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are injective) property provided that for every Banach space 
Y , every continuous surjective algebra homomorphism from 
the bounded linear operators on X onto the bounded linear 
operators on Y is injective. The main result gives a sufficient 
condition for X to have the SHAI property. The condition is 
satisfied for Lp(0, 1) for 1 < p < ∞, spaces with symmetric 
bases that have finite cotype, and the Schatten p-spaces for 
1 < p < ∞.
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1. The main results

Following Horváth [9], we say that a Banach space X has the SHAI (surjective ho-
momorphisms are injective) property provided that for every Banach space Y , every 
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surjective continuous algebra homomorphism from the space L(X) of bounded linear 
operators on X onto L(Y ) is injective, and hence by Eidelheit’s [6] classical theorem, X
is isomorphic as a Banach space to Y . The continuity assumption is redundant by an 
automatic continuity theorem of B. E. Johnson [5, Theorem 5.1.5], but we note in pass-
ing that for some Banach spaces X, there exist surjective discontinuous homomorphisms 
from L(X) onto some Banach algebras [15]. The spaces �p for 1 ≤ p ≤ ∞ are known 
to have the SHAI property [9, Proposition 1.2], as do some other classical spaces [9], 
[10], but there are many spaces that do not have the SHAI property [9]. Our research 
on the SHAI property was motivated by the problem mentioned by Horváth [9] whether 
Lp = Lp(0, 1) has the SHAI property. A consequence of our main results, Corollary 1.6, 
is that for 1 < p < ∞, the space Lp has the SHAI property. We do not know whether 
L1 has the SHAI property. The space L∞ does have the SHAI property because L∞ is 
isomorphic as a Banach space to �∞ [1, Theorem 4.3.10].
Before stating our theorems, we need to review the notion of an unconditional Schauder 
decomposition of a Banach space X. A family (Eα)α∈A of closed subspaces of X is 
called an unconditional Schauder decomposition for X provided every vector x in X has 
a unique representation x =

∑
α∈A xα, where the convergence is unconditional and, for 

each α ∈ A, the vector xα is in Eα. Notice that by uniqueness of the representation, 
Eα ∩ Eβ = {0} when α �= β, and there are idempotents Pα on X such that PαX = Eα

and PαPβ = 0 for α �= β. It is known that the Pα are in L(X). Moreover, for any 
subset B of A, the net {

∑
α∈F Pα : F ⊂ B finite} is bounded in L(X) and converges 

strongly to an idempotent PB that has range spanα∈B Eα. The suppression constant 
of the decomposition is then defined to be sup{

∥∥∑
α∈F Pα

∥∥ : F ⊂ A finite}. Note that 
‖PB‖ is bounded by this suppression constant for all subsets B of A. In practice, this 
theorem is rarely used, since typically one constructs the idempotents Pα and checks 
the uniform boundedness of the aforementioned nets and verifies the statement about 
the ranges of the strong limits of the nets. Finally, observe that a collection (eα)α∈A

forms an unconditional Schauder basis for X if and only if (Eα)α∈A is an unconditional 
Schauder decomposition of X, where Eα = Keα (K is the scalar field). In the sequel, 
we will most often use an unconditional Schauder decomposition Eα where each Eα is 
finite dimensional. Such a decomposition is called an unconditional FDD. FDD stands for 
finite dimensional decomposition. Schauder decompositions and FDDs are discussed in 
the monograph [13, Section 1.g]. Schauder bases, type/cotype theory, and other concepts 
from Banach space theory that are used in this paper are treated in the textbook [1].
A concept that is particularly relevant for us is that of bounded completeness. An un-
conditional Schauder decomposition (Eα)α∈A for X is said to be boundedly complete 
provided that whenever xα ∈ Eα and {

∥∥∑
α∈F xα

∥∥
X

: F ⊂ A finite} is bounded, then 
the formal sum 

∑
α∈A xα converges in X, which is the same as saying that the net 

{
∑

α∈F xα : F ⊂ A finite} converges. A convenient condition that obviously guarantees 
bounded completeness is that the decomposition has a disjoint lower p estimate for some 
p < ∞. The decomposition (Eα)α∈A is said to have a disjoint lower; respectively, upper; 
p estimate provided that there is C < ∞ so that whenever x1, . . . , xn are finitely many 
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vectors in X such that for every α ∈ A there is at most one i with 1 ≤ i ≤ n for which 
Pαxi �= 0, we have for x =

∑n
i=1 xi the inequality

∥∥∥∥∥
n∑

i=1
xi

∥∥∥∥∥ ≥ 1
C

(
n∑

i=1
‖xi‖p

)1/p

; respectively,

∥∥∥∥∥
n∑

i=1
xi

∥∥∥∥∥ ≤ C

(
n∑

i=1
‖xi‖p

)1/p

.

