Lipschitz p-summing Operators^{*}

Jeffrey D. Farmer and William B. Johnson[†]

Abstract

The notion of Lipschitz p-summing operator is introduced. A non linear Pietsch factorization theorem is proved for such operators and it is shown that a Lipschitz p-summing operator that is linear is a p-summing operator in the usual sense.

1 Introduction

In this note we introduce a natural non linear version of p-summing operator, which we call Lipschitz p-summing operator. In section 2 we prove a non linear version of the Pietsch factorization theorem, show by example that the strong form of the Pietsch domination theorem is not true for Lipschitz p-summing operators, and make a few other remarks about these operators. In section 3 we "justify" our nomenclature by proving that for a linear operator, the Lipschitz p-summing norm is the same as the usual p-summing norm. Finally, in section 4 we raise some problems which we think are interesting.

2 Pietsch factorization

The Lipschitz p-summing $(1 \le p < \infty)$ norm, $\pi_p^L(T)$, of a (possibly non linear) mapping $T: X \to Y$ between metric spaces is the smallest constant C so that for all (x_i) , (y_i) in X and all positive reals a_i

$$\sum a_i \|Tx_i - Ty_i\|^p \le C^p \sup_{f \in B_{X^{\#}}} \sum a_i |f(x_i) - f(y_i)|^p \tag{1}$$

Here $B_{X^{\#}}$ is the unit ball of $X^{\#}$, the Lipschitz dual of X, i.e., $X^{\#}$ is the space of all real valued Lipschitz functions under the (semi)-norm Lip(·); and ||x - y|| is the distance from x to y in Y. We follow the usual convention of considering X as a pointed metric space by designating a special point $0 \in X$ and identifying $X^{\#}$ with the Lipschitz

^{*}AMS subject classification: 46B28,46T99, 47H99,47L20. Key words: $p\mbox{-summing}$ operator, absolutely summing operator.

[†]Supported in part by NSF DMS-0503688

functions on X that are zero at 0. With this convention $(X^{\#}, \operatorname{Lip}(\cdot))$ is a Banach space and $B_{X^{\#}}$ is a compact Hausdorff space in the topology of pointwise convergence on X.

Notice that the definition is the same if we restrict to $a_i = 1$. Indeed, by approximation it is enough to consider rational a_i and thus, by clearing denominators, integer a_i . Then, given a_i , x_i , and y_i , consider the new collection of vectors in which the pair (x_i, y_i) is repeated a_i times. (This observation was made with M. Mendel and G. Schechtman.)

It is clear that π_p^L has the ideal property; i.e., $\pi_p^L(ATB) \leq \operatorname{Lip}(A)\pi_p^L(T)\operatorname{Lip}(B)$ whenever the compositions make sense. Also, if Y is a Banach space, the space of Lipschitz *p*-summing maps from any metric space into Y is a Banach space under the norm π_p^L .

If T is a linear operator, it is clear that $\pi_p^L(T) \leq \pi_p(T)$, where $\pi_p(\cdot)$ is the usual p-summing norm [5, p. 31]. In section 3 we prove that the reverse inequality is true.

We begin with a Pietsch factorization theorem for Lipschitz *p*-summing operators.

Theorem 1 The following are equivalent for a mapping $T : X \to Y$ between metric spaces and $C \ge 0$.

- 1. $\pi_p^L(T) \le C$.
- 2. There is a probability μ on $B_{X^{\#}}$ such that

$$||Tx - Ty||^p \le C^p \int_{B_{X^{\#}}} |f(x) - f(y)|^p d\mu(f).$$

(Pietsch domination.)

3. For some (or any) isometric embedding J of Y into a 1-injective space Z, there is a factorization

with μ a probability and $\operatorname{Lip}(A) \cdot \operatorname{Lip}(B) \leq C$.

(Pietsch factorization.)

Proof: That (2) implies (3) is basically obvious: Let $A : X \to L_{\infty}(\mu)$ be the natural isometric embedding composed with the formal identity from $C(B_{X^{\#}})$ into $L_{\infty}(\mu)$. Then (2) says that the Lipschitz norm of B restricted to $I_{\infty,p}AX$ is bounded by C, which is just (3). (We have used implicitly the well known fact that every metric space embeds into $\ell_{\infty}(\Gamma)$ for some set Γ and that, by the non linear Hahn-Banach theorem, $\ell_{\infty}(\Gamma)$ is 1-injective. See Lemma 1.1 in [3].)

