

Contents lists available at ScienceDirect

Journal of Functional Analysis

www.elsevier.com/locate/jfa

The SHAI property for the operators on L^p

W.B. Johnson^{a,*,1}, N.C. Phillips^{b,2}, G. Schechtman^{c,3}

^a Department Mathematics, Texas A&M University, College Station, TX 77843-3368, USA

^b Department of Mathematics, University of Oregon, Eugene, OR 97403-1222, USA

^c Department of Mathematics, Weizmann Institute of Science, Rehovot, Israel

ARTICLE INFO

Article history: Received 24 January 2021 Accepted 6 November 2021 Available online 30 November 2021 Communicated by T. Schlumprecht

MSC: 47L20 46E30

Keywords: Ideals of operators L^p spaces SHAI property

ABSTRACT

A Banach space X has the SHAI (surjective homomorphisms are injective) property provided that for every Banach space Y, every continuous surjective algebra homomorphism from the bounded linear operators on X onto the bounded linear operators on Y is injective. The main result gives a sufficient condition for X to have the SHAI property. The condition is satisfied for $L^p(0,1)$ for 1 , spaces with symmetric bases that have finite cotype, and the Schatten*p*-spaces for <math>1 .

© 2021 Elsevier Inc. All rights reserved.

1. The main results

Following Horváth [9], we say that a Banach space X has the SHAI (surjective homomorphisms are injective) property provided that for every Banach space Y, every

 $\label{eq:https://doi.org/10.1016/j.jfa.2021.109333} 0022\text{-}1236/ \ensuremath{\odot}\ 2021$ Elsevier Inc. All rights reserved.

^{*} Corresponding author.

E-mail addresses: johnson@math.tamu.edu (W.B. Johnson), gideon@weizmann.ac.il (G. Schechtman).

 $^{^1\,}$ Supported in part by NSF DMS-1900612.

 $^{^2}$ Supported in part by NSF DMS-1501144 and by Simons Foundation Collaboration Grant for Mathematicians #587103.

³ Supported in part by the Israel Science Foundation.

surjective continuous algebra homomorphism from the space L(X) of bounded linear operators on X onto L(Y) is injective, and hence by Eidelheit's [6] classical theorem, X is isomorphic as a Banach space to Y. The continuity assumption is redundant by an automatic continuity theorem of B. E. Johnson [5, Theorem 5.1.5], but we note in passing that for some Banach spaces X, there exist surjective discontinuous homomorphisms from L(X) onto some Banach algebras [15]. The spaces ℓ^p for $1 \le p \le \infty$ are known to have the SHAI property [9, Proposition 1.2], as do some other classical spaces [9], [10], but there are many spaces that do not have the SHAI property [9]. Our research on the SHAI property was motivated by the problem mentioned by Horváth [9] whether $L^p = L^p(0, 1)$ has the SHAI property. A consequence of our main results, Corollary 1.6, is that for $1 , the space <math>L^p$ has the SHAI property. We do not know whether L^1 has the SHAI property. The space L^∞ does have the SHAI property because L^∞ is isomorphic as a Banach space to ℓ^∞ [1, Theorem 4.3.10].

Before stating our theorems, we need to review the notion of an unconditional Schauder decomposition of a Banach space X. A family $(E_{\alpha})_{\alpha \in A}$ of closed subspaces of X is called an unconditional Schauder decomposition for X provided every vector x in X has a unique representation $x = \sum_{\alpha \in A} x_{\alpha}$, where the convergence is unconditional and, for each $\alpha \in A$, the vector x_{α} is in E_{α} . Notice that by uniqueness of the representation, $E_{\alpha} \cap E_{\beta} = \{0\}$ when $\alpha \neq \beta$, and there are idempotents P_{α} on X such that $P_{\alpha}X = E_{\alpha}$ and $P_{\alpha}P_{\beta} = 0$ for $\alpha \neq \beta$. It is known that the P_{α} are in L(X). Moreover, for any subset B of A, the net $\{\sum_{\alpha \in F} P_{\alpha} : F \subset B \text{ finite}\}$ is bounded in L(X) and converges strongly to an idempotent P_B that has range $\overline{\text{span}}_{\alpha \in B} E_{\alpha}$. The suppression constant of the decomposition is then defined to be $\sup\{\left\|\sum_{\alpha\in F} P_{\alpha}\right\|: F \subset A \text{ finite}\}$. Note that $||P_B||$ is bounded by this suppression constant for all subsets B of A. In practice, this theorem is rarely used, since typically one constructs the idempotents P_{α} and checks the uniform boundedness of the aforementioned nets and verifies the statement about the ranges of the strong limits of the nets. Finally, observe that a collection $(e_{\alpha})_{\alpha \in A}$ forms an unconditional Schauder basis for X if and only if $(E_{\alpha})_{\alpha \in A}$ is an unconditional Schauder decomposition of X, where $E_{\alpha} = \mathbb{K}e_{\alpha}$ (K is the scalar field). In the sequel, we will most often use an unconditional Schauder decomposition E_{α} where each E_{α} is finite dimensional. Such a decomposition is called an unconditional FDD. FDD stands for finite dimensional decomposition. Schauder decompositions and FDDs are discussed in the monograph [13, Section 1.g]. Schauder bases, type/cotype theory, and other concepts from Banach space theory that are used in this paper are treated in the textbook [1].