It is easy to see that the decomposition (Eα)α∈A has a disjoint lower p estimate with 
constant C if and only if whenever F1, . . . , Fn are disjoint finite subsets of A and x is in 
X, then

‖x‖ ≥ 1
C

⎛
⎝ n∑

j=1

∥∥∥∥∥∥
∑
α∈Fj

Pαx

∥∥∥∥∥∥
p⎞
⎠

1/p

,

where, as usual, Pα is the idempotent associated with the decomposition. Important for 
us is the following observation, which is very easy to prove. Suppose that (Eα)α∈A is 
an unconditional Schauder decomposition for a subspace X of a Banach space Y . As-
sume that the idempotents P̃α associated with the decomposition extend to commuting 
idempotents Pα from Y onto Eα and that the net {

∑
α∈F Pα : F ⊂ A finite} is bounded 

in L(Y ). If (Eα)α∈A is a boundedly complete unconditional Schauder decomposition of 
X, then for each subset B of A, the net {

∑
α∈F Pα : F ⊂ B finite} converges strongly 

in L(Y ) to an idempotent PB whose range is the closed linear span of the spaces Eα

for α ∈ B (which, by abuse of notation, we abbreviate to span {Eα : α ∈ B}) and PB

extends the basis projection from X onto span {Eα : α ∈ B}. In particular, X is comple-
mented in Y . Conversely, if X is known to be complemented in Y , then such extensions 
PB of the basis projections P̃B from X onto span {Eα : α ∈ B} obviously exist even 
when the decomposition is not boundedly complete. In general, to guarantee that X is 
complemented in Y , something is needed other than having commuting extensions Pα

with {
∑

α∈F Pα : F ⊂ A finite} uniformly bounded: consider X = c0, Y = �∞, and the 
unit vector basis of c0.
From the definitions of type and cotype, it is clear that if X has type p and cotype q, then 
every unconditional Schauder decomposition for X has a disjoint upper p estimate and a 
disjoint lower q estimate, where the constants depend only on the suppression constant of 
the decomposition and the type p and cotype q constants of X. In particular, if 1 < p ≤ 2, 
then every unconditional Schauder decomposition for a subspace of a quotient of Lp has 
a disjoint upper p estimate and a disjoint lower 2 estimate, while if 2 ≤ p < ∞, then 
every unconditional Schauder decomposition for a subspace of a quotient of Lp has a 
disjoint upper 2 estimate and a disjoint lower p estimate [1, Theorem 6.2.14].
The observation in the following lemma will be used for transferring information from 
Y to X when there is a surjective homomorphism from L(Y ) onto L(X).

Lemma 1.1. Suppose that (Eα)α∈A is an unconditional decomposition for X that has a 
disjoint lower p estimate with 1 ≤ p < ∞, and let Y ⊇ X. Then there is a constant 
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C < ∞ such that if A1, . . . , An are disjoint subsets of A and PAj
is the basis projection 

onto EAj
= span {Eα : α ∈ Aj} and T1, . . . , Tn are operators in L(Y ), then

∥∥∥∥∥
n∑

i=1
TiPi

∥∥∥∥∥ ≤ C

(
n∑

i=1
‖Ti‖q

)1/q

, where 1/p + 1/q = 1.

Proof. Suppose x ∈ X. Then
∥∥∥∥∥

n∑
i=1

TiPix

∥∥∥∥∥ ≤
n∑

i=1
‖Ti‖‖Pix‖ ≤

(
n∑

i=1
‖Ti‖q

)1/q ( n∑
i=1

‖Pix‖p
)1/p

≤ C

(
n∑

i=1
‖Ti‖q

)1/q

‖x‖,

where the constant C is the disjoint lower p constant of (Eα)α∈A. �
A family of sets is said to be almost disjoint provided the intersection of any two of them 
is finite.