For (3) implies (1), use $\pi_p^L(T) = \pi_p^L(JT) \leq \operatorname{Lip}(A)\pi_p^L(I_{\infty,p})\operatorname{Lip}(B) \leq \operatorname{Lip}(A)\pi_p(I_{\infty,p})\operatorname{Lip}(B) = \operatorname{Lip}(A)\operatorname{Lip}(B).$

The proof of the main implication, that (1) implies (2), is like the proof of the (linear) Pietsch factorization theorem (see, e.g., [5, p. 44]). Suppose $\pi_p^L(T) = 1$. Let Q be the convex cone in $C(B_{X^{\#}})$ consisting of all positive linear combinations of functions of the form $||Tx - Ty|| - C^p |f(x) - f(y)|^p$, as x and y range over X. Condition (1) says that Q is disjoint from the the positive cone $P = \{F \in C(B_{X^{\#}}) \mid F(f) > 0 \forall f \in X^{\#}\},$ which is an open convex subset of $C(B_{X^{\#}})$. Thus by the separation theorem and the Riesz representation theorem there is a finite signed Baire measure μ on $B_{X^{\#}}$ and a real number c so that for all $G \in Q$ and $F \in P$, $\int_{X^{\#}} G d\mu \leq c < \int_{X^{\#}} F d\mu$. Since $0 \in Q$ and all positive constants are in P, we see that c = 0, and since $\int_{X^{\#}} \cdot d\mu$ is positive on the positive cone P of $C(B_{X^{\#}})$, the signed measure μ is a positive measure, which we can assume by rescaling is a probability measure. It is clear that the inequality in (2) is satisfied.

It is worth noting that the conditions in Theorem 1 are also equivalent to

4. There is a probability μ on K, the closure in the topology of pointwise convergence on X of the extreme points of $B_{X^{\#}}$, so that

$$||Tx - Ty||^p \le C^p \int_K |f(x) - f(y)|^p d\mu(f).$$

The proof that (1) implies (4) is the same as the proof that (1) implies (2) since the supremum on the right side of (1), the definition of the Lipschitz *p*-summing norm, is the same as

$$\sup_{f \in K} \sum a_i |f(x_i) - f(y_i)|^p.$$

One immediate consequence of Theorem 1 is that $\pi_p^L(T)$ is a monotonely decreasing function of p. Another consequence is that there is a version of Grothendieck's theorem (that every linear operator from an L_1 space to a Hilbert space is 1-absolutely summing). In the category of metric spaces with Lipschitz mappings as morphisms, weighted trees play a role analogous to that of L_1 in the linear theory. In particular, every finite weighted tree has the lifting property, which is to say that if X is a finite weighted tree, $T: X \to Y$ is a Lipschitz mapping from X into a metric space Y, and $Q: Z \to Y$ is a 1-Lipschitz quotient mapping in the sense of [2], [7], then for each $\varepsilon > 0$ there is a mapping $S: X \to Z$ so that $\operatorname{Lip}(S) \leq \operatorname{Lip}(T) + \varepsilon$ and T = QS. Letting Y be a Hilbert space and Z an L_1 space, we see from Grothendieck's theorem and the ideal property of π_1^L that if every finite subset of X is contained in a finite subset of X that is a weighted tree (in particular, if X is a tree or a metric tree–see [7]), then $\pi_1^L(T) \leq K_G \operatorname{Lip}(T)$, where K_G is Grothendieck's constant. Here we use the obvious fact that $\pi_p^L(T: X \to Y)$ is the supremum of $\pi_p^L(T|_K)$ as K ranges over finite subsets of X.

The strong form of the Pietsch domination theorem says that if X is a subspace of C(K) for some compact Hausdorff space K, and T is a p-summing linear operator with domain X, then there is a probability measure μ on K so that for all $x \in X$, $||Tx||^p \leq \pi_p(T)^p \int_K |x(t)|^p d\mu(t)$. It is easy to see that there is not a non linear version of this result. Let D_n be the discrete metric space with n points so that the distance between any two distinct points is one. We can embed D_n into $C(\{-1,1\}^n)$ in two essentially different ways. First, if $D_n = \{x_1, \ldots, x_n\}$, let $f(x_k) = \frac{1}{2}r_k$, where r_k is the projection onto the kth coordinate. The image of this set under the canonical injection from $C(\{-1,1\}^n)$ into $L_p(\{-1,1\}^n,\mu)$ with μ the uniform probability on $\{-1,1\}^n$ is a discrete set with the *p*-th power of all distances one-half. This shows that the identity on D_n has Lipschitz *p*-summing norm at most two. Secondly, let g(k), $1 \le k \le n$, be disjointly supported unit vectors in $C(\{-1,1\}^n)$. Then for any probability measure ν on $\{-1,1\}^n$, the injection from $C(\{-1,1\}^n)$ into $L_p(\{-1,1\}^n,\nu)$ shrinks the distance between some pair of the g(k)'s to at most $(2/n)^{1/p}$.