A concept that is particularly relevant for us is that of bounded completeness. An unconditional Schauder decomposition $(E_{\alpha})_{\alpha \in A}$ for X is said to be boundedly complete provided that whenever $x_{\alpha} \in E_{\alpha}$ and $\{\|\sum_{\alpha \in F} x_{\alpha}\|_{X} : F \subset A \text{ finite}\}$ is bounded, then the formal sum $\sum_{\alpha \in A} x_{\alpha}$ converges in X, which is the same as saying that the net $\{\sum_{\alpha \in F} x_{\alpha} : F \subset A \text{ finite}\}$ converges. A convenient condition that obviously guarantees bounded completeness is that the decomposition has a disjoint lower p estimate for some $p < \infty$. The decomposition $(E_{\alpha})_{\alpha \in A}$ is said to have a disjoint lower; respectively, upper; p estimate provided that there is $C < \infty$ so that whenever x_1, \ldots, x_n are finitely many vectors in X such that for every $\alpha \in A$ there is at most one *i* with $1 \leq i \leq n$ for which $P_{\alpha}x_i \neq 0$, we have for $x = \sum_{i=1}^n x_i$ the inequality

$$\left\|\sum_{i=1}^n x_i\right\| \ge \frac{1}{C} \left(\sum_{i=1}^n \|x_i\|^p\right)^{1/p}; \quad \text{respectively,} \quad \left\|\sum_{i=1}^n x_i\right\| \le C \left(\sum_{i=1}^n \|x_i\|^p\right)^{1/p}$$

It is easy to see that the decomposition $(E_{\alpha})_{\alpha \in A}$ has a disjoint lower p estimate with constant C if and only if whenever F_1, \ldots, F_n are disjoint finite subsets of A and x is in X, then

$$\|x\| \ge \frac{1}{C} \left(\sum_{j=1}^{n} \left\| \sum_{\alpha \in F_j} P_{\alpha} x \right\|^p \right)^{1/p},$$

where, as usual, P_{α} is the idempotent associated with the decomposition. Important for us is the following observation, which is very easy to prove. Suppose that $(E_{\alpha})_{\alpha \in A}$ is an unconditional Schauder decomposition for a subspace X of a Banach space Y. Assume that the idempotents \tilde{P}_{α} associated with the decomposition extend to commuting idempotents P_{α} from Y onto E_{α} and that the net $\{\sum_{\alpha \in F} P_{\alpha} : F \subset A \text{ finite}\}$ is bounded in L(Y). If $(E_{\alpha})_{\alpha \in A}$ is a boundedly complete unconditional Schauder decomposition of X, then for each subset B of A, the net $\{\sum_{\alpha \in F} P_{\alpha} : F \subset B \text{ finite}\}$ converges strongly in L(Y) to an idempotent P_B whose range is the closed linear span of the spaces E_{α} for $\alpha \in B$ (which, by abuse of notation, we abbreviate to span $\{E_{\alpha} : \alpha \in B\}$) and P_B extends the basis projection from X onto span $\{E_{\alpha}: \alpha \in B\}$. In particular, X is complemented in Y. Conversely, if X is known to be complemented in Y, then such extensions P_B of the basis projections \tilde{P}_B from X onto $\overline{\text{span}} \{ E_\alpha : \alpha \in B \}$ obviously exist even when the decomposition is not boundedly complete. In general, to guarantee that X is complemented in Y, something is needed other than having commuting extensions P_{α} with $\{\sum_{\alpha \in F} P_{\alpha} : F \subset A \text{ finite}\}$ uniformly bounded: consider $X = c_0, Y = \ell^{\infty}$, and the unit vector basis of c_0 .

From the definitions of type and cotype, it is clear that if X has type p and cotype q, then every unconditional Schauder decomposition for X has a disjoint upper p estimate and a disjoint lower q estimate, where the constants depend only on the suppression constant of the decomposition and the type p and cotype q constants of X. In particular, if 1 , $then every unconditional Schauder decomposition for a subspace of a quotient of <math>L^p$ has a disjoint upper p estimate and a disjoint lower 2 estimate, while if $2 \le p < \infty$, then every unconditional Schauder decomposition for a subspace of a quotient of L^p has a disjoint upper 2 estimate and a disjoint lower p estimate [1, Theorem 6.2.14].

The observation in the following lemma will be used for transferring information from Y to X when there is a surjective homomorphism from L(Y) onto L(X).

Lemma 1.1. Suppose that $(E_{\alpha})_{\alpha \in A}$ is an unconditional decomposition for X that has a disjoint lower p estimate with $1 \leq p < \infty$, and let $Y \supseteq X$. Then there is a constant

 $C < \infty$ such that if A_1, \ldots, A_n are disjoint subsets of A and P_{A_j} is the basis projection onto $E_{A_j} = \overline{\operatorname{span}} \{ E_\alpha \colon \alpha \in A_j \}$ and T_1, \ldots, T_n are operators in L(Y), then

$$\left\|\sum_{i=1}^{n} T_{i} P_{i}\right\| \leq C \left(\sum_{i=1}^{n} \|T_{i}\|^{q}\right)^{1/q}, \text{ where } 1/p + 1/q = 1.$$

Proof. Suppose $x \in X$. Then

$$\left\|\sum_{i=1}^{n} T_{i} P_{i} x\right\| \leq \sum_{i=1}^{n} \|T_{i}\| \|P_{i} x\| \leq \left(\sum_{i=1}^{n} \|T_{i}\|^{q}\right)^{1/q} \left(\sum_{i=1}^{n} \|P_{i} x\|^{p}\right)^{1/p}$$
$$\leq C \left(\sum_{i=1}^{n} \|T_{i}\|^{q}\right)^{1/q} \|x\|,$$

where the constant C is the disjoint lower p constant of $(E_{\alpha})_{\alpha \in A}$. \Box

A family of sets is said to be *almost disjoint* provided the intersection of any two of them is finite.