Definition 1.2. Suppose that (En)∞n=1 is an unconditional FDD for a Banach space X. 
We say that (En) has property (#) provided there is an almost disjoint continuum 
{Nα : α < c} of infinite sets of natural numbers such that for each α < c, X is isomorphic 
to the closed linear span of the subspaces En for n ∈ Nα.

Subsymmetric bases are obvious examples of FDDs that have property (#). (A basis 
is subsymmetric if it is unconditional and every subsequence of the basis is equivalent 
to the basis. Symmetric bases are subsymmetric.) A second almost obvious example 
is the direct sum of two Banach spaces with subsymmetric bases. Such a space has an 
FDD with property (#) such that each space in the decomposition is two-dimensional. In 
Corollary 1.6 we point out that the Haar basis for Lp has property (#) when 1 < p < ∞.
In Proposition 1.3 and the sequel, when (En)∞n=1 is an unconditional FDD for a Banach 
space X, we use the following notation. For F ⊂ N, PF denotes the basis projection 
from X onto the closed linear span EF of the subspaces En for n ∈ F .

Proposition 1.3. Let (En)∞n=1 be an unconditional FDD for a Banach space X. Assume 
that (En) has property (#), witnessed by an almost disjoint family {Nα : α < c} of 
infinite subsets of the natural numbers. Suppose that Φ is a non-zero, non-injective con-
tinuous homomorphism from L(X) onto a Banach algebra A. Then for each α < c, 
Φ(PNα

) is a non-zero idempotent in A. Moreover, there is a constant C < ∞ such that 
if F is any finite subset of [α < c], then 

∥∥∑
α∈F Φ(PNα

)
∥∥
A ≤ C. If A is a subalgebra of 

L(Y ) for some Banach space Y , then (Φ(PNα
))α<c is a family of commuting extensions 

to Y of the projections associated with an unconditional Schauder decomposition for a 
subspace Y0 of Y .
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Proof. Since, for each α, the range of PNα
is isomorphic to X, and Φ is not zero, Φ(PNα

)
is a non-zero idempotent in A. Suppose that F is a finite subset of {α : α < c}. Take 
a finite set S of natural numbers so that Nα ∩ Nβ ⊂ S for all distinct α, β in F . For 
α ∈ F , let Qα = PNα\S be the basis projection from X onto span{En : n ∈ Nα \S}. The 
kernel of Φ is a non-trivial ideal in L(X) and hence contains the finite rank operators. 
Since PNα

− Qα is a finite rank operator, Φ(PNα
) = Φ(Qα) for each α ∈ F . But the 

projections Qα, for α ∈ F , are projections onto the closed spans of disjoint subsets of 
the FDD (En)∞n=1, so ∥∥∥∥∥

∑
α∈F

Φ(Qα)

∥∥∥∥∥
A

≤
∥∥∥∥∥
∑
α∈F

Qα

∥∥∥∥∥ ‖Φ‖ ≤ C‖Φ‖,

where C is the suppression constant of (En). The last statement is now obvious. �
With the preliminaries out of the way, we state the main theorem in this article.

Theorem 1.4. Let (En)∞n=1 be an unconditional FDD for a Banach space X. Assume that 
(En)∞n=1 has property (#) (Definition 1.2) and (En)∞n=1 has a disjoint lower p estimate 
for some p < ∞. Then X has the SHAI property.

Proof. Suppose, for contradiction, that Φ is a non-injective continuous homomorphism 
from L(X) onto L(Y ) for some non-zero Banach space Y . We continue with the set 
up in Proposition 1.3, where property (#) for (En) is witnessed by an almost disjoint 
family {Nα : α < c} of infinite subsets of the natural numbers, and for F ⊂ N, the basis 
projection from X onto the closed linear span EF of {En : n ∈ F} is denoted by PF .
We claim that to get a contradiction it is enough to prove that the subspace Y0 is 
complemented in Y . Indeed, if Y0 is complemented in Y , then L(Y0) is isomorphic as a 
Banach algebra to a subalgebra of L(Y ). However, defining Yα = Φ(PNα