Incidentally, $\pi_p^L(I_{D_n})$ tends to $2^{\frac{1}{p}}$ as $n \to \infty$ and can be computed exactly. To see this, note that the extreme points, K_n , of $B_{D_n^{\#}}$ are of the form $\pm \chi_A$ with A a non empty subset of $D_n \sim \{0\}$. This can be calculated directly or deduced from Theorem 1 in [6]. We calculate $\pi_p^L(I_{D_n})$ in the (easier) case that n is even. Define a probability μ on K_n by letting μ be the uniform measure on $J_{n/2} := \{\chi_A : |A| = n/2, A \subset D_n \sim \{0\}\}$ (so that $\mu(e) = 0$ for elements e of $K_n \sim J_{n/2}$). Then for each pair of distinct points x and y in D_n , $\int_{K_n} |f(x) - f(y)|^p d\mu(f) = \frac{n}{2(n-1)}$, so that $\pi_p^L(I_{D_n}) \leq (2 - \frac{2}{n})^{\frac{1}{p}}$. To see that μ is a Pietsch measure for I_{D_n} , let ν be any Pietsch probability for I_{D_n} on K_n . We can clearly assume that ν is supported on the positive elements in K_n . By averaging ν against the permutations of D_n which fix 0, which is a group of isometries on D_n , we get another Pietsch probability for I_{D_n} (which we continue to denote by ν) so that if we condition ν on $J_k := \{\chi_A : |A| = k, A \subset D_n \sim \{0\}\}, 1 \le k \le n - 1$, the resulting probability ν_k on J_k is the uniform probability. A trivial calculation shows that for x, y in $D_n \sim \{0\}$, $\int_{J_k} |f(x) - f(y)|^p d\nu_k(f) \le \frac{n}{2(n-1)}$. This proves that μ is a Pietsch measure for I_{D_n} and hence $\pi_n^L(I_{D_n}) = (2 - \frac{2}{n})^{\frac{1}{p}}$.

Our final comment on Lipschitz 1-summing operators is that the concept has appeared in the literature even if the definition is new. In [4], Bourgain proved that every n point metric space can be embedded into a Hilbert space with distortion at most $C \log n$, where C is an absolute constant. In fact, he really proved the much stronger result that $\pi_1^L(I_X) \leq C \log n$ if I_X is the identity mapping on an n point space X by making use of a special embedding of X into a space $C(K_X)$ with K_X a finite metric space and constructing a probability on K_X . Moreover, Bourgain's construction has occasionally been used in the computer science literature. The strong form of Bourgain's theorem is also used in [8] to prove an inequality that is valid for all metric spaces.

3 Linear operators

In this section we show that the Lipschitz p-summing norm of a linear operator is the same as its p-summing norm. This justifies that the notion of Lipschitz p-summing operator is really a generalization of the concept of linear p-summing operator.

Theorem 2 Let u be a bounded linear operator from X into Y and $1 \le p < \infty$. Then $\pi_p^L(u) = \pi_p(u)$.

Proof: Note that we can assume, without loss of generality, that dim $Y \leq \dim X = N < \infty$. Indeed, it is clear from the definition that $\pi_p^L(u)$ is the supremum of $\pi_p^L(u|_E)$ as E ranges over finite dimensional subspaces of X and similarly for $\pi_p^L(u)$. That we can assume dim $Y \leq \dim X$ is clear from the linearity of u.

Since dim $Y \leq N$, there is an embedding J of Y into ℓ_{∞}^{m} with $m \leq (\frac{3}{\varepsilon})^{N}$ so that ||J|| = 1 and $||J^{-1}|| \leq 1 + \varepsilon$. We then get the following non linear Pietsch factorization:

where $\operatorname{Lip}(\alpha) = 1$, $\operatorname{Lip}(\beta) \leq \pi_p^L(Ju) \leq \pi_p^L(u)$. We can also assume, without loss of generality, that the probability μ is a separable measure.

We now use some non linear theory that can be found in the book [3].