Definition 1.2. Suppose that $(E_n)_{n=1}^{\infty}$ is an unconditional FDD for a Banach space X. We say that (E_n) has property (#) provided there is an almost disjoint continuum $\{N_{\alpha}: \alpha < c\}$ of infinite sets of natural numbers such that for each $\alpha < c$, X is isomorphic to the closed linear span of the subspaces E_n for $n \in N_{\alpha}$.

Subsymmetric bases are obvious examples of FDDs that have property (#). (A basis is subsymmetric if it is unconditional and every subsequence of the basis is equivalent to the basis. Symmetric bases are subsymmetric.) A second almost obvious example is the direct sum of two Banach spaces with subsymmetric bases. Such a space has an FDD with property (#) such that each space in the decomposition is two-dimensional. In Corollary 1.6 we point out that the Haar basis for L^p has property (#) when 1 . $In Proposition 1.3 and the sequel, when <math>(E_n)_{n=1}^{\infty}$ is an unconditional FDD for a Banach space X, we use the following notation. For $F \subset \mathbb{N}$, P_F denotes the basis projection from X onto the closed linear span E_F of the subspaces E_n for $n \in F$.

Proposition 1.3. Let $(E_n)_{n=1}^{\infty}$ be an unconditional FDD for a Banach space X. Assume that (E_n) has property (#), witnessed by an almost disjoint family $\{N_{\alpha}: \alpha < c\}$ of infinite subsets of the natural numbers. Suppose that Φ is a non-zero, non-injective continuous homomorphism from L(X) onto a Banach algebra \mathcal{A} . Then for each $\alpha < c$, $\Phi(P_{N_{\alpha}})$ is a non-zero idempotent in \mathcal{A} . Moreover, there is a constant $C < \infty$ such that if F is any finite subset of $[\alpha < c]$, then $\|\sum_{\alpha \in F} \Phi(P_{N_{\alpha}})\|_{\mathcal{A}} \leq C$. If \mathcal{A} is a subalgebra of L(Y) for some Banach space Y, then $(\Phi(P_{N_{\alpha}}))_{\alpha < c}$ is a family of commuting extensions to Y of the projections associated with an unconditional Schauder decomposition for a subspace Y_0 of Y. **Proof.** Since, for each α , the range of $P_{N_{\alpha}}$ is isomorphic to X, and Φ is not zero, $\Phi(P_{N_{\alpha}})$ is a non-zero idempotent in \mathcal{A} . Suppose that F is a finite subset of $\{\alpha : \alpha < c\}$. Take a finite set S of natural numbers so that $N_{\alpha} \cap N_{\beta} \subset S$ for all distinct α, β in F. For $\alpha \in F$, let $Q_{\alpha} = P_{N_{\alpha} \setminus S}$ be the basis projection from X onto $\overline{\operatorname{span}}\{E_n : n \in N_{\alpha} \setminus S\}$. The kernel of Φ is a non-trivial ideal in L(X) and hence contains the finite rank operators. Since $P_{N_{\alpha}} - Q_{\alpha}$ is a finite rank operator, $\Phi(P_{N_{\alpha}}) = \Phi(Q_{\alpha})$ for each $\alpha \in F$. But the projections Q_{α} , for $\alpha \in F$, are projections onto the closed spans of disjoint subsets of the FDD $(E_n)_{n=1}^{\infty}$, so

$$\left\|\sum_{\alpha\in F} \Phi(Q_{\alpha})\right\|_{\mathcal{A}} \le \left\|\sum_{\alpha\in F} Q_{\alpha}\right\| \|\Phi\| \le C \|\Phi\|,$$

where C is the suppression constant of (E_n) . The last statement is now obvious. \Box

With the preliminaries out of the way, we state the main theorem in this article.

Theorem 1.4. Let $(E_n)_{n=1}^{\infty}$ be an unconditional FDD for a Banach space X. Assume that $(E_n)_{n=1}^{\infty}$ has property (#) (Definition 1.2) and $(E_n)_{n=1}^{\infty}$ has a disjoint lower p estimate for some $p < \infty$. Then X has the SHAI property.

Proof. Suppose, for contradiction, that Φ is a non-injective continuous homomorphism from L(X) onto L(Y) for some non-zero Banach space Y. We continue with the set up in Proposition 1.3, where property (#) for (E_n) is witnessed by an almost disjoint family $\{N_{\alpha}: \alpha < c\}$ of infinite subsets of the natural numbers, and for $F \subset \mathbb{N}$, the basis projection from X onto the closed linear span E_F of $\{E_n: n \in F\}$ is denoted by P_F .

