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Abstract

The notion of Lipschitz p-summing operator is introduced. A non linear Pietsch
factorization theorem is proved for such operators and it is shown that a Lipschitz
p-summing operator that is linear is a p-summing operator in the usual sense.

1 Introduction

In this note we introduce a natural non linear version of p-summing operator, which
we call Lipschitz p-summing operator. In section 2 we prove a non linear version of
the Pietsch factorization theorem, show by example that the strong form of the Pietsch
domination theorem is not true for Lipschitz p-summing operators, and make a few
other remarks about these operators. In section 3 we “justify” our nomenclature by
proving that for a linear operator, the Lipschitz p-summing norm is the same as the
usual p-summing norm. Finally, in section 4 we raise some problems which we think are
interesting.

2 Pietsch factorization

The Lipschitz p-summing (1 ≤ p <∞) norm, πL
p (T ), of a (possibly non linear) mapping

T : X → Y between metric spaces is the smallest constant C so that for all (xi), (yi) in
X and all positive reals ai∑

ai‖Txi − Tyi‖p ≤ Cp sup
f∈B

X#

∑
ai|f(xi)− f(yi)|p (1)

Here BX# is the unit ball of X#, the Lipschitz dual of X, i.e., X# is the space of
all real valued Lipschitz functions under the (semi)-norm Lip(·); and ‖x − y‖ is the
distance from x to y in Y . We follow the usual convention of considering X as a pointed
metric space by designating a special point 0 ∈ X and identifying X# with the Lipschitz
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functions on X that are zero at 0. With this convention (X#,Lip(·)) is a Banach space
and BX# is a compact Hausdorff space in the topology of pointwise convergence on X.

Notice that the definition is the same if we restrict to ai = 1. Indeed, by approximation
it is enough to consider rational ai and thus, by clearing denominators, integer ai. Then,
given ai, xi, and yi, consider the new collection of vectors in which the pair (xi, yi) is
repeated ai times. (This observation was made with M. Mendel and G. Schechtman.)

It is clear that πL
p has the ideal property; i.e., πL

p (ATB) ≤ Lip(A)πL
p (T )Lip(B) when-

ever the compositions make sense. Also, if Y is a Banach space, the space of Lipschitz
p-summing maps from any metric space into Y is a Banach space under the norm πL

p .
If T is a linear operator, it is clear that πL

p (T ) ≤ πp(T ), where πp(·) is the usual
p-summing norm [5, p. 31]. In section 3 we prove that the reverse inequality is true.

We begin with a Pietsch factorization theorem for Lipschitz p-summing operators.

Theorem 1 The following are equivalent for a mapping T : X → Y between metric
spaces and C ≥ 0.

1. πL
p (T ) ≤ C.

2. There is a probability µ on BX# such that

‖Tx− Ty‖p ≤ Cp

∫
B

X#

|f(x)− f(y)|p dµ(f).

(Pietsch domination.)

3. For some (or any) isometric embedding J of Y into a 1-injective space Z, there is a
factorization

L∞(µ)
I∞,p−−−−−−−−−−−−−−→ Lp(µ)

A ↑ ↓ B
X

T−→ Y
J−−−−−−→ Z

with µ a probability and Lip(A) · Lip(B) ≤ C.

(Pietsch factorization.)

Proof: That (2) implies (3) is basically obvious: Let A : X → L∞(µ) be the natural
isometric embedding composed with the formal identity from C(BX#) into L∞(µ). Then
(2) says that the Lipschitz norm of B restricted to I∞,pAX is bounded by C, which is
just (3). (We have used implicitly the well known fact that every metric space embeds
into `∞(Γ) for some set Γ and that, by the non linear Hahn-Banach theorem, `∞(Γ) is
1-injective. See Lemma 1.1 in [3].)

