LIPSCHITZ p-SUMMING OPERATORS

JEFFREY D. FARMER AND WILLIAM B. JOHNSON

Abstract

The notion of Lipschitz p-summing operator is introduced. A non linear Pietsch factorization theorem is proved for such operators and it is shown that a Lipschitz p-summing operator that is linear is a p-summing operator in the usual sense.

1. Introduction

In this note we introduce a natural non linear version of p-summing operator, which we call Lipschitz p-summing operator. In section 2 we prove a non linear version of the Pietsch factorization theorem, show by example that the strong form of the Pietsch domination theorem is not true for Lipschitz p-summing operators, and make a few other remarks about these operators. In section 3 we "justify" our nomenclature by proving that for a linear operator, the Lipschitz p-summing norm is the same as the usual p-summing norm. Finally, in section 4 we raise some problems which we think are interesting.

2. Pietsch factorization

The Lipschitz p-summing $(1 \leq p<\infty)$ norm, $\pi_{p}^{L}(T)$, of a (possibly non linear) mapping $T: X \rightarrow Y$ between metric spaces is the smallest constant C so that for all $\left(x_{i}\right),\left(y_{i}\right)$ in X and all positive reals a_{i}

$$
\begin{equation*}
\sum a_{i}\left\|T x_{i}-T y_{i}\right\|^{p} \leq C^{p} \sup _{f \in B_{X} \#} \sum a_{i}\left|f\left(x_{i}\right)-f\left(y_{i}\right)\right|^{p} \tag{2.1}
\end{equation*}
$$

Here $B_{X^{\#}}$ is the unit ball of $X^{\#}$, the Lipschitz dual of X, i.e., $X^{\#}$ is the space of all real valued Lipschitz functions under the (semi)-norm $\operatorname{Lip}(\cdot)$; and $\|x-y\|$ is the distance from x to y in Y. We follow the usual convention of considering X as a pointed metric space by designating a special point $0 \in X$ and identifying $X^{\#}$ with the Lipschitz functions on X that are zero at 0 . With this convention $\left(X^{\#}, \operatorname{Lip}(\cdot)\right)$ is a Banach space and $B_{X} \#$ is a compact Hausdorff space in the topology of pointwise convergence on X.

Notice that the definition is the same if we restrict to $a_{i}=1$. Indeed, by approximation it is enough to consider rational a_{i} and thus, by clearing denominators, integer a_{i}. Then, given a_{i}, x_{i}, and y_{i}, consider the new collection of vectors in which the pair $\left(x_{i}, y_{i}\right)$ is repeated a_{i} times. (This observation was made with M. Mendel and G. Schechtman.)

It is clear that π_{p}^{L} has the ideal property; i.e., $\pi_{p}^{L}(A T B) \leq \operatorname{Lip}(A) \pi_{p}^{L}(T) \operatorname{Lip}(B)$ whenever the compositions make sense. Also, if Y is a Banach space, the space of

[^0]Lipschitz p-summing maps from any metric space into Y is a Banach space under the norm π_{p}^{L}.

If T is a linear operator, it is clear that $\pi_{p}^{L}(T) \leq \pi_{p}(T)$, where $\pi_{p}(\cdot)$ is the usual p-summing norm [5, p. 31]. In section 3 we prove that the reverse inequality is true.

We begin with a Pietsch factorization theorem for Lipschitz p-summing operators.
Theorem 1. The following are equivalent for a mapping $T: X \rightarrow Y$ between metric spaces and $C \geq 0$.
(1) $\pi_{p}^{L}(T) \leq C$.
(2) There is a probability μ on $B_{X} \#$ such that

$$
\|T x-T y\|^{p} \leq C^{p} \int_{B_{X} \#}|f(x)-f(y)|^{p} d \mu(f)
$$

(Pietsch domination.)
(3) For some (or any) isometric embedding J of Y into a 1-injective space Z, there is a factorization

with μ a probability and $\operatorname{Lip}(A) \cdot \operatorname{Lip}(B) \leq C$.
(Pietsch factorization.)
Proof. That (2) implies (3) is basically obvious: Let $A: X \rightarrow L_{\infty}(\mu)$ be the natural isometric embedding composed with the formal identity from $C\left(B_{X^{\#}}\right)$ into $L_{\infty}(\mu)$. Then (2) says that the Lipschitz norm of B restricted to $I_{\infty, p} A X$ is bounded by C, which is just (3). (We have used implicitly the well known fact that every metric space embeds into $\ell_{\infty}(\Gamma)$ for some set Γ and that, by the non linear Hahn-Banach theorem, $\ell_{\infty}(\Gamma)$ is 1-injective. See Lemma 1.1 in [3].)