We claim that to get a contradiction it is enough to prove that the subspace Y_0 is complemented in Y. Indeed, if Y_0 is complemented in Y, then $L(Y_0)$ is isomorphic as a Banach algebra to a subalgebra of L(Y). However, defining $Y_{\alpha} = \Phi(P_{N_{\alpha}})Y$ for $\alpha < c$, we know that $(Y_{\alpha})_{\alpha < c}$ is an unconditional Schauder decomposition for Y_0 . But then for every subset S of $\{\alpha : \alpha < c\}$ there is an idempotent Q_S from Y_0 onto $\overline{\text{span}}\{Y_{\alpha} : \alpha \in S\}$ with Q_S zero on all Y_{β} for which $\beta \notin S$. Thus if S_1 and S_2 are different subsets of $\{\alpha : \alpha < c\}$, then $||Q_{S_1} - Q_{S_2}|| \ge 1$, and hence the density character of $L(Y_0)$, whence also of L(Y), is at least 2^c . However, since X is separable, the density character of L(X)is at most c (actually, equal to c since X has an unconditional FDD), so L(Y) cannot be a continuous image of L(X). This completes the proof of the claim.

To show that Y_0 must be complemented in Y, we use the fact proved in Proposition 1.3 that there is a constant C such that for every finite subset F of $\{\alpha : \alpha < c\}$ we have $\left\|\sum_{\alpha \in F} \Phi(P_{N_{\alpha}})\right\|_{L(Y)} \leq C$. It was remarked in the introduction to this section that this condition guarantees that Y_0 is complemented in Y when $(Y_{\alpha})_{\alpha < c}$ is a boundedly complete decomposition. To see that $(Y_{\alpha})_{\alpha < c}$ is boundedly complete, we use Lemma 1.1. We guarantee bounded completeness by proving that $(Y_{\alpha})_{\alpha < c}$ has a disjoint lower pestimate. That is, we just need to find a constant C so that if F_1, \ldots, F_m are disjoint finite subsets of $\{\alpha : \alpha < c\}$ and y is in Y (or even just in Y_0), then

$$\|y\| \ge \frac{1}{C} \left(\sum_{j=1}^{m} \left\| \sum_{\alpha \in F_j} \Phi(P_{N_{\alpha}}) y \right\|^p \right)^{1/p}.$$

$$\tag{1}$$

Just as in the proof Proposition 1.3, we can write $\sum_{\alpha \in F_j} \Phi(P_{N_\alpha}) = \Phi(Q_j)$ with Q_j , for $1 \leq j \leq m$, being the basis projections onto the closed spans of disjoint sets of FDD basis spaces (E_n) . So (1) can be rewritten as

$$||y|| \ge \frac{1}{C} \left(\sum_{j=1}^{m} ||\Phi(Q_j)y||^p \right)^{1/p}.$$
 (2)

From Lemma 1.1 and the surjectivity of Φ , for any T_1, \ldots, T_m in L(Y) we have

$$\left\|\sum_{j=1}^{m} T_{j} \Phi(Q_{j})\right\| \leq C \left(\sum_{j=1}^{m} \|T_{j}\|^{q}\right)^{1/q},$$
(3)

where C depends only on p and on $\|\Phi\| \cdot \|(\Phi^*)^{-1}\|$, and 1/p + 1/q = 1. Take any $y \in Y$ and take $\beta_j \ge 0$ with

$$\sum_{j=1}^{m} \beta_j^q = 1 \quad \text{and} \quad \sum_{j=1}^{m} \beta_j \|\Phi(Q_j)y\| = \left(\sum_{j=1}^{m} \|\Phi(Q_j)y\|^p\right)^{1/p}.$$

Let y_0 be any unit vector in Y and let T_j be $\Phi(Q_j)$ followed by a norm (at most) one projection onto the (at most) one dimensional space $\mathbb{K}\Phi(Q_j)y$ followed by $\Phi(Q_j)y \mapsto \beta_j \|\Phi(Q_j)y\|_{y_0}$. Then by (3),

$$\left(\sum_{j=1}^{m} \|\Phi(Q_j)y\|^p\right)^{1/p} = \sum_{j=1}^{m} \beta_j \|\Phi(Q_j)y\| = \left\|\sum_{j=1}^{m} T_j \Phi(Q_j)y\right\|$$
$$\leq C \left(\sum_{j=1}^{m} \|T_j\|^q\right)^{1/q} \|y\| = C\|y\|,$$

which is (2). \Box

Our first corollary of Theorem 1.4 is immediate. Its hypothesis is satisfied by many spaces that are used in analysis, including most Orlicz and Lorentz sequence spaces.

Corollary 1.5. If X has a subsymmetric basis and has finite cotype, then X has SHAI.

The next corollary solves the problem that motivated our research into the SHAI property.

Corollary 1.6. For $1 , the space <math>L^p$ has the SHAI property.

