let B = (Y⊥)⊥ and let Bε = ((Yε)⊥)⊥ for ε ∈ C. Evidently B and
Bε are w∗-closed subspaces of Z = X∗, Bε ⊂ B for every ε ∈ C and
we have

(Y k
1−ε(k))

⊥ ⊃ Bε ⊃ Y k
ε(k) for every k.

Define βkε by (4). We have ‖yki ‖Z∗ = ‖yki ‖X , thus, by (3),

‖yki ‖Z∗‖yki ‖Z ≤ 6 for all i, k.

Hence (here Y k
ε is equipped with the norm of Z):

(9) ‖βkε ‖B∗⊗̂Y kε ≤ 6 for all ε, k.

Since ‖ekj‖Z∗ = 1, by the representation (6), we obtain for every k
and ε ∈ C,

(10) ‖βkε(k) − βk+1
ε(k+1)‖B∗⊗̂Bε ≤ Ck22−

k
2 ,
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the constant C being independent of k and ε ∈ C. Therefore for every
k ≤ m,

(11) ‖βkε(k) − βmε(m)‖B∗⊗̂Bε ≤ Ck22−
k
2

with another constant C.
Applying Lemma 2 and Lemma 3 we can now prove Theorem 2.4.

Indeed, denote Ck = {ε ∈ C : ε(1) = · · · = ε(k) = 0}, let E = Ek =
Y k

0 = span {yki : 1 ≤ i ≤ 2k−1}.
Let ε,η ∈ Ck, ε 6= η, let m be the first index larger than k such

that ε(m) 6= η(m), thus Rη ⊂ β⊥ε(m). Let T : Bε → Bη be such that

‖T|E − IdE‖ < δ = 1
12

.

Observe that, by (5), βkε(k)(IdE) = 1 for every ε ∈ Ck. By Lemma 3,

(9) and (11),

‖T‖ ≥ ‖βkε(k) − βmε(m)‖−1
B∗⊗̂Bε

(1− ‖βkε(k)‖B∗⊗̂Bεδ) > λk =
1

2C
k−22

k
2 .

Since Tε|E = IE, by Lemma 2, there is no separable Banach space
which is λk-complementably universal for the family {Bε : ε ∈ Ck}.
(Perhaps it looks a bit strange that we can prove that λ1, λ2, λ3, . . .
increase while C1 ⊃ C2 ⊃ . . . . The reason is that, by the estimate of
Lemma 2, λk increase together with the size of Ek and the spaces Ek
do grow.) Consequently, there is no separable Banach space which is
uniformly complementably universal for the family {Bε : ε ∈ C}.

To conclude, let us observe that each Bε is isomorphic to the dual of
a subspace of c0: being w∗-closed in Z, Bε is isometric to the dual of a
quotient of X and X is clearly isomorphic to a subspace of c0. Finally,
every subspace of a quotient of c0 is isomorphic to a subspace of c0 (see
[10] or [1]).

Proof of Theorem 2.6. In Y we will define a norm ||| ||| in the following
way. Let

V = {yki : k = 1, 2, . . . ; i = 1, . . . , 2k},

W = {2
k
4 dkε,η,i : k = 1, 2, . . . , ε, η = 0, 1, i = 1, . . . , 2k },

let U = absconv (V ∪W ) and let for x ∈ Y

|||x||| = inf{λ : x ∈ λU}.

Let B be the completion of Y in the norm ||| |||, let T : B → Z be the
completion of IdY .

It is clear that T has norm ≤ 1. We also see that T is a compact
operator, since U is dense in the unit ball of B and T (U) is the convex
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hull of a sequence which converges to 0 in Z (observe that, by (7),

‖2 k
4 dkε,η,i‖Z ≤ Ck22−

k
4 ).

Let Dε be the closure of Yε in B, let Rε be the closure of Yε in Z
and let Tε = T|Dε .

Now the argument goes like that of the previous proof:

Define βkε by (4). We have ‖yki ‖B∗ = ‖yki ‖X ≤ 2·2 k
2 and ‖yki ‖Dε ≤ 1,

therefore

(12) ‖βkε(k)‖B∗⊗̂Dε ≤ 2 · 2
k
2 for all ε, k.

Let us use the representation βkε − βk+1
η = 2−k

2k∑
j=1

ekj ⊗ dkε,η,j (cf.(6)).

We have ‖ekj‖Z∗ = 1 and, by the definition of the norm ||| |||, we have

|||dkε(k),ε(k+1),i||| ≤ 2−
k
4 , therefore

‖βkε(k) − βk+1
ε(k+1)‖B∗⊗̂Dε ≤ 2−

k
4 .

Consequently, for every m > k

(13) ‖βkε(k) − βmε(m)‖B∗⊗̂Dε ≤ 6 · 2−
k
4 .

