Lipschitz p-summing Operators*

Jeffrey D. Farmer and William B. Johnson ${ }^{\dagger}$

Abstract

The notion of Lipschitz p-summing operator is introduced. A non linear Pietsch factorization theorem is proved for such operators and it is shown that a Lipschitz p-summing operator that is linear is a p-summing operator in the usual sense.

1 Introduction

In this note we introduce a natural non linear version of p-summing operator, which we call Lipschitz p-summing operator. In section 2 we prove a non linear version of the Pietsch factorization theorem, show by example that the strong form of the Pietsch domination theorem is not true for Lipschitz p-summing operators, and make a few other remarks about these operators. In section 3 we "justify" our nomenclature by proving that for a linear operator, the Lipschitz p-summing norm is the same as the usual p-summing norm. Finally, in section 4 we raise some problems which we think are interesting.

2 Pietsch factorization

The Lipschitz p-summing $(1 \leq p<\infty)$ norm, $\pi_{p}^{L}(T)$, of a (possibly non linear) mapping $T: X \rightarrow Y$ between metric spaces is the smallest constant C so that for all $\left(x_{i}\right),\left(y_{i}\right)$ in X and all positive reals a_{i}

$$
\begin{equation*}
\sum a_{i}\left\|T x_{i}-T y_{i}\right\|^{p} \leq C^{p} \sup _{f \in B_{X \#}} \sum a_{i}\left|f\left(x_{i}\right)-f\left(y_{i}\right)\right|^{p} \tag{1}
\end{equation*}
$$

Here $B_{X \#}$ is the unit ball of $X^{\#}$, the Lipschitz dual of X, i.e., $X^{\#}$ is the space of all real valued Lipschitz functions under the (semi)-norm $\operatorname{Lip}(\cdot)$; and $\|x-y\|$ is the distance from x to y in Y. We follow the usual convention of considering X as a pointed metric space by designating a special point $0 \in X$ and identifying $X^{\#}$ with the Lipschitz

[^0]functions on X that are zero at 0 . With this convention $\left(X^{\#}, \operatorname{Lip}(\cdot)\right)$ is a Banach space and $B_{X \#}$ is a compact Hausdorff space in the topology of pointwise convergence on X.

Notice that the definition is the same if we restrict to $a_{i}=1$. Indeed, by approximation it is enough to consider rational a_{i} and thus, by clearing denominators, integer a_{i}. Then, given a_{i}, x_{i}, and y_{i}, consider the new collection of vectors in which the pair $\left(x_{i}, y_{i}\right)$ is repeated a_{i} times. (This observation was made with M. Mendel and G. Schechtman.)

It is clear that π_{p}^{L} has the ideal property; i.e., $\pi_{p}^{L}(A T B) \leq \operatorname{Lip}(A) \pi_{p}^{L}(T) \operatorname{Lip}(B)$ whenever the compositions make sense. Also, if Y is a Banach space, the space of Lipschitz p-summing maps from any metric space into Y is a Banach space under the norm π_{p}^{L}.

If T is a linear operator, it is clear that $\pi_{p}^{L}(T) \leq \pi_{p}(T)$, where $\pi_{p}(\cdot)$ is the usual p-summing norm [5, p. 31]. In section 3 we prove that the reverse inequality is true.

We begin with a Pietsch factorization theorem for Lipschitz p-summing operators.
Theorem 1 The following are equivalent for a mapping $T: X \rightarrow Y$ between metric spaces and $C \geq 0$.

1. $\pi_{p}^{L}(T) \leq C$.
2. There is a probability μ on $B_{X} \#$ such that

$$
\|T x-T y\|^{p} \leq C^{p} \int_{B_{X} \#}|f(x)-f(y)|^{p} d \mu(f) .
$$

(Pietsch domination.)
3. For some (or any) isometric embedding J of Y into a 1-injective space Z, there is a factorization

with μ a probability and $\operatorname{Lip}(A) \cdot \operatorname{Lip}(B) \leq C$.
(Pietsch factorization.)
Proof: That (2) implies (3) is basically obvious: Let $A: X \rightarrow L_{\infty}(\mu)$ be the natural isometric embedding composed with the formal identity from $C\left(B_{X \#}\right)$ into $L_{\infty}(\mu)$. Then (2) says that the Lipschitz norm of B restricted to $I_{\infty, p} A X$ is bounded by C, which is just (3). (We have used implicitly the well known fact that every metric space embeds into $\ell_{\infty}(\Gamma)$ for some set Γ and that, by the non linear Hahn-Banach theorem, $\ell_{\infty}(\Gamma)$ is 1-injective. See Lemma 1.1 in [3].)