Proof. In view of Theorem 1.4, it is enough to prove that the Haar basis for L^p has property (#). Let $\{N_{\alpha}: \alpha < c\}$ be a continuum of almost disjoint infinite subsets of the natural numbers \mathbb{N} . Define for $\alpha < c$

$$X_{\alpha} = \overline{\operatorname{span}} \{ h_{n,i} \colon n \in N_{\alpha} \text{ and } 1 \le i \le 2^n \},$$

where $\{h_{n,i}: n = 0, 1, ... \text{ and } 1 \leq i \leq 2^n\}$ is the usual (unconditional) Haar basis for $L^p(0, 1)$, indexed in its usual way, so that $\{|h_{n,i}|: 1 \leq i \leq 2^n\}$ is the set of indicator functions of the dyadic subintervals of (0, 1) that have length 2^{-n} . By the Gamlen–Gaudet theorem [7], X_{α} is isomorphic to L^p with the isomorphism constant depending only on p. \Box

Remark 1.7. Although our proof that L^p has the SHAI property is simple enough, it is strange. The "natural" way of proving that a space X has the SHAI property is to verify that for any non-trivial closed ideal \mathcal{I} in L(X), the quotient algebra $L(X)/\mathcal{I}$ contains no minimal idempotents. (An idempotent P is called minimal provided $P \neq 0$ and the only idempotents Q for which PQ = QP = Q are P and 0. Rank-one idempotents in L(X) are minimal.) This suggests the following problem, which is related to the known problem whether every infinite dimensional complemented subspace of L^p is isomorphic to its square.

Problem 1.8. Is there a non-trivial closed ideal \mathcal{I} in $L(L^p)$ for which $L(L^p)/\mathcal{I}$ has a minimal idempotent?

If there is a positive answer to Problem 1.8, the witnessing ideal \mathcal{I} cannot be contained in the ideal of strictly singular operators. This is because every infinite dimensional complemented subspace of L^p contains a complemented subspace that is isomorphic either to ℓ^p or to ℓ^2 [11], and the fact that idempotents in $L(X)/\mathcal{I}$ lift to idempotents in L(X) when \mathcal{I} is an ideal that is contained in L(X) [3].

Problem 1.9. Does L^1 have the SHAI property?

2. Examples and permanence properties

Here we present some more examples of spaces with property (#) and with the SHAI property. We do not know whether every complemented subspace of L^p has the SHAI property, but we show that at least some of the known examples of such spaces do. Along the way we state and prove some permanence properties of (#).

The classical complemented subspaces of L^p have the SHAI property when 1 . $This was known for <math>\ell^2$ and ℓ^p and proved above for L^p . The case of $\ell^p \oplus \ell^2$ follows easily from Theorem 1.4. That the remaining classical complemented subspace of L^p , $\ell^p(\ell^2)$, the ℓ^p sum of ℓ^2 , has (#) and the SHAI property follows from Proposition 2.2 below. Before stating Proposition 2.2 we introduce a quantitative version of property (#).

Definition 2.1. Suppose that $(E_n)_{n=1}^{\infty}$ is an unconditional FDD for a Banach space X and K is a positive constant. We say that (E_n) has property (#) with constant K provided there is an almost disjoint continuum $\{N_{\alpha}: \alpha < c\}$ of infinite sets of natural numbers such that for each $\alpha < c$, X is K-isomorphic to the closed linear span of $\{E_n: n \in N_{\alpha}\}$.

Note that if $(E_n)_{n=1}^{\infty}$ has property (#) then it has property (#) for some positive constant K. Nevertheless, we need this quantitative notion for the full generality of Proposition 2.2.

Recall that if (e_i) is an unconditional basis for some Banach space Y and X_i , for i = 1, 2, ..., is a Banach space, $(\bigoplus_{i=1}^{\infty} X_i)_Y$ is the space of sequences $\bar{x} = (x_1, x_2, ...)$ whose norm, $\|\bar{x}\| = \|\sum_{i=1}^{\infty} \|x_i\| \cdot e_i\|_Y$, is finite. We denote the subspace of $(\bigoplus_{i=1}^{\infty} X_i)_Y$ of all sequences of the form $(0, ..., 0, x_i, 0, ...)$ by $X_i \otimes e_i$.

Proposition 2.2. For i = 1, 2, ... let $(E_n^i)_{n=1}^{\infty}$ be an unconditional FDD for a Banach space X_i , all satisfying property (#) with a common K. Then for each subsymmetric basis (e_i) of some Banach space Y, the unconditional FDD $(E_n^i \otimes e_i)_{i,n=1}^{\infty}$ of $(\bigoplus_{i=1}^{\infty} X_i)_Y$ satisfies (#). If, in addition, the decompositions $(E_n^i)_{n=1}^{\infty}$ have disjoint lower p estimates with uniform constant and (e_i) also has such an estimate, then $(\bigoplus_{i=1}^{\infty} X_i)_Y$ has the SHAI property.

Proof. For each *i*, let $\{N_{\alpha}^{i}: \alpha < c\}$ be an almost disjoint continuum of infinite sets of natural numbers such that for every $\alpha < c$, X_{α} is *K*-isomorphic to the closed linear span of the subspaces E_{n}^{i} for $n \in N_{\alpha}$. Also, let $\{N_{\alpha}: \alpha < c\}$ be an almost disjoint continuum of infinite sets of natural numbers. Then

$$\{(i,n): i \in N_{\alpha} \text{ and } n \in N_{\alpha}^i\}$$

is a continuum of almost disjoint subsets of $\mathbb{N} \times \mathbb{N}$. It is easy to see that this continuum satisfies what is required of the unconditional FDD $(E_n^i \otimes e_i)_{i,n=1}^{\infty}$ to satisfy (#). If the decompositions $(E_n^i)_{n=1}^{\infty}$ have disjoint lower p estimates with uniform constant and (e_i) also has such an estimate, then the FDD $(E_n^i \otimes e_i)_{i,n=1}^{\infty}$ clearly has a disjoint lower p estimate as well, so the SHAI property follows from Theorem 1.4. \Box

Remark 2.3. Note that the proof above works with only notational differences if we deal with only finitely many X_i (and here we do not need to assume the uniformity of the (#) property). In particular, if each of X and Y has an unconditional FDD with (#), then so does $X \oplus Y$.