Let again Ck = {ε ∈ C : ε(1) = · · · = ε(k) = 0} and E = Y k
0 . Let us

take δ = 1
4
2−

k
2 . Let ε,η ∈ Ck, ε 6= η, let m be the first index larger

than k such that ε(m) 6= η(m), thus Rη ⊂ β⊥ε(m). Let T : Dε → Rη
be such that ‖T|E − IdE‖ < δ. By Lemma 3, (12) and (13)

‖T‖ ≥ ‖βkε(k) − βmε(m)‖−1
B∗⊗̂Dε

(1− ‖βkε(k)‖B∗⊗̂Dεδ) > 2
k
4
−4.

Since Tε|E = IdE, by Lemma 1, the family {Tε : ε ∈ Ck} does not

2
k
4
−4− uniformly factor through a separable Banach space, hence the

family {Tε : ε ∈ C} does not uniformly factor through a separable
Banach space.

5. The Construction of yki

Let us denote

Ik0 = {1, . . . , 2k−1}, Ik1 = {2k−1 + 1, . . . , 2k}.

For k = 0, 1, 2, . . . , let uk1, . . . , u
k
3·2k , be orthonormal systems in R3·2k .

For j = 1, . . . , 2k+1 denote vkj = uk
2k+j

and let us define yki ∈ R∞ for

k = 1, 2, . . . ; i = 1, 2, . . . , 2k by

yki = vk−1
i + uki .
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Due to the orthonormality of the whole system {uki : k = 0, 1, 2, . . . ; i =
1, . . . , 3·2k}, we have

〈yki , ymj 〉 = 2〈uki , ymj 〉 = 2〈vk−1
i , ymj 〉 = 2δkmδij for all i, j, k,m,

therefore we have for every y ∈ Y (= span yki )

(14) 〈yki , y〉 = 2〈uki , y〉 = 2〈vk−1
i , y〉,

i.e. for every x ∈ Y the following tensors are identical in Y ∗ ⊗ Y :

yki ⊗ x = 2uki ⊗ x = 2vk−1
i ⊗ x.

This is a crucial observation which allows us to represent βkε ∈ Y ∗⊗ Y
in two different ways:

βkε = 2−k
∑
i∈Ikε

uki ⊗ yki

and

βkε = 2−k
∑
i∈Ikε

vk−1
i ⊗ yki .

Now we shall transform these formulas, writing βkε in terms of ekj , like
in (1). Let

ukj =
3·2k∑
j=1

uk(i, j)ekj for j = 1, . . . , 2k, vkj =
3·2k∑
j=1

vk(i, j)ekj for j = 1, . . . , 2k+1.

We have for I ⊂ {1, . . . , 2k}:

∑
i∈I

uki ⊗ yki =
∑
i∈I

uki ⊗ vk−1
i +

∑
i∈I

uki ⊗ uki =

3·2k∑
j=1

ekj ⊗ (V k−1)∗ΠIU
k(ekj ) +

3·2k∑
j=1

ekj ⊗ (Uk)∗ΠIU
k(ekj )

and ∑
i∈I

vk−1
i ⊗ yki =

∑
i∈I

vk−1
i ⊗ vk−1

i +
∑
i∈I

vk−1
i ⊗ uki =

3·2k−1∑
j=1

ek−1
j ⊗ (V k−1)∗ΠIV

k−1(ek−1
j ) +

3·2k−1∑
j=1

ekj ⊗ (Uk)∗ΠIV
k−1(ek−1

j ).

where Uk : R3·2k → R2k and V k : R3·2k → R2k+1
are defined by:

(15) Ukekj = (uk(i, j))2k

i=1 and V kekj = (vk(i, j))2k+1

i=1 .
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Denote now

(16) Uk
ε = ΠIkε

Uk, V k
ε = ΠIk+1

ε
V k.

We have for ε, η = 0, 1:

βkε − βk+1
η = 2−k

∑
i∈Ikε

uki ⊗ yki − 2−k−1
∑
i∈Ik+1

η

vki ⊗ yk+1
i

= 2−k−1

2k∑
j=1

ekj ⊗Dk
ε,ηe

k
j

where the map Dk
ε,η : R2k → Y is defined by

Dk
ε,η = 2(V k−1

ε )∗Uk
ε + 2(Uk

ε )∗Uk
ε − (V k

η )∗V k
η − (Uk+1

η )∗V k
η .

Denote

c1 = (V k−1
ε )∗Uk

ε (ekj ), c2 = [2(Uk
ε )∗Uk

ε−(V k
η )∗V k

η ](ekj ), c3 = (Uk+1
η )∗V k

η (ekj ).