)Y for α < c, 
we know that (Yα)α<c is an unconditional Schauder decomposition for Y0. But then for 
every subset S of {α : α < c} there is an idempotent QS from Y0 onto span{Yα : α ∈ S}
with QS zero on all Yβ for which β /∈ S. Thus if S1 and S2 are different subsets of 
{α : α < c}, then ‖QS1 − QS2‖ ≥ 1, and hence the density character of L(Y0), whence 
also of L(Y ), is at least 2c. However, since X is separable, the density character of L(X)
is at most c (actually, equal to c since X has an unconditional FDD), so L(Y ) cannot 
be a continuous image of L(X). This completes the proof of the claim.
To show that Y0 must be complemented in Y , we use the fact proved in Proposition 1.3
that there is a constant C such that for every finite subset F of {α : α < c} we have ∥∥∑

α∈F Φ(PNα
)
∥∥
L(Y ) ≤ C. It was remarked in the introduction to this section that 

this condition guarantees that Y0 is complemented in Y when (Yα)α<c is a boundedly 
complete decomposition. To see that (Yα)α<c is boundedly complete, we use Lemma 1.1. 
We guarantee bounded completeness by proving that (Yα)α<c has a disjoint lower p
estimate. That is, we just need to find a constant C so that if F1, . . . , Fm are disjoint 
finite subsets of {α : α < c} and y is in Y (or even just in Y0), then
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‖y‖ ≥ 1
C

⎛
⎝ m∑

j=1

∥∥∥∥∥∥
∑
α∈Fj

Φ(PNα
)y

∥∥∥∥∥∥
p⎞
⎠

1/p

. (1)

Just as in the proof Proposition 1.3, we can write 
∑

α∈Fj
Φ(PNα

) = Φ(Qj) with Qj , for 
1 ≤ j ≤ m, being the basis projections onto the closed spans of disjoint sets of FDD 
basis spaces (En). So (1) can be rewritten as

‖y‖ ≥ 1
C

⎛
⎝ m∑

j=1
‖Φ(Qj)y‖p

⎞
⎠

1/p

. (2)

From Lemma 1.1 and the surjectivity of Φ, for any T1, . . . , Tm in L(Y ) we have

∥∥∥∥∥∥
m∑
j=1

TjΦ(Qj)

∥∥∥∥∥∥ ≤ C

⎛
⎝ m∑

j=1
‖Tj‖q

⎞
⎠

1/q

, (3)

where C depends only on p and on ‖Φ‖ · ‖(Φ∗)−1‖, and 1/p + 1/q = 1. Take any y ∈ Y

and take βj ≥ 0 with

m∑
j=1

βq
j = 1 and

m∑
j=1

βj‖Φ(Qj)y‖ =

⎛
⎝ m∑

j=1
‖Φ(Qj)y‖p)

⎞
⎠

1/p

.

Let y0 be any unit vector in Y and let Tj be Φ(Qj) followed by a norm (at most) one 
projection onto the (at most) one dimensional space KΦ(Qj)y followed by Φ(Qj)y �→
βj‖Φ(Qj)y‖y0. Then by (3),

⎛
⎝ m∑

j=1
‖Φ(Qj)y‖p

⎞
⎠

1/p

=
m∑
j=1

βj‖Φ(Qj)y‖ =

∥∥∥∥∥∥
m∑
j=1

TjΦ(Qj)y

∥∥∥∥∥∥
≤ C

⎛
⎝ m∑

j=1
‖Tj‖q

⎞
⎠

1/q

‖y‖ = C‖y‖,

which is (2). �
Our first corollary of Theorem 1.4 is immediate. Its hypothesis is satisfied by many spaces 
that are used in analysis, including most Orlicz and Lorentz sequence spaces.

Corollary 1.5. If X has a subsymmetric basis and has finite cotype, then X has SHAI.

The next corollary solves the problem that motivated our research into the SHAI prop-
erty.
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Corollary 1.6. For 1 < p < ∞, the space Lp has the SHAI property.