As we said above, this takes care of the space $\ell^p(\ell^2)$. The first non-classical complemented subspace of L^p is the space X_p of Rosenthal [16]. We recall its definition. Let p > 2 and let $\bar{w} = (w_i)_{i=1}^{\infty}$ be a bounded sequence of positive real numbers. Let $(e_i)_{i=1}^{\infty}$ and $(f_i)_{i=1}^{\infty}$ be the unit vector bases of ℓ^p and ℓ^2 . Let $X_{p,\bar{w}}$ be the closed span of $(e_i \oplus w_i f_i)_{i=1}^{\infty}$ in $\ell^p \oplus \ell^2$. If the w_i are bounded away from zero, then $X_{p,\bar{w}}$ is isomorphic to ℓ^2 . If $\sum_{i=1}^{\infty} w_i^{\frac{2p}{p-2}} < \infty$, then $X_{p,\bar{w}}$ is isomorphic to ℓ^p . If one can split the sequence \bar{w} into two subsequences, one bounded away from zero and the other such that the sum of the $\frac{2p}{p-2}$ powers of its elements converges, then $X_{p,\bar{w}}$ is isomorphic to $\ell^p \oplus \ell^2$. Rosenthal proved that in all other situations one gets a new space, isomorphically unique (i.e., any, two spaces corresponding to two choices of \bar{w} with this condition are isomorphic). Moreover, $X_{p,w}$ is isomorphic to a complemented subspace of L^p . The constants involved (isomorphisms and complementations) are bounded by a constant depending only on p. This common (class of) space(s) is denoted by X_p . For $1 , <math>X_p$ is defined to be $X_{p/(p-1)}^*$.

Proposition 2.4. Let $p \in (1, \infty) \setminus \{2\}$. Then X_p has (#) and has the SHAI property.

Proof. Let p > 2. Write \mathbb{N} as a disjoint union of finite subsets σ_j for $j = 1, 2, \ldots$, with $|\sigma_j| \to \infty$. For $i \in \sigma_j$ put $w_i = |\sigma_j|^{\frac{2-p}{2p}}$, so $w_i \to 0$ and for each j, $\sum_{i \in \sigma_j} w_i^{\frac{2p}{p-2}} = 1$. Set $E_j = \operatorname{span}(e_i \oplus w_i f_i)_{i \in \sigma_j}$. It follows that for any infinite subsequence of the unconditional FDD (E_j) , the closed span of this subsequence is isomorphic to X_p . The FDD is unconditional and, as it lives in L^p , has a lower p estimate. So the result in this case follows from Theorem 1.4. The case $1 follows by looking at the dual FDD. <math>\Box$

Building on X_p and the classical complemented subspaces of L^p , Rosenthal [16] lists a few more isomorphically distinct spaces that are isomorphic to complemented subspaces of L^p when $p \in (1, \infty) \setminus \{2\}$. Using the discussion above one can easily show that they all have (#) and the SHAI property. Here we just comment on one of them for which the full power of Proposition 2.2 is needed. This is the space denoted in [16] by B_p . It is the ℓ^p sum of spaces X_i each having a 1-symmetric basis, and thus having (#) with uniform constant. Each X_i is isomorphic to ℓ^2 , but the isomorphism constant tends to infinity as $i \to \infty$. By Proposition 2.2, B_p has (#) and the SHAI property.

The first infinite collection of mutually non-isomorphic complemented subspaces of L^p for $p \in (1, \infty) \setminus \{2\}$ was constructed in [17]. We recall the simple construction. Given two subspaces X and Y of $L^p(\Omega)$ with $1 \leq p \leq \infty$, $X \otimes_p Y$ denotes the subspace of $L^p(\Omega^2)$ that is the closed span of all functions of the form h(s,t) = f(s)g(t) with $f \in X$ and $g \in Y$. It is easy to see (and was done in [17]) that the isomorphism class of $X \otimes_p Y$ depends only on the isomorphism classes of X and Y and that, if X and Y are complemented in $L^p(\Omega)$, then $X \otimes_p Y$ is complemented in $L^p(\Omega^2)$. More generally, if X_1, X_2, Y_1, Y_2 are subspaces of $L^p(\Omega)$ and $T_i \in L(X_i, Y_i)$, then $T_1 \otimes_p T_2 \in L(X_1 \otimes_p X_2, Y_1 \otimes_p Y_2)$. Note also that if $(E_n^i)_{n=1}^{\infty}$ is an unconditional FDD for X_i for i = 1, 2, then $(E_n^1 \otimes_p E_m^2)_{n,m=1}^{\infty}$ is an unconditional FDD for $X_1 \otimes_p X_2$. This follows from iterating Khinchine's inequality. With a little abuse of notation we denote by X_p some isomorph of X_p that is complemented in $L^p[0,1]$. Set $Y_1 = X_p$, and for n = 2, 3, ..., let $Y_n = Y_{n-1} \otimes_p X_p$. From the above it is clear that the spaces Y_n are complemented (alas, with norm of projection depending on n) in some L^p space isometric to $L^p[0,1]$. The main point in [17] was to prove that the spaces Y_n are isomorphically different. That all the spaces Y_n have (#) follows now from the following general proposition, because it is clear that \otimes_p satisfies Conditions (1) and (2) in Proposition 2.5 for the class of all m tuples of subspaces of $L^p(\mu)$ spaces.