For (3) implies (1), use
$\pi_{p}^{L}(T)=\pi_{p}^{L}(J T) \leq \operatorname{Lip}(A) \pi_{p}^{L}\left(I_{\infty, p}\right) \operatorname{Lip}(B) \leq \operatorname{Lip}(A) \pi_{p}\left(I_{\infty, p}\right) \operatorname{Lip}(B)=\operatorname{Lip}(A) \operatorname{Lip}(B)$.
The proof of the main implication, that (1) implies (2), is like the proof of the (linear) Pietsch factorization theorem (see, e.g., [5, p. 44]). Suppose $\pi_{p}^{L}(T)=1$. Let Q be the
convex cone in $C\left(B_{X^{\#}}\right)$ consisting of all positive linear combinations of functions of the form $\|T x-T y\|-C^{p}|f(x)-f(y)|^{p}$, as x and y range over X. Condition (1) says that Q is disjoint from the the positive cone $P=\left\{F \in C\left(B_{X \#}\right) \mid F(f)>0 \forall f \in X^{\#}\right\}$, which is an open convex subset of $C\left(B_{X \#}\right)$. Thus by the separation theorem and the Riesz representation theorem there is a finite signed Baire measure μ on $B_{X} \#$ and a real number c so that for all $G \in Q$ and $F \in P, \int_{X^{\#}} G d \mu \leq c<\int_{X^{\#}} F d \mu$. Since $0 \in Q$ and all positive constants are in P, we see that $c=0$, and since $\int_{X \#} \cdot d \mu$ is positive on the positive cone P of $C\left(B_{X} \#\right)$, the signed measure μ is a positive measure, which we can assume by rescaling is a probability measure. It is clear that the inequality in (2) is satisfied.

It is worth noting that the conditions in Theorem 1 are also equivalent to
4. There is a probability μ on K, the closure in the topology of pointwise convergence on X of the extreme points of $B_{X \#}$, so that

$$
\|T x-T y\|^{p} \leq C^{p} \int_{K}|f(x)-f(y)|^{p} d \mu(f)
$$

The proof that (1) implies (4) is the same as the proof that (1) implies (2) since the supremum on the right side of (1), the definition of the Lipschitz p-summing norm, is the same as

$$
\sup _{f \in K} \sum a_{i}\left|f\left(x_{i}\right)-f\left(y_{i}\right)\right|^{p}
$$

One immediate consequence of Theorem 1 is that $\pi_{p}^{L}(T)$ is a monotonely decreasing function of p. Another consequence is that there is a version of Grothendieck's theorem (that every linear operator from an L_{1} space to a Hilbert space is 1-absolutely summing). In the category of metric spaces with Lipschitz mappings as morphisms, weighted trees play a role analogous to that of L_{1} in the linear theory. In particular, every finite weighted tree has the lifting property, which is to say that if X is a finite weighted tree, $T: X \rightarrow Y$ is a Lipschitz mapping from X into a metric space Y, and $Q: Z \rightarrow Y$ is a 1-Lipschitz quotient mapping in the sense of [2], [7], then for each $\varepsilon>0$ there is a mapping $S: X \rightarrow Z$ so that $\operatorname{Lip}(S) \leq \operatorname{Lip}(T)+\varepsilon$ and $T=Q S$. Letting Y be a Hilbert space and Z an L_{1} space, we see from Grothendieck's theorem and the ideal property of π_{1}^{L} that if every finite subset of X is contained in a finite subset of X that is a weighted tree (in particular, if X is a tree or a metric tree-see [7]), then $\pi_{1}^{L}(T) \leq K_{G} \operatorname{Lip}(T)$, where K_{G} is Grothendieck's constant. Here we use the obvious fact that $\pi_{p}^{L}(T: X \rightarrow Y)$ is the supremum of $\pi_{p}^{L}\left(T_{\mid K}\right)$ as K ranges over finite subsets of X.