Proof. In view of Theorem 1.4, it is enough to prove that the Haar basis for Lp has 
property (#). Let {Nα : α < c} be a continuum of almost disjoint infinite subsets of the 
natural numbers N. Define for α < c

Xα = span
{
hn,i : n ∈ Nα and 1 ≤ i ≤ 2n

}
,

where {hn,i : n = 0, 1, . . . and 1 ≤ i ≤ 2n} is the usual (unconditional) Haar basis for 
Lp(0, 1), indexed in its usual way, so that {|hn,i| : 1 ≤ i ≤ 2n} is the set of indicator 
functions of the dyadic subintervals of (0, 1) that have length 2−n. By the Gamlen–
Gaudet theorem [7], Xα is isomorphic to Lp with the isomorphism constant depending 
only on p. �
Remark 1.7. Although our proof that Lp has the SHAI property is simple enough, it is 
strange. The “natural” way of proving that a space X has the SHAI property is to verify 
that for any non-trivial closed ideal I in L(X), the quotient algebra L(X)/I contains 
no minimal idempotents. (An idempotent P is called minimal provided P �= 0 and the 
only idempotents Q for which PQ = QP = Q are P and 0. Rank-one idempotents in 
L(X) are minimal.) This suggests the following problem, which is related to the known 
problem whether every infinite dimensional complemented subspace of Lp is isomorphic 
to its square.

Problem 1.8. Is there a non-trivial closed ideal I in L(Lp) for which L(Lp)/I has a 
minimal idempotent?

If there is a positive answer to Problem 1.8, the witnessing ideal I cannot be contained 
in the ideal of strictly singular operators. This is because every infinite dimensional 
complemented subspace of Lp contains a complemented subspace that is isomorphic 
either to �p or to �2 [11], and the fact that idempotents in L(X)/I lift to idempotents 
in L(X) when I is an ideal that is contained in L(X) [3].

Problem 1.9. Does L1 have the SHAI property?

2. Examples and permanence properties

Here we present some more examples of spaces with property (#) and with the SHAI 
property. We do not know whether every complemented subspace of Lp has the SHAI 
property, but we show that at least some of the known examples of such spaces do. Along 
the way we state and prove some permanence properties of (#).
The classical complemented subspaces of Lp have the SHAI property when 1 < p < ∞. 
This was known for �2 and �p and proved above for Lp. The case of �p⊕ �2 follows easily 
from Theorem 1.4. That the remaining classical complemented subspace of Lp, �p(�2), 
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the �p sum of �2, has (#) and the SHAI property follows from Proposition 2.2 below. 
Before stating Proposition 2.2 we introduce a quantitative version of property (#).

Definition 2.1. Suppose that (En)∞n=1 is an unconditional FDD for a Banach space X and 
K is a positive constant. We say that (En) has property (#) with constant K provided 
there is an almost disjoint continuum {Nα : α < c} of infinite sets of natural numbers 
such that for each α < c, X is K-isomorphic to the closed linear span of {En : n ∈ Nα}.

Note that if (En)∞n=1 has property (#) then it has property (#) for some positive constant 
K. Nevertheless, we need this quantitative notion for the full generality of Proposi-
tion 2.2.
Recall that if (ei) is an unconditional basis for some Banach space Y and Xi, for i =
1, 2, . . . , is a Banach space, (

⊕∞
i=1 Xi)Y is the space of sequences x̄ = (x1, x2, . . . ) whose 

norm, ‖x̄‖ =
∥∥∑∞

i=1 ‖xi‖ · ei
∥∥
Y

, is finite. We denote the subspace of (
⊕∞

i=1 Xi)Y of all 
sequences of the form (0, . . . , 0, xi, 0, . . . ) by Xi ⊗ ei.

Proposition 2.2. For i = 1, 2, . . . let (Ei
n)∞n=1 be an unconditional FDD for a Banach 

space Xi, all satisfying property (#) with a common K. Then for each subsymmetric 
basis (ei) of some Banach space Y , the unconditional FDD (Ei

n⊗ei)∞i,n=1 of (
⊕∞

i=1 Xi)Y
satisfies (#). If, in addition, the decompositions (Ei

n)∞n=1 have disjoint lower p estimates 
with uniform constant and (ei) also has such an estimate, then (

⊕∞
i=1 Xi)Y has the SHAI 

property.