For (3) implies (1), use

$$
\begin{aligned}
\pi_{p}^{L}(T) & =\pi_{p}^{L}(J T) \leq \operatorname{Lip}(A) \pi_{p}^{L}\left(I_{\infty, p}\right) \operatorname{Lip}(B) \leq \operatorname{Lip}(A) \pi_{p}\left(I_{\infty, p}\right) \operatorname{Lip}(B) \\
& =\operatorname{Lip}(A) \operatorname{Lip}(B)
\end{aligned}
$$

The proof of the main implication, that (1) implies (2), is like the proof of the (linear) Pietsch factorization theorem (see, e.g., [5, p. 44]). Suppose $\pi_{p}^{L}(T)=1$. Let Q be the convex cone in $C\left(B_{X \#}\right)$ consisting of all positive linear combinations of functions of the form $\|T x-T y\|-C^{p}|f(x)-f(y)|^{p}$, as x and y range over X. Condition (1) says that Q is disjoint from the the positive cone $P=\{F \in$ $\left.C\left(B_{X^{\#}}\right) \mid F(f)>0 \forall f \in X^{\#}\right\}$, which is an open convex subset of $C\left(B_{X \#}\right)$. Thus by the separation theorem and the Riesz representation theorem there is a finite signed Baire measure μ on $B_{X} \#$ and a real number c so that for all $G \in Q$ and $F \in P, \int_{X^{\#}} G d \mu \leq c<\int_{X^{\#}} F d \mu$. Since $0 \in Q$ and all positive constants are in P, we see that $c=0$, and since $\int_{X \#} \cdot d \mu$ is positive on the positive cone P of $C\left(B_{X^{\#}}\right)$, the signed measure μ is a positive measure, which we can assume by rescaling is a probability measure. It is clear that the inequality in (2) is satisfied.

It is worth noting that the conditions in Theorem 1 are also equivalent to
(4) There is a probability μ on K, the closure in the topology of pointwise convergence on X of the extreme points of $B_{X^{\#}}$, so that

$$
\|T x-T y\|^{p} \leq C^{p} \int_{K}|f(x)-f(y)|^{p} d \mu(f)
$$

The proof that (1) implies (4) is the same as the proof that (1) implies (2) since the supremum on the right side of (2.1), the definition of the Lipschitz p-summing norm, is the same as

$$
\sup _{f \in K} \sum a_{i}\left|f\left(x_{i}\right)-f\left(y_{i}\right)\right|^{p}
$$

One immediate consequence of Theorem 1 is that $\pi_{p}^{L}(T)$ is a monotonely decreasing function of p. Another consequence is that there is a version of Grothendieck's theorem (that every linear operator from an L_{1} space to a Hilbert space is 1absolutely summing). In the category of metric spaces with Lipschitz mappings as morphisms, weighted trees play a role analogous to that of L_{1} in the linear theory. In particular, every finite weighted tree has the lifting property, which is to say that if X is a finite weighted tree, $T: X \rightarrow Y$ is a Lipschitz mapping from X into a metric space Y, and $Q: Z \rightarrow Y$ is a 1-Lipschitz quotient mapping in the sense of [2], [7], then for each $\varepsilon>0$ there is a mapping $S: X \rightarrow Z$ so that $\operatorname{Lip}(S) \leq \operatorname{Lip}(T)+\varepsilon$ and $T=Q S$. Letting Y be a Hilbert space and Z an L_{1} space, we see from Grothendieck's theorem and the ideal property of π_{1}^{L} that if every finite subset of X is a weighted tree (in particular, if X is a tree or a metric tree-see [7]), then $\pi_{1}^{L}(T) \leq K_{G} \operatorname{Lip}(T)$, where K_{G} is Grothendieck's constant. Here we use the obvious fact that $\pi_{p}^{L}(T: X \rightarrow Y)$ is the supremum of $\pi_{p}^{L}\left(T_{\mid K}\right)$ as K ranges over finite subsets of X.