For (3) implies (1), use
πL

p (T ) = πL
p (JT ) ≤ Lip(A)πL

p (I∞,p)Lip(B) ≤ Lip(A)πp(I∞,p)Lip(B) = Lip(A)Lip(B).
The proof of the main implication, that (1) implies (2), is like the proof of the (linear)

Pietsch factorization theorem (see, e.g., [5, p. 44]). Suppose πL
p (T ) = 1. Let Q be the
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convex cone in C(BX#) consisting of all positive linear combinations of functions of the
form ‖Tx − Ty‖ − Cp|f(x) − f(y)|p, as x and y range over X. Condition (1) says that
Q is disjoint from the the positive cone P = {F ∈ C(BX#) | F (f) > 0 ∀f ∈ X#},
which is an open convex subset of C(BX#). Thus by the separation theorem and the
Riesz representation theorem there is a finite signed Baire measure µ on BX# and a real
number c so that for all G ∈ Q and F ∈ P ,

∫
X# Gdµ ≤ c <

∫
X# F dµ. Since 0 ∈ Q

and all positive constants are in P , we see that c = 0, and since
∫

X# · dµ is positive on
the positive cone P of C(BX#), the signed measure µ is a positive measure, which we
can assume by rescaling is a probability measure. It is clear that the inequality in (2) is
satisfied.

It is worth noting that the conditions in Theorem 1 are also equivalent to

4. There is a probability µ on K, the closure in the topology of pointwise convergence on
X of the extreme points of BX#, so that

‖Tx− Ty‖p ≤ Cp

∫
K

|f(x)− f(y)|p dµ(f).

The proof that (1) implies (4) is the same as the proof that (1) implies (2) since the
supremum on the right side of (1), the definition of the Lipschitz p-summing norm, is the
same as

sup
f∈K

∑
ai|f(xi)− f(yi)|p.

One immediate consequence of Theorem 1 is that πL
p (T ) is a monotonely decreasing

function of p. Another consequence is that there is a version of Grothendieck’s theorem
(that every linear operator from an L1 space to a Hilbert space is 1-absolutely summing).
In the category of metric spaces with Lipschitz mappings as morphisms, weighted trees
play a role analogous to that of L1 in the linear theory. In particular, every finite
weighted tree has the lifting property, which is to say that if X is a finite weighted tree,
T : X → Y is a Lipschitz mapping from X into a metric space Y , and Q : Z → Y is
a 1-Lipschitz quotient mapping in the sense of [2], [7], then for each ε > 0 there is a
mapping S : X → Z so that Lip(S) ≤ Lip(T ) + ε and T = QS. Letting Y be a Hilbert
space and Z an L1 space, we see from Grothendieck’s theorem and the ideal property of
πL

1 that if every finite subset of X is contained in a finite subset of X that is a weighted
tree (in particular, if X is a tree or a metric tree–see [7]), then πL

1 (T ) ≤ KGLip(T ), where
KG is Grothendieck’s constant. Here we use the obvious fact that πL

p (T : X → Y ) is the
supremum of πL

p (T|K) as K ranges over finite subsets of X.
The strong form of the Pietsch domination theorem says that if X is a subspace

of C(K) for some compact Hausdorff space K, and T is a p-summing linear operator
with domain X, then there is a probability measure µ on K so that for all x ∈ X,
‖Tx‖p ≤ πp(T )p

∫
K
|x(t)|p dµ(t). It is easy to see that there is not a non linear version

of this result. Let Dn be the discrete metric space with n points so that the distance
between any two distinct points is one. We can embed Dn into C({−1, 1}n) in two
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essentially different ways. First, if Dn = {x1, . . . , xn}, let f(xk) = 1
2
rk, where rk is the

projection onto the kth coordinate. The image of this set under the canonical injection
from C({−1, 1}n) into Lp({−1, 1}n, µ) with µ the uniform probability on {−1, 1}n is a
discrete set with the p-th power of all distances one-half. This shows that the identity
on Dn has Lipschitz p-summing norm at most two. Secondly, let g(k), 1 ≤ k ≤ n, be
disjointly supported unit vectors in C({−1, 1}n). Then for any probability measure ν
on {−1, 1}n, the injection from C({−1, 1}n) into Lp({−1, 1}n, ν) shrinks the distance
between some pair of the g(k)’s to at most (2/n)1/p.