Proposition 2.5. Assume that X_1, \ldots, X_m are Banach spaces, each of which has an unconditional FDD satisfying (#). Let $Y_1 \otimes \cdots \otimes Y_m$ denote an m fold tensor product endowed with norm defined on some class of m tuples of Banach spaces with the following two properties:

1. If $T_i \in L(Y_i, Z_i)$ for $i = 1, \ldots, m$, then

$$T_1 \otimes \cdots \otimes T_m \colon Y_1 \otimes \cdots \otimes Y_m \to Z_1 \otimes \cdots \otimes Z_m$$

is bounded.

2. If Y_i has an unconditional FDD $(F_n^i)_{n=1}^{\infty}$ for each i, then $(F_{n_1}^1 \otimes \cdots \otimes F_{n_m}^m)_{n_1,\dots,n_m=1}^{\infty}$ is an unconditional FDD for the completion of $Y_1 \otimes \cdots \otimes_m Y_m$.

Then, if we assume in addition that (X_1, \ldots, X_m) is in this class, the completion of $X_1 \otimes \cdots \otimes X_m$ has an unconditional FDD with (#).

Proof. For each i = 1, ..., m, let $(E_n^i)_{n=1}^{\infty}$ be an unconditional FDD for a Banach space X_i such that there is an almost disjoint continuum $\{N_{\alpha}^i : \alpha < c\}$ of infinite sets of \mathbb{N} such that for each $\alpha < c$, X_i is isomorphic to the closed linear span of the spaces E_n^i for $n \in N_{\alpha}^i$.

Consider the continuum

$$\{N^1_{\alpha} \times \cdots \times N^m_{\alpha} \colon \alpha < c\}$$

of subsets of \mathbb{N}^m . This is an almost disjoint family whose cardinality is the continuum. Property (2) of the tensor norms we consider guarantees that $(E_{n_1}^1 \otimes \cdots \otimes E_{n_m}^m)_{n_1,\ldots,n_m=1}^{\infty}$ is an unconditional FDD for the completion of $X_1 \otimes \cdots \otimes X_m$. Property (1) implies that for each $\alpha < c$, the closed linear span of

$$(E_{n_1}^1 \otimes \cdots \otimes E_{n_m}^m)_{(n_1,\dots,n_m) \in N_{\alpha}^1 \times \cdots \times N_{\alpha}^m}$$

is isomorphic to the completion of $X_1 \otimes \cdots \otimes X_m$. \Box

Remark 2.6. Note that in general Property (1) does not imply Property (2). The Schatten classes C_p for $p \neq 2$ are examples of tensor norms that satisfy (1) but not (2).

We note that it is clear from Proposition 2.5 that if X_1, \ldots, X_m are subspaces of L^p for $1 \leq p < 2$ that have (sub)symmetric bases, then $X_1 \otimes_p \cdots \otimes_p X_m$ has (#) and the SHAI property. The class of subspaces of L^p for $1 \leq p < 2$ that have a symmetric basis (i.e., the norm of a vector is invariant, up to a constant, under all permutations and changes of signs of its coefficients) is a rich family. (For p > 2, up to isomorphism it includes only ℓ^p and ℓ^2 .) Thus the class of tensor products above includes, for example, $\ell_{p_1}(\ell_{p_2}(\ldots(\ell_{p_m})\ldots))$ whenever $p \leq p_1 < p_2 < \cdots < p_m \leq 2$.

Problem 2.7. Suppose $p \in (1, \infty) \setminus \{2\}$ and let X be a complemented subspace of L^p . Does X have the SHAI property? What if, in addition, X has an unconditional basis? What if, in addition, X is one of the \aleph_1 spaces constructed in [4]?

We complete this section with a discussion of another class of classical Banach spaces that have property (#) and thus also the SHAI property; namely, the Schatten ideals C_p of compact operators T on ℓ^2 for which the eigenvalues of $(T^*T)^{1/2}$ are p-summable. We treat the case $1 but remark afterwards how one can prove that <math>C_1$ (trace class operators on ℓ^2) has the SHAI property. Neither C_1 nor its predual C_{∞} (compact operators on ℓ^2) has an unconditional FDD [12] and hence these spaces do not have property (#). In the sequel we also assume $p \neq 2$ because C_2 , being isometrically isomorphic to ℓ^2 , has already been discussed.