The strong form of the Pietsch domination theorem says that if X is a subspace of $C(K)$ for some compact Hausdorff space K, and T is a p-summing linear operator with domain X, then there is a probability measure μ on K so that for all $x \in X$, $\|T x\|^{p} \leq \pi_{p}(T)^{p} \int_{K}|x(t)|^{p} d \mu(t)$. It is easy to see that there is not a non linear version of this result. Let D_{n} be the discrete metric space with n points so that the distance between any two distinct points is one. We can embed D_{n} into $C\left(\{-1,1\}^{n}\right)$ in two essentially different ways. First, if $D_{n}=\left\{x_{1}, \ldots, x_{n}\right\}$, let $f\left(x_{k}\right)=\frac{1}{2} r_{k}$, where r_{k} is the projection onto the kth coordinate. The image of this set under the canonical injection from $C\left(\{-1,1\}^{n}\right)$ into $L_{p}\left(\{-1,1\}^{n}, \mu\right)$ with μ the uniform probability on $\{-1,1\}^{n}$ is a discrete set with the p-th power of all distances one-half. This shows that the identity on D_{n} has Lipschitz p-summing norm at most two. Secondly, let $g(k), 1 \leq k \leq n$, be disjointly supported unit vectors in $C\left(\{-1,1\}^{n}\right)$. Then for any probability measure ν on $\{-1,1\}^{n}$, the injection from $C\left(\{-1,1\}^{n}\right)$ into $L_{p}\left(\{-1,1\}^{n}, \nu\right)$ shrinks the distance between some pair of the $g(k)^{\prime}$'s to at most $(2 / n)^{1 / p}$.

Incidentally, $\pi_{p}^{L}\left(I_{D_{n}}\right)$ tends to $2^{\frac{1}{p}}$ as $n \rightarrow \infty$ and can be computed exactly. To see this, note that the extreme points, K_{n}, of $B_{D_{n}}$ are of the form $\pm \chi_{A}$ with A a non empty subset of $D_{n} \sim\{0\}$. This can be calculated directly or deduced from Theorem 1 in [6]. We calculate $\pi_{p}^{L}\left(I_{D_{n}}\right)$ in the (easier) case that n is even. Define a probability μ on K_{n} by letting μ be the uniform measure on $J_{n / 2}:=\left\{\chi_{A}:|A|=\right.$ $\left.n / 2, A \subset D_{n} \sim\{0\}\right\}$ (so that $\mu(e)=0$ for elements e of $K_{n} \sim J_{n / 2}$). Then for each pair of distinct points x and y in $D_{n}, \int_{K_{n}}|f(x)-f(y)|^{p} d \mu(f)=\frac{n}{2(n-1)}$, so that $\pi_{p}^{L}\left(I_{D_{n}}\right) \leq\left(2-\frac{2}{n}\right)^{\frac{1}{p}}$. To see that μ is a Pietsch measure for $I_{D_{n}}$, let
ν be any Pietsch probability for $I_{D_{n}}$ on K_{n}. We can clearly assume that ν is supported on the positive elements in K_{n}. By averaging ν against the permutations of D_{n} which fix 0 , which is a group of isometries on D_{n}, we get another Pietsch probability for $I_{D_{n}}$ (which we continue to denote by ν) so that if we condition ν on $J_{k}:=\left\{\chi_{A}:|A|=k, A \subset D_{n} \sim\{0\}\right\}, 1 \leq k \leq n-1$, the resulting probability ν_{k} on J_{k} is the uniform probability. A trivial calculation shows that for x, y in $D_{n} \sim\{0\}$, $\int_{J_{k}}|f(x)-f(y)|^{p} d \nu_{k}(f) \leq \frac{n}{2(n-1)}$. This proves that μ is a Pietsch measure for $I_{D_{n}}$ and hence $\pi_{p}^{L}\left(I_{D_{n}}\right)=\left(2-\frac{2}{n}\right)^{\frac{1}{p}}$.