1. The mapping α is weak^{*} differentiable almost everywhere. This means that for (Lebesgue) almost every x_0 in X, there is a linear operator $D_{x_0}^{w^*}(\alpha)$: $X \to L_{\infty}(\mu)$ so that for all $f \in L_1(\mu)$ and for every $y \in X$,

$$\lim_{t \to 0} \left\langle \frac{\alpha(x_0 + ty) - \alpha(x_0)}{t}, f \right\rangle = \langle D_{x_0}^{w^*}(\alpha)(y), f \rangle.$$

2. The operator $i_{\infty,p}\alpha$ is differentiable almost everywhere. This means that for almost every x_0 in X, there is a linear operator $D_{x_0}(i_{\infty,p}\alpha): X \to L_p(\mu)$ so that

$$\sup_{\|y\|\leq 1} \left\| \frac{i_{\infty,p}\alpha(x_0+ty)-i_{\infty,p}\alpha(x_0)}{t} - D_{x_0}(i_{\infty,p}\alpha)(y) \right\|_p \to 0 \quad \text{as} \quad t \to 0.$$

When $1 , statement (2) follows from the reflexivity of <math>L_p$ (see [3, Corollary 5.12 & Proposition 6.1]). For p = 1, just use (2) for p = 2 and compose with $i_{2,1}$.

The mapping $i_{\infty,p}$ is weak^{*} to weak continuous, so $D_{x_0}(i_{\infty,p}\alpha) = i_{\infty,p}D_{x_0}^{w^*}(\alpha)$ whenever both derivatives exist. Since they both exist almost everywhere, by making several translations we can assume without loss of generality that this equation is true for $x_0 = 0$ and also that $\alpha(0) = 0$.

Next we show that in the factorization diagram the non linear map α can be replace by the linear operator $D_0^{w^*}(\alpha)$ by constructing a mapping $\tilde{\beta} : L_p(\mu) \to \ell_{\infty}^m$ so that $\tilde{\beta}i_{\infty,p}D_0^{w^*}(\alpha) = Ju$ and $\operatorname{Lip}(\tilde{\beta}) \leq \operatorname{Lip}(\beta)$. To do this, define $\beta_n : L_p(\mu) \to \ell_{\infty}^m$ by $\beta_n(y) := n\beta(\frac{y}{n})$ and note that $\operatorname{Lip}(\beta_n) = \operatorname{Lip}(\beta)$. We have for each x in X

$$\begin{aligned} \|Ju(x) - \beta_n i_{\infty,p} D_0^{w^*}(\alpha)(x)\| &= \|\beta_n n i_{\infty,p} \alpha(x/n) - \beta_n D_0(i_{\infty,p} \alpha)(x)\| \\ &\leq \operatorname{Lip}(\beta) \|n i_{\infty,p} \alpha(x/n) - D_0(i_{\infty,p} \alpha)(x)\| \end{aligned}$$

which tends to zero as $n \to \infty$. For $\tilde{\beta}$ we can take any cluster point of β_n in the space of functions from $L_p(\mu)$ into ℓ_{∞}^m ; such exist because β_n is uniformly Lipschitz and $\beta_n(0) = 0$.

Summarizing, we see that we have a factorization

$$\begin{array}{cccc} L_{\infty}(\mu) & \xrightarrow{\imath_{\infty,p}} & L_{p}(\mu) \\ \tilde{\alpha} \uparrow & & \downarrow \tilde{\beta} \\ X & \xrightarrow{u} Y \xrightarrow{J} & \ell_{\infty}^{m} \end{array}$$

with $\tilde{\alpha}$ linear, $\|\tilde{\alpha}\| \leq \operatorname{Lip}(\alpha)$, and $\operatorname{Lip}(\tilde{\beta}) \leq \operatorname{Lip}(\beta)$.

The final step involves replacing $\tilde{\beta}$ with a linear operator. Since the restriction of $\tilde{\beta}$ to the linear subspace $i_{\infty,p}\tilde{\alpha}[X]$ is linear and ℓ_{∞}^m is reflexive, this follows from [3, Theorem 7.2], which is proved by a simple invariant means argument.

4 Open problems and concluding remarks

Problem 1 Is there a composition formula for Lipschitz p-summing operators? That is, do we have $\pi_p^L(TS) \leq \pi_r^L(T)\pi_s^L(S)$, when $\frac{1}{p} \leq (\frac{1}{r} + \frac{1}{s}) \wedge 1$?

Say that a Lipschitz mapping $T : X \to Y$ is Lipschitz *p*-integral if it satisfies a factorization diagram as in condition (3) of Theorem 1, except with J being the canonical isometry from Y into $(Y^{\#})^*$. We then define the Lipschitz *p*-integral norm $I_p^L(T)$ of T to be the infimum of $\operatorname{Lip}(A) \cdot \operatorname{Lip}(B)$, the infimum being taken over all such factorizations. When T is a linear operator, this is the same as the usual *p*-integral norm of T. Indeed, in this case one can use for J the canonical isometry from Y into Y^{**} because Y^{**} is norm one complemented in $(Y^{\#})^*$. Then the proof that $I_p(T) \leq I_p^L(T)$ is identical to the proof of Theorem 2.

