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Abstract. Examples are given to show that two natural questions asked in [5]
about complemented versions of James’s distortion theorems have negative answers.

1. Introduction

The James’s distortion theorem for �1 (respectively, for c0) states that whenever
a Banach space contains a subspace isomorphic to �1 (respectively, c0) then the Ba-
nach space contains subspaces that are almost isometric to �1 (respectively, c0). In
[5], complemented versions of James’s distortion theorems were considered in the
following senses:

Theorem 1. Let X be a Banach space whose dual unit ball is weak*-sequentially
compact and ε > 0. If X contains a subspace isomorphic to c0, then there exists a
subspace Z of X and a projection P from X onto Z such that Z is (1 + ε)-isometric
to c0 and ‖P‖ ≤ 1+ε. Moreover, if X contains a subspace isometric to c0, then there
exists a subspace Z of X and a projection P from X onto Z such that Z is isometric
to c0 and ‖P‖ = 1.

Theorem 2. Let X be a Banach space which contains a complemented subspace
isomorphic to �1 and ε > 0. Then there exists a subspace Y of X and a projection P
from X onto Y such that Y is (1 + ε)-isometric to �1 and ‖P‖ ≤ 1 + ε.

While Theorem 2 can be viewed as the exact analogue of the James’s distortion
theorem for complemented copies of �1, Theorem 1 may be interpreted as combination
of the James’s distortion theorem for c0 and the classical Sobczyk Theorem. These
led to the following natural questions (see [5, Question 1, Question 2]):

Question 1. If a Banach space X contains a complemented copy of c0 and if ε > 0,
does there exist a subspace Z of X and a projection P from X onto Z such that Z is
(1 + ε)-isometric to c0 and ‖P‖ ≤ 1 + ε?

1991 Mathematics Subject Classification. [2000]Primary: 46B20, 46B25. Secondary: 46B03,
46B45.

Key words and phrases. �1, c0, renorming, James’s distortion theorems.
†Research partially supported by NSF DMS–0503688.
‡Research partially supported by NSF DMS–0456781.
January 31, 2007.

1



2 JOHNSON AND RANDRIANANTOANINA

Question 2. If a Banach space X contains a complemented subspace isometric to
�1, does there exists a subspace Z of X and a projection P from X onto Z such that
Z is isometric to �1 and ‖P‖ = 1?

The aim of this note is to provide examples showing that, as expected, the answers
to both questions are negative.

2. The examples

2.1. The c0-case. In this subsection, we exhibit a Banach space X with the property
that any complemented subspace of X that is almost isometric to c0 has large pro-
jection constant, thus answering Question 1 negatively. The space X is a renorming
of �∞ ⊕∞ c0.

We denote by ‖ · ‖ the usual norm on �∞ ⊕∞ c0. In order to define the new norm
on X, let J : �1 → �∞ be an isometric embedding of �1 into �∞ and Q : �1 → c0 be a
quotient map. For δ > 0, a norm ||| · ||| on X is defined by fixing its unit ball:

B(X,|||·|||) :=
{
(Jf, Qf); f ∈ �1, ‖f‖1 ≤ 1

}
+ δB(X,‖·‖).

It is clear that ||| · ||| and ‖ · ‖ are equivalent norms on X and X contains a comple-
mented subspace isomorphic to c0.

Proposition 3. Let ε > 0 and Z be a subspace of (X, ||| · |||) that is (1+ε)-isometric
to c0 and is complemented in X. If P is a projection from X onto Z then

|||P ||| ≥ 1 + δ

4δ(1 + ε)3
.