Our final comment on Lipschitz 1-summing operators is that the concept has appeared in the literature even if the definition is new. In [4], Bourgain proved that every n point metric space can be embedded into a Hilbert space with distortion at most $C \log n$, where C is an absolute constant. In fact, he really proved the much stronger result that $\pi_{1}^{L}\left(I_{X}\right) \leq C \log n$ if I_{X} is the identity mapping on an n point space X by making use of a special embedding of X into a space $C\left(K_{X}\right)$ with K_{X} a finite metric space and constructing a probability on K_{X}. Moreover, Bourgain's construction has occasionally been used in the computer science literature. The strong form of Bourgain's theorem is also used in [8] to prove an inequality that is valid for all metric spaces.

3. Linear operators

In this section we show that the Lipschitz p-summing norm of a linear operator is the same as its p-summing norm. This justifies that the notion of Lipschitz p-summing operator is really a generalization of the concept of linear p-summing operator.

Theorem 2. Let u be a bounded linear operator from X into Y and $1 \leq p<\infty$. Then $\pi_{p}^{L}(u)=\pi_{p}(u)$.
Proof. Note that we can assume, without loss of generality, that $\operatorname{dim} Y \leq \operatorname{dim} X=$ $N<\infty$. Indeed, it is clear from the definition that $\pi_{p}^{L}(u)$ is the supremum of $\pi_{p}^{L}\left(u_{\mid E}\right)$ as E ranges over finite dimensional subspaces of X and similarly for $\pi_{p}^{L}(u)$. That we can assume $\operatorname{dim} Y \leq \operatorname{dim} X$ is clear from the linearity of u.

Since $\operatorname{dim} Y \leq N$, there is an embedding J of Y into ℓ_{∞}^{m} with $m \leq\left(\frac{3}{\varepsilon}\right)^{N}$ so that $\|J\|=1$ and $\left\|J^{-1}\right\| \leq 1+\varepsilon$. We then get the following non linear Pietsch factorization:

where $\operatorname{Lip}(\alpha)=1, \operatorname{Lip}(\beta) \leq \pi_{p}^{L}(J u) \leq \pi_{p}^{L}(u)$. We can also assume, without loss of generality, that the probability μ is a separable measure.

We now use some non linear theory that can be found in the book [3].
(1) The mapping α is weak* differentiable almost everywhere. This means that for (Lebesgue) almost every x_{0} in X, there is a linear operator $D_{x_{0}}^{w^{*}}(\alpha): X \rightarrow$ $L_{\infty}(\mu)$ so that for all $f \in L_{1}(\mu)$ and for every $y \in X$,

$$
\lim _{t \rightarrow 0}\left\langle\frac{\alpha\left(x_{0}+t y\right)-\alpha\left(x_{0}\right)}{t}, f\right\rangle=\left\langle D_{x_{0}}^{w^{*}}(\alpha)(y), f\right\rangle
$$

(2) The operator $i_{\infty, p} \alpha$ is differentiable almost everywhere. This means that for almost every x_{0} in X, there is a linear operator $D_{x_{0}}\left(i_{\infty, p} \alpha\right): X \rightarrow L_{p}(\mu)$ so that

$$
\sup _{\|y\| \leq 1}\left\|\frac{i_{\infty, p} \alpha\left(x_{0}+t y\right)-i_{\infty, p} \alpha\left(x_{0}\right)}{t}-D_{x_{0}}\left(i_{\infty, p} \alpha\right)(y)\right\|_{p} \rightarrow 0 \quad \text { as } \quad t \rightarrow 0
$$

When $1<p<\infty$, statement (2) follows from the reflexivity of L_{p} (see [3, Corollary $5.12 \&$ Proposition 6.1]). For $p=1$, just use (2) for $p=2$ and compose with $i_{2,1}$.

The mapping $i_{\infty, p}$ is weak ${ }^{*}$ to weak continuous, so $D_{x_{0}}\left(i_{\infty, p} \alpha\right)=i_{\infty, p} D_{x_{0}}^{w^{*}}(\alpha)$ whenever both derivatives exist. Since they both exist almost everywhere, by making several translations we can assume without loss of generality that this equation is true for $x_{0}=0$ and also that $\alpha(0)=0$.