Problem 2 Is every Lipschitz 2-summing operator Lipschitz 2-integral?

In the case where the target space Y is a Hilbert space, problem 2 has an affirmative answer by Kirszbraun's theorem [3, p. 18]. If Y has K. Ball's Markov cotype 2 property [1], it follows from Ball's work that the answer is still positive, although his result does not yield that $I_p^L(T)$ and $\pi_p^L(T)$ are equal. It is worth mentioning that the work of Naor, Peres, Schramm, and Sheffield [9] combines with Ball's result to yield that for $2 \le p < \infty$, every Lipschitz *p*-summing operator into L_r , $1 < r \le 2$, is Lipschitz *p*-integral.

We mentioned in section 2 that $\Pi_p^L(X, Y)$, the class of Lipschitz *p*-summing operators from X into Y, is a Banach space under the norm $\pi_p^L(\cdot)$ when Y is a Banach space.

Problem 3 When Y is a Banach space and X is finite, what is the dual of $\Pi_n^L(X,Y)$?

In section 2 we noted that there is a version of Grothendieck's theorem that is true in the non linear setting. Are there other versions? In particular, we ask the following.

Problem 4 Is every Lipschitz mapping from an L_1 space to a Hilbert space Lipschitz 1-summing? Is every Lipschitz mapping from a C(K) space to a Hilbert space Lipschitz 2-summing?

It is elementary that for a linear operator $T : X \to Y$, $\pi_p(T)$ is the supremum of $\pi_p(TS)$ as S ranges over all operators from $\ell_{p'}$ into X of norm at most one. This leads us to ask

Problem 5 If $T: X \to Y$ is Lipschitz, is $\pi_p^L(T)$ is the supremum of $\pi_p^L(TS)$ as S ranges over all mappings from finite subsets of $\ell_{p'}$ into X having Lipschitz constant at most one?

Since all finite metric spaces embed isometrically into ℓ_{∞} , the answer to problem 5 is yes for p = 1.

Of course, all of the above problems are special cases of the general

Problem 6 What results about p-summing operators have analogues for Lipschitz psumming operators?

References

- Ball, K. Markov chains, Riesz transforms and Lipschitz maps. Geom. Funct. Anal. 2 (1992), no. 2, 137–172.
- [2] Bates, S.; Johnson, W. B.; Lindenstrauss, J.; Preiss, D.; Schechtman, G. Affine approximation of Lipschitz functions and nonlinear quotients. Geom. Funct. Anal. 9 (1999), no. 6, 1092–1127.
- [3] Benyamini, Yoav; Lindenstrauss, Joram. Geometric nonlinear functional analysis. Vol. 1. American Mathematical Society Colloquium Publications, 48. American Mathematical Society, Providence, RI, 2000.
- Bourgain, J. On Lipschitz embedding of finite metric spaces in Hilbert space. Israel J. Math. 52 (1985), no. 1-2, 46–52.
- [5] Diestel, Joe; Jarchow, Hans; Tonge, Andrew. Absolutely summing operators. Cambridge Studies in Advanced Mathematics, 43. Cambridge University Press, Cambridge, 1995.
- [6] Farmer, Jeffrey D. Extreme points of the unit ball of the space of Lipschitz functions. Proc. Amer. Math. Soc. 121 (1994), no. 3, 807–813.
- [7] Johnson, William B.; Lindenstrauss, Joram; Preiss, David; Schechtman, Gideon. Lipschitz quotients from metric trees and from Banach spaces containing l_1 . J. Funct. Anal. 194 (2002), no. 2, 332–346.
- [8] Johnson, William B.; Schechtman, Gideon.Diamond graphs and super-reflexivity (submitted).
- [9] Naor, Assaf; Peres, Yuval; Schramm, Oded; Sheffield, Scott. Markov chains in smooth Banach spaces and Gromov-hyperbolic metric spaces. Duke Math. J. 134 (2006), no. 1, 165–197. (Reviewer: Keith Ball) 46B09 (46B20 60B11 60J05)

Jeffrey D. Farmer Department of Mathematics University of Denver Denver CO, USA E-mail: jdfarmer89@hotmail.com William B. Johnson Department Mathematics Texas A&M University

College Station, TX, USA E-mail: johnson@math.tamu.edu