Incidentally, πL
p (IDn) tends to 2

1
p as n → ∞ and can be computed exactly. To see

this, note that the extreme points, Kn, of BD#
n

are of the form ±χA with A a non empty
subset of Dn ∼ {0}. This can be calculated directly or deduced from Theorem 1 in [6].
We calculate πL

p (IDn) in the (easier) case that n is even. Define a probability µ on Kn by
letting µ be the uniform measure on Jn/2 := {χA : |A| = n/2, A ⊂ Dn ∼ {0}} (so that
µ(e) = 0 for elements e of Kn ∼ Jn/2). Then for each pair of distinct points x and y in

Dn,
∫

Kn
|f(x) − f(y)|p dµ(f) = n

2(n−1)
, so that πL

p (IDn) ≤ (2 − 2
n
)

1
p . To see that µ is a

Pietsch measure for IDn , let ν be any Pietsch probability for IDn on Kn. We can clearly
assume that ν is supported on the positive elements in Kn. By averaging ν against the
permutations of Dn which fix 0, which is a group of isometries on Dn, we get another
Pietsch probability for IDn (which we continue to denote by ν) so that if we condition
ν on Jk := {χA : |A| = k,A ⊂ Dn ∼ {0}}, 1 ≤ k ≤ n − 1, the resulting probability νk

on Jk is the uniform probability. A trivial calculation shows that for x, y in Dn ∼ {0},∫
Jk
|f(x) − f(y)|p dνk(f) ≤ n

2(n−1)
. This proves that µ is a Pietsch measure for IDn and

hence πL
p (IDn) = (2− 2

n
)

1
p .

Our final comment on Lipschitz 1-summing operators is that the concept has appeared
in the literature even if the definition is new. In [4], Bourgain proved that every n point
metric space can be embedded into a Hilbert space with distortion at most C log n,
where C is an absolute constant. In fact, he really proved the much stronger result that
πL

1 (IX) ≤ C log n if IX is the identity mapping on an n point space X by making use
of a special embedding of X into a space C(KX) with KX a finite metric space and
constructing a probability on KX . Moreover, Bourgain’s construction has occasionally
been used in the computer science literature. The strong form of Bourgain’s theorem is
also used in [8] to prove an inequality that is valid for all metric spaces.

3 Linear operators

In this section we show that the Lipschitz p-summing norm of a linear operator is the
same as its p-summing norm. This justifies that the notion of Lipschitz p-summing
operator is really a generalization of the concept of linear p-summing operator.

Theorem 2 Let u be a bounded linear operator from X into Y and 1 ≤ p < ∞. Then
πL

p (u) = πp(u).
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Proof: Note that we can assume, without loss of generality, that dimY ≤ dimX =
N <∞. Indeed, it is clear from the definition that πL

p (u) is the supremum of πL
p (u|E) as

E ranges over finite dimensional subspaces of X and similarly for πL
p (u). That we can

assume dimY ≤ dimX is clear from the linearity of u.
Since dimY ≤ N , there is an embedding J of Y into `m∞ with m ≤ (3

ε
)N so that

‖J‖ = 1 and ‖J−1‖ ≤ 1 + ε. We then get the following non linear Pietsch factorization:

L∞(µ)
i∞,p−−→ Lp(µ)

α ↑ ↓ β
X

u−→ Y
J−→ `m∞

where Lip(α) = 1, Lip(β) ≤ πL
p (Ju) ≤ πL

p (u). We can also assume, without loss of
generality, that the probability µ is a separable measure.

We now use some non linear theory that can be found in the book [3].
1. The mapping α is weak∗ differentiable almost everywhere. This means that for
(Lebesgue) almost every x0 in X, there is a linear operator Dw∗

x0
(α): X → L∞(µ) so that

for all f ∈ L1(µ) and for every y ∈ X,

lim
t→0

〈
α(x0 + ty)− α(x0)

t
, f

〉
= 〈Dw∗

x0
(α)(y), f〉.

2. The operator i∞,pα is differentiable almost everywhere. This means that for almost
every x0 in X, there is a linear operator Dx0(i∞,pα): X → Lp(µ) so that

sup
‖y‖≤1

∥∥∥∥i∞,pα(x0 + ty)− i∞,pα(x0)

t
−Dx0(i∞,pα)(y)

∥∥∥∥
p

→ 0 as t→ 0.

When 1 < p < ∞, statement (2) follows from the reflexivity of Lp (see [3, Corollary
5.12 & Proposition 6.1]). For p = 1, just use (2) for p = 2 and compose with i2,1.

The mapping i∞,p is weak∗ to weak continuous, so Dx0(i∞,pα) = i∞,pD
w∗
x0

(α) whenever
both derivatives exist. Since they both exist almost everywhere, by making several
translations we can assume without loss of generality that this equation is true for x0 = 0
and also that α(0) = 0.