Let dkε,η,j = Dk
ε,ηe

k
j = c1 + c2 + c3. It is clear that c1 ∈ R2·3k−1

, c2 ∈
R2·3k , c3 ∈ R2·3k+1

, therefore

‖dkε,η,j‖Z = ‖c1‖∞ + ‖c2‖∞ + ‖c3‖∞.
For a matrix Q = {q(i, j)} we denote ‖Q‖∞ = max |q(i, j)|. Since
c1, c2, c3 are columns of the corresponding matrices, we have :

‖c1‖∞ ≤ 2‖(V k−1
ε )∗Uk

ε ‖∞, ‖c2‖∞ ≤ ‖2(Uk
ε )∗Uk

ε − (V k
η )∗V k

η ‖∞,
‖c3‖∞ ≤ ‖(Uk+1

η )∗V k
η ‖∞.

The last section of this paper is devoted to proving that there exist
orthonormal systems uk1, . . . , u

k
3·2k in R3·2k so that for all k, j, ε, η we

have

‖(V k−1
ε )∗Uk

ε ‖∞ ≤ Ck22−
k
2 , ‖2(Uk

ε )∗Uk
ε − (V k

η )∗V k
η ‖∞ ≤ Ck22−

k
2 ,

‖(Uk+1
η )∗V k

η ‖∞ ≤ Ck22−
k
2 ,

(17)

which clearly implies our key estimate (7). The proof is probabilistic:

it turns out that choosing the system uk1, . . . , u
k
3·2k in R3·2k randomly

(w.r.t. the Haar measure on the orthogonal group), c1, c2, c3 will be

small (i.e. of order k22−
k
2 ) with large probability and therefore we can

find such systems so that (17) is satisfied.
Let us observe here that the reasons for the smallness of c1, c2, c3 are

somewhat different: c1 and c3 are small because the matrices Uk
ε and

V k−1
η are independent and therefore all the entries of (V k−1

η )∗Uk
ε are

small. On the other hand, in the matrices (Uk
ε )∗Uk

ε and (V k
η )∗V k

η the
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diagonal elements are about 1/4, respectively 1/2 and the off-diagonal
elements are small (because of independence). Consequently, all the
elements of 2(Uk

ε )∗Uk
ε −(V k

η )∗V k
η are small (the diagonal elements cancel

out) and this is why c2 is small.

6. A probabilistic lemma

For a matrix Q = {q(i, j)} we denote ‖Q‖∞ = max |q(i, j)|.

Lemma 4. For j = 1, 2, let Qj be an n×mj matrix, with m1,m2 ≤ 4n.
Let n1, n2, n3, n4 be natural numbers so that n = n1+n2+n3+n4. Then
there exist disjoint sets I1, I2, I3, I4 ⊂ {1, . . . , n} with #Iα = nα, α =
1, 2, 3, 4, such that for α, β in {1, 2, 3, 4},

(18) ‖Q∗1(pβΠIαQ2 − pαΠIβQ2)‖∞ ≤ C‖Q1‖∞‖Q2‖∞n1/2(log n)1/2,

where pα = nα
n

for α = 1, 2, 3, 4.

Remark. Instead of 4 one can take here any fixed natural number.

Proof. Let X1, . . . , Xn be i.i.d. variables taking values 1,2,3,4 with
probabilities p1, p2, p3, p4, respectively. The random sets Iα for α =
1, 2, 3, 4 are defined by

Iα = {1 ≤ i ≤ n : Xi = α}

(for the time being the Iα’s do not satisfy the conditions #Iα = nα ;
they will be appropriately modified at the end of the proof).

Let 1 ≤ i ≤ m1, 1 ≤ j ≤ m2 and let zij be the (i, j)-th entry of the
matrix Q∗1(pβΠIαQ2 − pαΠIβQ2). Clearly

zij = pβ
∑

{k:Xk=α}

x(k)y(k)− pα
∑

{k:Xk=β}

x(k)y(k)

where (x(1), . . . , x(n)) is the i-th column of Q1 and (y(1), . . . , y(n)) is
the j-th column of Q2.

Denote M = ‖Q1‖∞‖Q2‖∞.

Claim. We have for n > 1

(19) P [|zij| > 2M(n log n)1/2] < 2n−4,

(20) P [|#Iα − nα| > 2(n log n)1/2] < 2n−4.

Indeed, let Y be a random variable such that

P (Y = pα) = pβ, P (Y = −pβ) = pα, P (Y = 0) = 1− (pβ + pα),
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let Y1, Y2, . . . , Yn be independent copies of Y . It is clear that zij is
equidistributed with the random variable S =

∑
x(k)y(k)Yk. By Bern-

stein’s inequality (cf. [4],1.3.2, p.12)

P (|S| > 2M(n log n)1/2) ≤ 2n−4 for n > 1,

which is (19). (20) is obtained analogously taking Y such that P (Y =
1) = pα, P (Y = 0) = 1 − pα and S = Y1 + · · · + Yn. This proves the
Claim.