Proof. For each i, let {N i
α : α < c} be an almost disjoint continuum of infinite sets of 

natural numbers such that for every α < c, Xα is K-isomorphic to the closed linear span 
of the subspaces Ei

n for n ∈ Nα. Also, let {Nα : α < c} be an almost disjoint continuum 
of infinite sets of natural numbers. Then

{
(i, n) : i ∈ Nα and n ∈ N i

α

}
is a continuum of almost disjoint subsets of N×N. It is easy to see that this continuum 
satisfies what is required of the unconditional FDD (Ei

n ⊗ ei)∞i,n=1 to satisfy (#). If the 
decompositions (Ei

n)∞n=1 have disjoint lower p estimates with uniform constant and (ei)
also has such an estimate, then the FDD (Ei

n ⊗ ei)∞i,n=1 clearly has a disjoint lower p
estimate as well, so the SHAI property follows from Theorem 1.4. �
Remark 2.3. Note that the proof above works with only notational differences if we deal 
with only finitely many Xi (and here we do not need to assume the uniformity of the 
(#) property). In particular, if each of X and Y has an unconditional FDD with (#), 
then so does X ⊕ Y .

As we said above, this takes care of the space �p(�2). The first non-classical com-
plemented subspace of Lp is the space Xp of Rosenthal [16]. We recall its definition. 
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Let p > 2 and let w̄ = (wi)∞i=1 be a bounded sequence of positive real numbers. Let 
(ei)∞i=1 and (fi)∞i=1 be the unit vector bases of �p and �2. Let Xp,w̄ be the closed span of 
(ei ⊕wifi)∞i=1 in �p ⊕ �2. If the wi are bounded away from zero, then Xp,w̄ is isomorphic 

to �2. If 
∑∞

i=1 w
2p

p−2
i < ∞, then Xp,w̄ is isomorphic to �p. If one can split the sequence w̄

into two subsequences, one bounded away from zero and the other such that the sum of 
the 2p

p−2 powers of its elements converges, then Xp,w̄ is isomorphic to �p ⊕ �2. Rosenthal 
proved that in all other situations one gets a new space, isomorphically unique (i.e., 
any, two spaces corresponding to two choices of w̄ with this condition are isomorphic). 
Moreover, Xp,w is isomorphic to a complemented subspace of Lp. The constants involved 
(isomorphisms and complementations) are bounded by a constant depending only on p. 
This common (class of) space(s) is denoted by Xp. For 1 < p < 2, Xp is defined to be 
X∗

p/(p−1).

Proposition 2.4. Let p ∈ (1, ∞) \ {2}. Then Xp has (#) and has the SHAI property.

Proof. Let p > 2. Write N as a disjoint union of finite subsets σj for j = 1, 2, . . . , with 

|σj | → ∞. For i ∈ σj put wi = |σj |
2−p
2p , so wi → 0 and for each j, 

∑
i∈σj

w
2p

p−2
i =

1. Set Ej = span (ei ⊕ wifi)i∈σj
. It follows that for any infinite subsequence of the 

unconditional FDD (Ej), the closed span of this subsequence is isomorphic to Xp. The 
FDD is unconditional and, as it lives in Lp, has a lower p estimate. So the result in 
this case follows from Theorem 1.4. The case 1 < p < 2 follows by looking at the dual 
FDD. �
Building on Xp and the classical complemented subspaces of Lp, Rosenthal [16] lists a 
few more isomorphically distinct spaces that are isomorphic to complemented subspaces 
of Lp when p ∈ (1, ∞) \ {2}. Using the discussion above one can easily show that they 
all have (#) and the SHAI property. Here we just comment on one of them for which 
the full power of Proposition 2.2 is needed. This is the space denoted in [16] by Bp. It 
is the �p sum of spaces Xi each having a 1-symmetric basis, and thus having (#) with 
uniform constant. Each Xi is isomorphic to �2, but the isomorphism constant tends to 
infinity as i → ∞. By Proposition 2.2, Bp has (#) and the SHAI property.
The first infinite collection of mutually non-isomorphic complemented subspaces of Lp