The strong form of the Pietsch domination theorem says that if X is a subspace of $C(K)$ for some compact Hausdorff space K, and T is a p-summing linear operator with domain X, then there is a probability measure μ on K so that for all $x \in X$, $\|T x\|^{p} \leq \pi_{p}(T)^{p} \int_{K}|x(t)|^{p} d \mu(t)$. It is easy to see that there is not a non linear version of this result. Let D_{n} be the discrete metric space with n points so that the distance between any two distinct points is one. We can embed D_{n} into $C\left(\{-1,1\}^{n}\right)$ in two
essentially different ways. First, if $D_{n}=\left\{x_{1}, \ldots, x_{n}\right\}$, let $f\left(x_{k}\right)=\frac{1}{2} r_{k}$, where r_{k} is the projection onto the kth coordinate. The image of this set under the canonical injection from $C\left(\{-1,1\}^{n}\right)$ into $L_{p}\left(\{-1,1\}^{n}, \mu\right)$ with μ the uniform probability on $\{-1,1\}^{n}$ is a discrete set with the p-th power of all distances one-half. This shows that the identity on D_{n} has Lipschitz p-summing norm at most two. Secondly, let $g(k), 1 \leq k \leq n$, be disjointly supported unit vectors in $C\left(\{-1,1\}^{n}\right)$. Then for any probability measure ν on $\{-1,1\}^{n}$, the injection from $C\left(\{-1,1\}^{n}\right)$ into $L_{p}\left(\{-1,1\}^{n}, \nu\right)$ shrinks the distance between some pair of the $g(k)^{\prime}$'s to at most $(2 / n)^{1 / p}$.

Incidentally, $\pi_{p}^{L}\left(I_{D_{n}}\right)$ tends to $2^{\frac{1}{p}}$ as $n \rightarrow \infty$ and can be computed exactly. To see this, note that the extreme points, K_{n}, of $B_{D_{n}^{\#}}$ are of the form $\pm \chi_{A}$ with A a non empty subset of $D_{n} \sim\{0\}$. This can be calculated directly or deduced from Theorem 1 in [6]. We calculate $\pi_{p}^{L}\left(I_{D_{n}}\right)$ in the (easier) case that n is even. Define a probability μ on K_{n} by letting μ be the uniform measure on $J_{n / 2}:=\left\{\chi_{A}:|A|=n / 2, A \subset D_{n} \sim\{0\}\right\}$ (so that $\mu(e)=0$ for elements e of $\left.K_{n} \sim J_{n / 2}\right)$. Then for each pair of distinct points x and y in $D_{n}, \int_{K_{n}}|f(x)-f(y)|^{p} d \mu(f)=\frac{n}{2(n-1)}$, so that $\pi_{p}^{L}\left(I_{D_{n}}\right) \leq\left(2-\frac{2}{n}\right)^{\frac{1}{p}}$. To see that μ is a Pietsch measure for $I_{D_{n}}$, let ν be any Pietsch probability for $I_{D_{n}}$ on K_{n}. We can clearly assume that ν is supported on the positive elements in K_{n}. By averaging ν against the permutations of D_{n} which fix 0 , which is a group of isometries on D_{n}, we get another Pietsch probability for $I_{D_{n}}$ (which we continue to denote by ν) so that if we condition ν on $J_{k}:=\left\{\chi_{A}:|A|=k, A \subset D_{n} \sim\{0\}\right\}, 1 \leq k \leq n-1$, the resulting probability ν_{k} on J_{k} is the uniform probability. A trivial calculation shows that for x, y in $D_{n} \sim\{0\}$, $\int_{J_{k}}|f(x)-f(y)|^{p} d \nu_{k}(f) \leq \frac{n}{2(n-1)}$. This proves that μ is a Pietsch measure for $I_{D_{n}}$ and hence $\pi_{p}^{L}\left(I_{D_{n}}\right)=\left(2-\frac{2}{n}\right)^{\frac{1}{p}}$.