Now we see that the probability that

(21) |zij| ≤ 2M(n log n)1/2 for every 1 ≤ i ≤ m1, 1 ≤ j ≤ m2

and that also

(22) |#Iα − pα| ≤ 2(n log n)1/2 for α = 1, 2, 3, 4

is greater than 1−(m1m2 +4)2n−4 ≥ 1−32n−2−8n−4. Thus for n > 7
there exist Iα’s so that both (21) and (22) are satisfied. By (22) it is
clear that by removing from or adding to Iα’s fewer than 2(n log n)1/2

elements, we can obtain disjoint sets so that #Iα = nα for α = 1, 2, 3, 4.
This procedure will result in increasing |zij| by at most 2M(n log n)1/2.
Consequently, for n > 7, the Lemma is true with C = 4. By adjusting
C, it remains true for all n > 1.

The next lemma obviously implies (17) and this completes our proofs.

Lemma 5. For k = 0, 1, . . . there exist orthonormal systems uk1, . . . , u
k
3·2k

in R3·2k such that, with the notation of (16) we have

(23) ‖ukj‖∞ ≤ 2−
k
2 for j = 1, . . . , 3·2k; k = 0, 1, . . .

(24) ‖2(Uk
ε )∗Uk

ε − (V k
η )∗V k

η ‖∞ ≤ Ck22−
k
2 for ε, η = 0, 1; k = 1, 2, . . .

(25) ‖(Uk+1
ε )∗V k

ε ‖∞ ≤ Ck22−
k
2 for ε = 0, 1; k = 1, 2, . . . .

(observe that (V k−1
ε )∗Uk

ε = [(Uk
ε )∗V k−1ε]∗, thus (25) gives also

‖(V k−1
ε )∗Uk

ε ‖∞ ≤ Ck22−
k
2 for ε = 0, 1; k = 2, 3, . . . .)

Proof. . Let W k = (uk(i, j))1≤i,j≤3·2k for k = 0, 1, 2, . . . be a 3·2k × 3·2k

orthogonal matrix with ‖W k‖∞ ≤ 2−
k
2 (e.g. we can take the matrix

1

3

 −1 2 2
2 −1 2
2 2 −1

 tensored with the 2k × 2k orthonormal Walsh ma-

trix). We denote vk(i, j) = uk(2k + i, j) and define Uk, V k by (15).



COMPLEMENTABLY UNIVERSAL BANACH SPACES, II 15

Let us first apply Lemma 4 to Q1 = Q2 = W k, k ≥ 1 with n1 =
n2 = 2k−1, n3 = n4 = 2k. We obtain thus disjoint sets Ik0 , I

k
1 , J

k
0 , J

k
1 ⊂

{1, . . . , 3·2k} such that :

#Ik0 = #Ik1 = 2k−1,#Jk0 = #Jk1 = 2k and

(26) ‖(W k)∗(2ΠIkε
W k − ΠJkη

W k)‖∞ ≤ Ck22−
k
2 for ε, η = 0, 1.

By reordering the rows of W k, we can assume that

Ik0 = {1, . . . , 2k−1}, Ik1 = {2k−1 + 1, . . . , 2k},
Jk0 = {2k + 1, . . . , 2k+1}, Jk1 = {2k+1 + 1, . . . , 3·2k}.

We see now that

(W k)∗(2ΠIkε
W k − ΠJkη

W k) =

=(Uk
ε + V k

η )∗(2Uk
ε − V k

η ) = 2(Uk
ε )∗Uk

ε − (V k
η )∗V k

η ,

thus (26) becomes (24).
To obtain (25), we apply Lemma 4 again: Let Q1 be the 2k × 3 ·2k

matrix consisting of the first 2k rows of W k+1, let Q2 be the 2k × 3·2k
matrix consisting of rows numbered 2k + 1, 2k + 2, . . . , 2k+1 of W k.
Applying Lemma 4 with n1 = n2 = 2k−1, n3 = n4 = 0, we obtain a set
I ⊂ {1, . . . , 2k} with #I = 2k−1 such that

(27) ‖Q∗1(Π{1,...,2k}\IQ2 − ΠIQ2)‖∞ ≤ Ck22−
k
2 .

Let us now modify W k+1 by multiplying the I-numbered rows of W k+1

by −1; the remaining rows are not changed. The modified matrix will
still be called W k+1. We see that then

Q∗1(Π{1,...,2k}\IQ2 − ΠIQ2) = (Uk+1
0 )∗V k

0 ,

thus (27) becomes (25) for ε = 0. Analogously we obtain (25) for ε = 1.
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