for p ∈ (1, ∞) \{2} was constructed in [17]. We recall the simple construction. Given two 
subspaces X and Y of Lp(Ω) with 1 ≤ p ≤ ∞, X⊗pY denotes the subspace of Lp(Ω2) that 
is the closed span of all functions of the form h(s, t) = f(s)g(t) with f ∈ X and g ∈ Y . 
It is easy to see (and was done in [17]) that the isomorphism class of X ⊗p Y depends 
only on the isomorphism classes of X and Y and that, if X and Y are complemented 
in Lp(Ω), then X ⊗p Y is complemented in Lp(Ω2). More generally, if X1, X2, Y1, Y2 are 
subspaces of Lp(Ω) and Ti ∈ L(Xi, Yi), then T1⊗p T2 ∈ L(X1⊗pX2, Y1⊗p Y2). Note also 
that if (Ei

n)∞n=1 is an unconditional FDD for Xi for i = 1, 2, then (E1
n ⊗p E

2
m)∞n,m=1 is 

an unconditional FDD for X1 ⊗p X2. This follows from iterating Khinchine’s inequality.
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With a little abuse of notation we denote by Xp some isomorph of Xp that is comple-
mented in Lp[0, 1]. Set Y1 = Xp, and for n = 2, 3, . . . , let Yn = Yn−1 ⊗p Xp. From the 
above it is clear that the spaces Yn are complemented (alas, with norm of projection 
depending on n) in some Lp space isometric to Lp[0, 1]. The main point in [17] was to 
prove that the spaces Yn are isomorphically different. That all the spaces Yn have (#) 
follows now from the following general proposition, because it is clear that ⊗p satisfies 
Conditions (1) and (2) in Proposition 2.5 for the class of all m tuples of subspaces of 
Lp(μ) spaces.

Proposition 2.5. Assume that X1, . . . , Xm are Banach spaces, each of which has an un-
conditional FDD satisfying (#). Let Y1 ⊗ · · · ⊗ Ym denote an m fold tensor product 
endowed with norm defined on some class of m tuples of Banach spaces with the follow-
ing two properties:

1. If Ti ∈ L(Yi, Zi) for i = 1, . . . , m, then

T1 ⊗ · · · ⊗ Tm : Y1 ⊗ · · · ⊗ Ym → Z1 ⊗ · · · ⊗ Zm

is bounded.
2. If Yi has an unconditional FDD (F i

n)∞n=1 for each i, then (F 1
n1

⊗· · ·⊗Fm
nm

)∞n1,...,nm=1
is an unconditional FDD for the completion of Y1 ⊗ · · · ⊗m Ym.

Then, if we assume in addition that (X1, . . . , Xm) is in this class, the completion of 
X1 ⊗ · · · ⊗Xm has an unconditional FDD with (#).

Proof. For each i = 1, . . . , m, let (Ei
n)∞n=1 be an unconditional FDD for a Banach space 

Xi such that there is an almost disjoint continuum {N i
α : α < c} of infinite sets of N

such that for each α < c, Xi is isomorphic to the closed linear span of the spaces Ei
n for 

n ∈ N i
α.

Consider the continuum

{N1
α × · · · ×Nm

α : α < c}

of subsets of Nm. This is an almost disjoint family whose cardinality is the continuum. 
Property (2) of the tensor norms we consider guarantees that (E1

n1
⊗· · ·⊗Em

nm
)∞n1,...,nm=1

is an unconditional FDD for the completion of X1 ⊗ · · ·⊗Xm. Property (1) implies that 
for each α < c, the closed linear span of

(E1
n1

⊗ · · · ⊗ Em
nm

)(n1,...,nm)∈N1
α×···×Nm

α

is isomorphic to the completion of X1 ⊗ · · · ⊗Xm. �
Remark 2.6. Note that in general Property (1) does not imply Property (2). The Schatten 
classes Cp for p �= 2 are examples of tensor norms that satisfy (1) but not (2).
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We note that it is clear from Proposition 2.5 that if X1, . . . , Xm are subspaces of Lp

for 1 ≤ p < 2 that have (sub)symmetric bases, then X1 ⊗p · · · ⊗p Xm has (#) and the 
SHAI property. The class of subspaces of Lp for 1 ≤ p < 2 that have a symmetric basis 
(i.e., the norm of a vector is invariant, up to a constant, under all permutations and 
changes of signs of its coefficients) is a rich family. (For p > 2, up to isomorphism it 
includes only �p and �2.) Thus the class of tensor products above includes, for example, 
�p1(�p2(. . . (�pm

) . . . )) whenever p ≤ p1 < p2 < · · · < pm ≤ 2.