Our final comment on Lipschitz 1-summing operators is that the concept has appeared in the literature even if the definition is new. In [4], Bourgain proved that every n point metric space can be embedded into a Hilbert space with distortion at most $C \log n$, where C is an absolute constant. In fact, he really proved the much stronger result that $\pi_{1}^{L}\left(I_{X}\right) \leq C \log n$ if I_{X} is the identity mapping on an n point space X by making use of a special embedding of X into a space $C\left(K_{X}\right)$ with K_{X} a finite metric space and constructing a probability on K_{X}. Moreover, Bourgain's construction has occasionally been used in the computer science literature. The strong form of Bourgain's theorem is also used in [8] to prove an inequality that is valid for all metric spaces.

3 Linear operators

In this section we show that the Lipschitz p-summing norm of a linear operator is the same as its p-summing norm. This justifies that the notion of Lipschitz p-summing operator is really a generalization of the concept of linear p-summing operator.

Theorem 2 Let u be a bounded linear operator from X into Y and $1 \leq p<\infty$. Then $\pi_{p}^{L}(u)=\pi_{p}(u)$.

Proof: Note that we can assume, without loss of generality, that $\operatorname{dim} Y \leq \operatorname{dim} X=$ $N<\infty$. Indeed, it is clear from the definition that $\pi_{p}^{L}(u)$ is the supremum of $\pi_{p}^{L}\left(u_{\mid E}\right)$ as E ranges over finite dimensional subspaces of X and similarly for $\pi_{p}^{L}(u)$. That we can assume $\operatorname{dim} Y \leq \operatorname{dim} X$ is clear from the linearity of u.

Since $\operatorname{dim} Y \leq N$, there is an embedding J of Y into ℓ_{∞}^{m} with $m \leq\left(\frac{3}{\varepsilon}\right)^{N}$ so that $\|J\|=1$ and $\left\|J^{-1}\right\| \leq 1+\varepsilon$. We then get the following non linear Pietsch factorization:

where $\operatorname{Lip}(\alpha)=1, \operatorname{Lip}(\beta) \leq \pi_{p}^{L}(J u) \leq \pi_{p}^{L}(u)$. We can also assume, without loss of generality, that the probability μ is a separable measure.

We now use some non linear theory that can be found in the book [3].

1. The mapping α is weak* differentiable almost everywhere. This means that for (Lebesgue) almost every x_{0} in X, there is a linear operator $D_{x_{0}}^{w^{*}}(\alpha): X \rightarrow L_{\infty}(\mu)$ so that for all $f \in L_{1}(\mu)$ and for every $y \in X$,

$$
\lim _{t \rightarrow 0}\left\langle\frac{\alpha\left(x_{0}+t y\right)-\alpha\left(x_{0}\right)}{t}, f\right\rangle=\left\langle D_{x_{0}}^{w^{*}}(\alpha)(y), f\right\rangle
$$

2. The operator $i_{\infty, p} \alpha$ is differentiable almost everywhere. This means that for almost every x_{0} in X, there is a linear operator $D_{x_{0}}\left(i_{\infty, p} \alpha\right): X \rightarrow L_{p}(\mu)$ so that

$$
\sup _{\|y\| \leq 1}\left\|\frac{i_{\infty, p} \alpha\left(x_{0}+t y\right)-i_{\infty, p} \alpha\left(x_{0}\right)}{t}-D_{x_{0}}\left(i_{\infty, p} \alpha\right)(y)\right\|_{p} \rightarrow 0 \quad \text { as } \quad t \rightarrow 0 .
$$

When $1<p<\infty$, statement (2) follows from the reflexivity of L_{p} (see [3, Corollary 5.12 \& Proposition 6.1]). For $p=1$, just use (2) for $p=2$ and compose with $i_{2,1}$.

The mapping $i_{\infty, p}$ is weak* to weak continuous, so $D_{x_{0}}\left(i_{\infty, p} \alpha\right)=i_{\infty, p} D_{x_{0}}^{w^{*}}(\alpha)$ whenever both derivatives exist. Since they both exist almost everywhere, by making several translations we can assume without loss of generality that this equation is true for $x_{0}=0$ and also that $\alpha(0)=0$.