First, consider the subspace T_p of C_p consisting of the lower triangular matrices in C_p . Here we exclude $p = 1, p = \infty$, and p = 2. Neither T_p nor C_p has an unconditional basis [12], but T_p has an obvious unconditional FDD (E_n) ; namely, $E_n = \operatorname{span}_{1 \le j \le n} e_n \otimes e_j$; that is, a matrix is in E_n if and only if the only non-zero terms are in the first n entries of the *n*-th row. Since multiplying all entries in a row by the same scalar of magnitude one is an isometry on C_p , (E_n) is even 1-unconditional. If M is an infinite subset of \mathbb{N} , let $T_p(M)$ be the closed span in T_p of $(E_n)_{n \in M}$. Since (E_n) is 1-unconditional, $T_p(M)$ is norm one complemented in T_p . We claim (and justify at the end of this discussion) that T_p is isometric to a K_p -complemented subspace of $T_p(M)$ with K_p independent of M. The space T_p is isomorphic to $\ell^p(T_p)$ [2, p. 85], so the decomposition method [1, Theorem 2.2.3] shows that T_p is isomorphic to $T_p(M)$. Thus every almost disjoint family of infinite subsets of \mathbb{N} witnesses that T_p has property (#). Theorem 1.4 applies because C_p has finite cotype when $p < \infty$, so T_p has the SHAI property when 1 . Nowfor $1 , <math>T_p$ is complemented in C_p via the projection that zeroes out the entries that lie above the diagonal [14], [8], from which it follows easily [2] that T_p is isomorphic to C_p . Moreover, for M an infinite set of natural numbers, there is an obvious subspace Y of C_p that is isometric to $T_p(M)$ such that $T_p \subset Y$, which gives the claim. We record these observations in Proposition 2.8.

Proposition 2.8. For $1 , the space <math>T_p$ has property (#). Consequently, for $1 , the space <math>C_p$ has the SHAI property.

As we mentioned above, it can be proved that C_1 has the SHAI property even though it does not have an unconditional FDD. However, the C_p norms for $1 \leq p \leq \infty$ are what Kwapień and Pełczyński [12] call unconditional matrix norms; i.e., the norm $\left\|\sum_{i,j} a_{i,j} e_{i,j}\right\|$ of a linear combination $\sum_{i,j} a_{i,j} e_{i,j}$ of the natural basis elements $(e_{i,j})_{i,j=1}^{\infty}$, is equivalent (in our case even equal) to the norm of $\sum_{i,j} \varepsilon_i \delta_j a_{i,j} e_{i,j}$ for all sequences of signs $(\varepsilon_i)_{i=1}^{\infty}$ and $(\delta_j)_{j=1}^{\infty}$. One can define a variation of property (#) for bases with this unconditionality property, check that the natural bases for C_p , for $1 \leq p \leq \infty$, satisfy this property, and prove a version of Theorem 1.4. This shows that C_1 has the SHAI property (and gives an alternative proof also for C_p for 1). This variation $of Theorem 1.4 does not apply to <math>C_{\infty}$, which does not have finite cotype, and we do not know whether C_{∞} has the SHAI property. Since our focus in this paper is on spaces that are more closely related to L^p than are the C_p spaces, we do not go into more detail. Our main reason for bringing up C_p is to point out why the definition of property (#) is made for unconditional FDDs rather than just for unconditional bases.

References

- F. Albiac, N.J. Kalton, Topics in Banach Space Theory, 2nd edition, Graduate Texts in Mathematics, vol. 233, Springer, New York, 2016.
- [2] J. Arazy, J. Lindenstrauss, Some linear topological properties of the spaces C_p of operators on Hilbert space, Compos. Math. 30 (1975) 81–111.
- [3] B.A. Barnes, Algebraic elements of a Banach algebra modulo an ideal, Pac. J. Math. 117 (2) (1985) 219–231.
- [4] J. Bourgain, H.P. Rosenthal, G. Schechtman, An ordinal L_p-index for Banach spaces, with application to complemented subspaces of L_p, Ann. Math. (2) 114 (2) (1981) 193–228.
- [5] H.G. Dales, Banach Algebras and Automatic Continuity, Oxford University Press Inc., New York, 2000.
- [6] M. Eidelheit, On isomorphisms of rings of linear operators, Stud. Math. 9 (1940) 97–105.
- [7] J.L.B. Gamlen, R.J. Gaudet, On subsequences of the Haar system in $L^p[-1,1]$, $(1 \le p \le \infty)$, Isr. J. Math. 15 (1973) 404–413.
- [8] I.C. Gohberg, A.S. Markus, I.A. Feldman, Normally solvable operators and ideals associated with them, Am. Math. Soc. Transl. 61 (1967) 63–84.
- [9] B. Horváth, When are full representations of algebras of operators on Banach spaces automatically faithful?, Stud. Math. 253 (3) (2020) 259–282.
- [10] B. Horváth, T. Kania, Surjective operators from algebras of operators on long sequence spaces are automatically injective, arXiv:2007.14112v1, 2020.
- M.I. Kadec, A. Pełczyński, Bases, lacunary sequences and complemented subspaces in the spaces L_p, Stud. Math. 21 (1961/1962) 161–176.
- [12] S. Kwapień, A. Pełczyński, The main triangle projection in matrix spaces and its applications, Stud. Math. 34 (1970) 43–68.
- [13] J. Lindenstrauss, L. Tzafriri, Classical Banach Spaces, vol. I, Ergebn. Math. Grenzgeb., vol. 92, Springer, 1977.
- [14] V.I. Macaev, Volterra operators obtained from self-adjoint operators by perturbation, Dokl. Akad. Nauk SSSR 139 (1961) 810–813 (in Russian).
- [15] C.J. Read, Discontinuous derivations on the algebra of bounded operators on a Banach space, J. Lond. Math. Soc. 40 (1989) 305–326.
- [16] H.P. Rosenthal, On the subspaces of L^p (p > 2) spanned by sequences of independent random variables, Isr. J. Math. 8 (1970) 273–303.
- [17] G. Schechtman, Examples of \mathcal{L}_p spaces (1 , Isr. J. Math. 22 (2) (1975) 138–147.