Next we show that in the factorization diagram the non linear map α can be replace by the linear operator $D_{0}^{w^{*}}(\alpha)$ by constructing a mapping $\tilde{\beta}: L_{p}(\mu) \rightarrow \ell_{\infty}^{m}$ so that $\tilde{\beta} i_{\infty, p} D_{0}^{w^{*}}(\alpha)=J u$ and $\operatorname{Lip}(\tilde{\beta}) \leq \operatorname{Lip}(\beta)$. To do this, define $\beta_{n}: L_{p}(\mu) \rightarrow \ell_{\infty}^{m}$ by $\beta_{n}(y):=n \beta\left(\frac{y}{n}\right)$ and note that $\operatorname{Lip}\left(\beta_{n}\right)=\operatorname{Lip}(\beta)$. We have for each x in X

$$
\begin{aligned}
\left\|J u(x)-\beta_{n} i_{\infty, p} D_{0}^{w^{*}}(\alpha)(x)\right\| & =\left\|\beta_{n} n i_{\infty, p} \alpha(x / n)-\beta_{n} D_{0}\left(i_{\infty, p} \alpha\right)(x)\right\| \\
& \leq \operatorname{Lip}(\beta)\left\|n i_{\infty, p} \alpha(x / n)-D_{0}\left(i_{\infty, p} \alpha\right)(x)\right\|
\end{aligned}
$$

which tends to zero as $n \rightarrow \infty$. For $\tilde{\beta}$ we can take any cluster point of β_{n} in the space of functions from $L_{p}(\mu)$ into ℓ_{∞}^{m}; such exist because β_{n} is uniformly Lipschitz and $\beta_{n}(0)=0$.

Summarizing, we see that we have a factorization

with $\tilde{\alpha}$ linear, $\|\tilde{\alpha}\| \leq \operatorname{Lip}(\alpha)$, and $\operatorname{Lip}(\tilde{\beta}) \leq \operatorname{Lip}(\beta)$.
The final step involves replacing $\tilde{\beta}$ with a linear operator. Since the restriction $\bar{\beta}$ of $\tilde{\beta}$ to the linear subspace $i_{\infty, p} \tilde{\alpha}[X]$ is linear and ℓ_{∞}^{m} is reflexive, this follows from [3, Theorem 7.2], which is proved by a simple invariant means argument. Alternatively, one can use the injectivity of ℓ_{∞}^{m} to extend $\bar{\beta}$ to $L_{p}(\mu)$.

4. Open problems and concluding remarks

Problem 1. Is there a composition formula for Lipschitz p-summing operators? That is, do we have $\pi_{p}^{L}(T S) \leq \pi_{r}^{L}(T) \pi_{s}^{L}(S)$, when $\frac{1}{p} \leq\left(\frac{1}{r}+\frac{1}{s}\right) \wedge 1$?

Say that a Lipschitz mapping $T: X \rightarrow Y$ is Lipschitz p-integral if it satisfies a factorization diagram as in condition (3) of Theorem 1, except with J being the canonical isometry from Y into $\left(Y^{\#}\right)^{*}$. We then define the Lipschitz p-integral norm $I_{p}^{L}(T)$ of T to be the infimum of $\operatorname{Lip}(A) \cdot \operatorname{Lip}(B)$, the infimum being taken over all such factorizations. When T is a linear operator, this is the same as the usual p-integral norm of T. Indeed, in this case one can use for J the canonical isometry from Y into $Y^{* *}$ because $Y^{* *}$ is norm one complemented in $\left(Y^{\#}\right)^{*}$. Then the proof that $I_{p}(T) \leq I_{p}^{L}(T)$ is identical to the proof of Theorem 2.
Problem 2. Is every Lipschitz 2-summing operator Lipschitz 2-integral?

In the case where the target space Y is a Hilbert space, problem 2 has an affirmative answer by Kirszbraun's theorem [3, p. 18]. If Y has K. Ball's Markov cotype 2 property [1], it follows from Ball's work that the answer is still positive, although his result does not yield that $I_{p}^{L}(T)$ and $\pi_{p}^{L}(T)$ are equal. It is worth mentioning that the work of Naor, Peres, Schramm, and Sheffield [9] combines with Ball's result to yield that for $2 \leq p<\infty$, every Lipschitz p-summing operator into $L_{r}, 1<r \leq 2$, is Lipschitz p-integral.