Next we show that in the factorization diagram the non linear map α can be replace by the linear operator $D_{0}^{w^{*}}(\alpha)$ by constructing a mapping $\tilde{\beta}: L_{p}(\mu) \rightarrow \ell_{\infty}^{m}$ so that $\tilde{\beta} i_{\infty, p} D_{0}^{w^{*}}(\alpha)=J u$ and $\operatorname{Lip}(\tilde{\beta}) \leq \operatorname{Lip}(\beta)$. To do this, define $\beta_{n}: L_{p}(\mu) \rightarrow \ell_{\infty}^{m}$ by $\beta_{n}(y):=n \beta\left(\frac{y}{n}\right)$ and note that $\operatorname{Lip}\left(\beta_{n}\right)=\operatorname{Lip}(\beta)$. We have for each x in X

$$
\begin{gathered}
\left\|J u(x)-\beta_{n} i_{\infty, p} D_{0}^{w^{*}}(\alpha)(x)\right\|=\left\|\beta_{n} n i_{\infty, p} \alpha(x / n)-\beta_{n} D_{0}\left(i_{\infty, p} \alpha\right)(x)\right\| \\
\leq \operatorname{Lip}(\beta)\left\|n i_{\infty, p} \alpha(x / n)-D_{0}\left(i_{\infty, p} \alpha\right)(x)\right\|
\end{gathered}
$$

which tends to zero as $n \rightarrow \infty$. For $\tilde{\beta}$ we can take any cluster point of β_{n} in the space of functions from $L_{p}(\mu)$ into ℓ_{∞}^{m}; such exist because β_{n} is uniformly Lipschitz and $\beta_{n}(0)=0$.

Summarizing, we see that we have a factorization

with $\tilde{\alpha}$ linear, $\|\tilde{\alpha}\| \leq \operatorname{Lip}(\alpha)$, and $\operatorname{Lip}(\tilde{\beta}) \leq \operatorname{Lip}(\beta)$.
The final step involves replacing $\tilde{\beta}$ with a linear operator. Since the restriction of $\tilde{\beta}$ to the linear subspace $i_{\infty, p} \tilde{\alpha}[X]$ is linear and ℓ_{∞}^{m} is reflexive, this follows from [3, Theorem 7.2], which is proved by a simple invariant means argument.

4 Open problems and concluding remarks

Problem 1 Is there a composition formula for Lipschitz p-summing operators? That is, do we have $\pi_{p}^{L}(T S) \leq \pi_{r}^{L}(T) \pi_{s}^{L}(S)$, when $\frac{1}{p} \leq\left(\frac{1}{r}+\frac{1}{s}\right) \wedge 1$?

Say that a Lipschitz mapping $T: X \rightarrow Y$ is Lipschitz p-integral if it satisfies a factorization diagram as in condition (3) of Theorem 1, except with J being the canonical isometry from Y into $\left(Y^{\#}\right)^{*}$. We then define the Lipschitz p-integral norm $I_{p}^{L}(T)$ of T to be the infimum of $\operatorname{Lip}(A) \cdot \operatorname{Lip}(B)$, the infimum being taken over all such factorizations. When T is a linear operator, this is the same as the usual p-integral norm of T. Indeed, in this case one can use for J the canonical isometry from Y into $Y^{* *}$ because $Y^{* *}$ is norm one complemented in $\left(Y^{\#}\right)^{*}$. Then the proof that $I_{p}(T) \leq I_{p}^{L}(T)$ is identical to the proof of Theorem 2.

Problem 2 Is every Lipschitz 2-summing operator Lipschitz 2-integral?

In the case where the target space Y is a Hilbert space, problem 2 has an affirmative answer by Kirszbraun's theorem [3, p. 18]. If Y has K. Ball's Markov cotype 2 property [1], it follows from Ball's work that the answer is still positive, although his result does not yield that $I_{p}^{L}(T)$ and $\pi_{p}^{L}(T)$ are equal. It is worth mentioning that the work of Naor, Peres, Schramm, and Sheffield [9] combines with Ball's result to yield that for $2 \leq p<\infty$, every Lipschitz p-summing operator into $L_{r}, 1<r \leq 2$, is Lipschitz p-integral.