Next we show that in the factorization diagram the non linear map α can be replace
by the linear operator Dw∗

0 (α) by constructing a mapping β̃ : Lp(µ) → `m∞ so that
β̃i∞,pD

w∗
0 (α) = Ju and Lip(β̃) ≤ Lip(β). To do this, define βn : Lp(µ) → `m∞ by

βn(y) := nβ( y
n
) and note that Lip(βn) = Lip(β). We have for each x in X

‖Ju(x)− βni∞,pD
w∗

0 (α)(x)‖ = ‖βnni∞,pα(x/n)− βnD0(i∞,pα)(x)‖
≤ Lip(β)‖ni∞,pα(x/n)−D0(i∞,pα)(x)‖

which tends to zero as n→∞. For β̃ we can take any cluster point of βn in the space of
functions from Lp(µ) into `m∞; such exist because βn is uniformly Lipschitz and βn(0) = 0.
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Summarizing, we see that we have a factorization

L∞(µ)
i∞,p−−→ Lp(µ)

α̃ ↑ ↓ β̃
X

u−→ Y
J−→ `m∞

with α̃ linear, ‖α̃‖ ≤ Lip(α), and Lip(β̃) ≤ Lip(β).
The final step involves replacing β̃ with a linear operator. Since the restriction of β̃ to

the linear subspace i∞,pα̃[X] is linear and `m∞ is reflexive, this follows from [3, Theorem
7.2], which is proved by a simple invariant means argument.

4 Open problems and concluding remarks

Problem 1 Is there a composition formula for Lipschitz p-summing operators? That is,
do we have πL

p (TS) ≤ πL
r (T )πL

s (S), when 1
p
≤ (1

r
+ 1

s
) ∧ 1?

Say that a Lipschitz mapping T : X → Y is Lipschitz p-integral if it satisfies a
factorization diagram as in condition (3) of Theorem 1, except with J being the canonical
isometry from Y into (Y #)∗. We then define the Lipschitz p-integral norm IL

p (T ) of T to
be the infimum of Lip(A) · Lip(B), the infimum being taken over all such factorizations.
When T is a linear operator, this is the same as the usual p-integral norm of T . Indeed,
in this case one can use for J the canonical isometry from Y into Y ∗∗ because Y ∗∗ is
norm one complemented in (Y #)∗. Then the proof that Ip(T ) ≤ IL

p (T ) is identical to the
proof of Theorem 2.

Problem 2 Is every Lipschitz 2-summing operator Lipschitz 2-integral?

In the case where the target space Y is a Hilbert space, problem 2 has an affirmative
answer by Kirszbraun’s theorem [3, p. 18]. If Y has K. Ball’s Markov cotype 2 property
[1], it follows from Ball’s work that the answer is still positive, although his result does
not yield that IL

p (T ) and πL
p (T ) are equal. It is worth mentioning that the work of Naor,

Peres, Schramm, and Sheffield [9] combines with Ball’s result to yield that for 2 ≤ p <∞,
every Lipschitz p-summing operator into Lr, 1 < r ≤ 2, is Lipschitz p-integral.

We mentioned in section 2 that ΠL
p (X, Y ), the class of Lipschitz p-summing operators

from X into Y , is a Banach space under the norm πL
p (·) when Y is a Banach space.

Problem 3 When Y is a Banach space and X is finite, what is the dual of ΠL
p (X, Y )?

In section 2 we noted that there is a version of Grothendieck’s theorem that is true
in the non linear setting. Are there other versions? In particular, we ask the following.

Problem 4 Is every Lipschitz mapping from an L1 space to a Hilbert space Lipschitz
1-summing? Is every Lipschitz mapping from a C(K) space to a Hilbert space Lipschitz
2-summing?
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It is elementary that for a linear operator T : X → Y , πp(T ) is the supremum of
πp(TS) as S ranges over all operators from `p′ into X of norm at most one. This leads
us to ask

Problem 5 If T : X → Y is Lipschitz, is πL
p (T ) is the supremum of πL

p (TS) as S ranges
over all mappings from finite subsets of `p′ into X having Lipschitz constant at most one?

Since all finite metric spaces embed isometrically into `∞, the answer to problem 5 is
yes for p = 1.

Of course, all of the above problems are special cases of the general

Problem 6 What results about p-summing operators have analogues for Lipschitz p-
summing operators?
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