We mentioned in section 2 that $\Pi_{p}^{L}(X, Y)$, the class of Lipschitz p-summing operators from X into Y, is a Banach space under the norm $\pi_{p}^{L}(\cdot)$ when Y is a Banach space.

Problem 3. When Y is a Banach space and X is finite, what is the dual of $\Pi_{p}^{L}(X, Y)$?

In section 2 we noted that there is a version of Grothendieck's theorem that is true in the non linear setting. Are there other versions? In particular, we ask the following.

Problem 4. Is every Lipschitz mapping from an L_{1} space to a Hilbert space Lipschitz 1-summing? Is every Lipschitz mapping from a $C(K)$ space to a Hilbert space Lipschitz 2-summing?

It is elementary that for a linear operator $T: X \rightarrow Y, \pi_{p}(T)$ is the supremum of $\pi_{p}(T S)$ as S ranges over all operators from $\ell_{p^{\prime}}$ into X of norm at most one. This leads us to ask

Problem 5. If $T: X \rightarrow Y$ is Lipschitz, is $\pi_{p}^{L}(T)$ is the supremum of $\pi_{p}^{L}(T S)$ as S ranges over all mappings from finite subsets of $\ell_{p^{\prime}}$ into X having Lipschitz constant at most one?

Since all finite metric spaces embed isometrically into ℓ_{∞}, the answer to problem 5 is yes for $p=1$.

Of course, all of the above problems are special cases of the general
Problem 6. What results about p-summing operators have analogues for Lipschitz p-summing operators?

Added in proof. Problem 3 has been solved by J. A. Chávex Domínguez (unpublished).

References

1. K. Ball, Markov chains, Riesz transforms and Lipschitz maps, Geom. Funct. Anal. 2 (1992), no. 2, 137-172.
2. S. Bates, W. B. Johnson, J. Lindenstrauss, D. Preiss, and G. Schechtman, Affine approximation of Lipschitz functions and nonlinear quotients, Geom. Funct. Anal. 9 (1999), no. 6, 1092-1127.
3. Y. Benyamini and J. Lindenstrauss, Geometric nonlinear functional analysis, vol. 1, Amer. Mathe. Soc. Collo, Publ., vol. 48, Amer. Math. Soc., Providence, RI, 2000.
4. J. Bourgain, On Lipschitz embedding of finite metric spaces in Hilbert space, Israel J. Math. 52 (1985), no. 1-2, 46-52.
5. J. Diestel, H. Jarchow, and A. Tonge, Absolutely summing operators, Cambridge Studies in Adv. Math., vol. 43, Cambridge Univ. Press, Cambridge, 1995.
6. J. D. Farmer, Extreme points of the unit ball of the space of Lipschitz functions, Proc. Amer. Math. Soc. 121 (1994), no. 3, 807-813.
7. W. B. Johnson, J. Lindenstrauss, D. Preiss, and G. Schechtman, Lipschitz quotients from metric trees and from Banach spaces containing l_{1}, J. Funct. Anal. 194 (2002), no. 2, 332346.
8. W. B. Johnson and G. Schechtman, Diamond graphs and super-reflexivity, submitted.
9. A. Naor, Y. Peres, O. Schramm, and S. Sheffield, Markov chains in smooth Banach spaces and Gromov-hyperbolic metric spaces, Duke Math. J. 134 (2006), no. 1, 165-197. (Reviewer: Keith Ball) 46B09 (46B20 60B11 60J05)

Department of Mathematics, University of Denver, Denver CO, USA
E-mail address: jdfarmer89@hotmail.com
Department Mathematics, Texas A\&M University, College Station, TX, USA
E-mail address: johnson@math.tamu.edu

[^0]: 2000 Mathematics Subject Classification. Primary 46B28, 46T99, 47H99,47L20.
 Key words and phrases. p-summing operator, absolutely summing operator.
 Supported in part by NSF DMS-0503688.