We mentioned in section 2 that $\Pi_{p}^{L}(X, Y)$, the class of Lipschitz p-summing operators from X into Y, is a Banach space under the norm $\pi_{p}^{L}(\cdot)$ when Y is a Banach space.

Problem 3 When Y is a Banach space and X is finite, what is the dual of $\Pi_{p}^{L}(X, Y)$?
In section 2 we noted that there is a version of Grothendieck's theorem that is true in the non linear setting. Are there other versions? In particular, we ask the following.

Problem 4 Is every Lipschitz mapping from an L_{1} space to a Hilbert space Lipschitz 1-summing? Is every Lipschitz mapping from a $C(K)$ space to a Hilbert space Lipschitz 2 -summing?

It is elementary that for a linear operator $T: X \rightarrow Y, \pi_{p}(T)$ is the supremum of $\pi_{p}(T S)$ as S ranges over all operators from $\ell_{p^{\prime}}$ into X of norm at most one. This leads us to ask

Problem 5 If $T: X \rightarrow Y$ is Lipschitz, is $\pi_{p}^{L}(T)$ is the supremum of $\pi_{p}^{L}(T S)$ as S ranges over all mappings from finite subsets of $\ell_{p^{\prime}}$ into X having Lipschitz constant at most one?

Since all finite metric spaces embed isometrically into ℓ_{∞}, the answer to problem 5 is yes for $p=1$.

Of course, all of the above problems are special cases of the general
Problem 6 What results about p-summing operators have analogues for Lipschitz psumming operators?

References

[1] Ball, K. Markov chains, Riesz transforms and Lipschitz maps. Geom. Funct. Anal. 2 (1992), no. 2, 137-172.
[2] Bates, S.; Johnson, W. B.; Lindenstrauss, J.; Preiss, D.; Schechtman, G. Affine approximation of Lipschitz functions and nonlinear quotients. Geom. Funct. Anal. 9 (1999), no. 6, 1092-1127.
[3] Benyamini, Yoav; Lindenstrauss, Joram. Geometric nonlinear functional analysis. Vol. 1. American Mathematical Society Colloquium Publications, 48. American Mathematical Society, Providence, RI, 2000.
[4] Bourgain, J. On Lipschitz embedding of finite metric spaces in Hilbert space. Israel J. Math. 52 (1985), no. 1-2, 46-52.
[5] Diestel, Joe; Jarchow, Hans; Tonge, Andrew. Absolutely summing operators. Cambridge Studies in Advanced Mathematics, 43. Cambridge University Press, Cambridge, 1995.
[6] Farmer, Jeffrey D. Extreme points of the unit ball of the space of Lipschitz functions. Proc. Amer. Math. Soc. 121 (1994), no. 3, 807-813.
[7] Johnson, William B.; Lindenstrauss, Joram; Preiss, David; Schechtman, Gideon. Lipschitz quotients from metric trees and from Banach spaces containing l_{1}. J. Funct. Anal. 194 (2002), no. 2, 332-346.
[8] Johnson, William B.; Schechtman, Gideon.
Diamond graphs and super-reflexivity (submitted).
[9] Naor, Assaf; Peres, Yuval; Schramm, Oded; Sheffield, Scott. Markov chains in smooth Banach spaces and Gromov-hyperbolic metric spaces. Duke Math. J. 134 (2006), no. 1, 165-197. (Reviewer: Keith Ball) 46B09 (46B20 60B11 60J05)

Jeffrey D. Farmer
Department of Mathematics
University of Denver
Denver CO, USA
E-mail: jdfarmer89@hotmail.com
William B. Johnson
Department Mathematics
Texas A\&M University
College Station, TX, USA
E-mail: johnson@math.tamu.edu

[^0]: *AMS subject classification: 46B28,46T99, 47H99,47L20. Key words: p-summing operator, absolutely summing operator.
 ${ }^{\dagger}$ Supported in part by NSF DMS-0503688