Problem 2.7. Suppose p ∈ (1, ∞) \ {2} and let X be a complemented subspace of Lp. 
Does X have the SHAI property? What if, in addition, X has an unconditional basis? 
What if, in addition, X is one of the ℵ1 spaces constructed in [4]?

We complete this section with a discussion of another class of classical Banach spaces 
that have property (#) and thus also the SHAI property; namely, the Schatten ideals Cp

of compact operators T on �2 for which the eigenvalues of (T ∗T )1/2 are p-summable. We 
treat the case 1 < p < ∞ but remark afterwards how one can prove that C1 (trace class 
operators on �2) has the SHAI property. Neither C1 nor its predual C∞ (compact opera-
tors on �2) has an unconditional FDD [12] and hence these spaces do not have property 
(#). In the sequel we also assume p �= 2 because C2, being isometrically isomorphic to 
�2, has already been discussed.
First, consider the subspace Tp of Cp consisting of the lower triangular matrices in Cp. 
Here we exclude p = 1, p = ∞, and p = 2. Neither Tp nor Cp has an unconditional basis 
[12], but Tp has an obvious unconditional FDD (En); namely, En = span1≤j≤nen ⊗ ej ; 
that is, a matrix is in En if and only if the only non-zero terms are in the first n entries 
of the n-th row. Since multiplying all entries in a row by the same scalar of magnitude 
one is an isometry on Cp, (En) is even 1-unconditional. If M is an infinite subset of N, 
let Tp(M) be the closed span in Tp of (En)n∈M . Since (En) is 1-unconditional, Tp(M)
is norm one complemented in Tp. We claim (and justify at the end of this discussion) 
that Tp is isometric to a Kp-complemented subspace of Tp(M) with Kp independent of 
M . The space Tp is isomorphic to �p(Tp) [2, p. 85], so the decomposition method [1, 
Theorem 2.2.3] shows that Tp is isomorphic to Tp(M). Thus every almost disjoint family 
of infinite subsets of N witnesses that Tp has property (#). Theorem 1.4 applies because 
Cp has finite cotype when p < ∞, so Tp has the SHAI property when 1 < p < ∞. Now 
for 1 < p < ∞, Tp is complemented in Cp via the projection that zeroes out the entries 
that lie above the diagonal [14], [8], from which it follows easily [2] that Tp is isomorphic 
to Cp. Moreover, for M an infinite set of natural numbers, there is an obvious subspace 
Y of Cp that is isometric to Tp(M) such that Tp ⊂ Y , which gives the claim. We record 
these observations in Proposition 2.8.

Proposition 2.8. For 1 < p < ∞, the space Tp has property (#). Consequently, for 
1 < p < ∞, the space Cp has the SHAI property.
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As we mentioned above, it can be proved that C1 has the SHAI property even though 
it does not have an unconditional FDD. However, the Cp norms for 1 ≤ p ≤ ∞
are what Kwapień and Pełczyński [12] call unconditional matrix norms; i.e., the 

norm 
∥∥∥∑i,j ai,jei,j

∥∥∥ of a linear combination 
∑

i,j ai,jei,j of the natural basis elements 
(ei,j)∞i,j=1, is equivalent (in our case even equal) to the norm of 

∑
i,j εiδjai,jei,j for all se-

quences of signs (εi)∞i=1 and (δj)∞j=1. One can define a variation of property (#) for bases 
with this unconditionality property, check that the natural bases for Cp, for 1 ≤ p ≤ ∞, 
satisfy this property, and prove a version of Theorem 1.4. This shows that C1 has the 
SHAI property (and gives an alternative proof also for Cp for 1 < p < ∞). This variation 
of Theorem 1.4 does not apply to C∞, which does not have finite cotype, and we do not 
know whether C∞ has the SHAI property. Since our focus in this paper is on spaces that 
are more closely related to Lp than are the Cp spaces, we do not go into more detail. 
Our main reason for bringing up Cp is to point out why the definition of property (#)
is made for unconditional FDDs rather than just for unconditional bases.
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