Proof. Throughout, we also denote by ||| · ||| the corresponding dual norm on X∗.
Let (Vn)n≥1 be a basic sequence (1 + ε)-equivalent to the unit vector basis of c0 and
whose closed linear span is Z. Let P be a projection from X onto Z. Then P is of
the form

P =

∞∑

n=1

V ∗
n ⊗ Vn

where (V ∗
n )n≥1 is a weak∗-null sequence in X∗ and the sum can be taken with respect

to the strong operator topology. Observe that X∗ = (�∞)∗ ⊕1 �1 isomorphically and
thus for every n ≥ 1, V ∗

n = (x∗
n, a∗

n) where (x∗
n)n≥1 (respectively, (a∗

n)n≥1) is a weak∗-
null sequence in (�∞)∗ (respectively, �1). Since weak∗-null sequences are weakly-null
in (�∞)∗ (see for instance [1, Theorem 15, p.103]), we have

weak − lim
n→∞

x∗
n = 0.

There exists a convex block (y∗
n)n≥1 of (x∗

n)n≥1 with

lim
n→∞

‖y∗
n‖ = 0.(2.1.1)
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There exists a strictly increasing sequence of integers (kn)n≥0 and positive scalars

α
(n)
j , where kn−1 + 1 ≤ j ≤ kn,

∑kn

j=kn−1+1 α
(n)
j = 1 for n ≥ 1, and

y∗
n =

kn∑

j=kn−1+1

α
(n)
j x∗

j .

For n ≥ 1, consider the corresponding block sequences:

Wn =

kn∑

j=kn−1+1

Vj

W ∗
n =

kn∑

j=kn−1+1

α
(n)
j V ∗

j

(2.1.2)

Then (Wn)n≥1 is equivalent to the unit vector basis of c0. Moreover, for every n, k ≥ 1,

〈W ∗
n , Wk〉 = δk

n, W ∗
n = (y∗

n, b
∗
n) where b∗n =

∑kn

j=kn−1+1 α
(n)
j a∗

j , and |||Wn||| ≤ 1 + ε.
The latter implies that for n ≥ 1, Wn can be decomposed as

Wn =
(
Jfn, Qfn

)
+

(
xn, an

)
(2.1.3)

with

(i) fn ∈ �1 satisfying ‖fn‖1 ≤ 1 + ε;
(ii) ‖(xn, an)‖ ≤ δ(1 + ε).

Since (fn)n≥1 is a bounded sequence in �1, we may assume (by passing to a subse-
quence if necessary) that for every n ≥ 1,

fn = f0 + gn + hn

where

(a) limn→∞ ‖fn‖1 exists;
(b) weak∗ − limn→∞ fn = f0;
(c) (gn)n≥1 is a disjointly supported sequence in �1;
(d) limn→∞ ‖hn‖1 = 0.

We claim that

lim
n→∞

‖fn‖1 ≤ 3δ(1 + ε).(2.1.4)
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To see this claim, let N ≥ 1, then

1

N

N∑

n=1

‖fn‖1 ≤
∥∥f0

∥∥
1
+

1

N

N∑

n=1

∥∥gn

∥∥
1
+

1

N

N∑

n=1

∥∥hn

∥∥
1

=
∥∥f0

∥∥
1
+

1

N

∥∥
N∑

n=1

gn

∥∥
1
+

1

N

N∑

n=1

‖hn‖1

≤ 2‖f0‖1 +
1

N

∥∥
N∑

n=1

fn

∥∥
1
+

2

N

N∑

n=1

∥∥hn

∥∥
1
.

Note that ‖f0‖1 ≤ lim N→∞N−1
∥∥ ∑N

n=1 fn

∥∥
1

and limN→∞ N−1
∑N

n=1 ‖hn‖1 = 0. We
deduce that

lim
n→∞

∥∥fn

∥∥
1
≤ 3 lim N→∞

1

N

∥∥
N∑

n=1

fn

∥∥
1
.

We observe that

1

N

∥∥
N∑

n=1

fn

∥∥
1

=
1

N

∥∥
N∑

n=1

Jfn

∥∥
∞

≤ 1

N

∥∥
N∑

n=1

(
Jfn, Qfn

)∥∥

≤ 1

N

∥∥
N∑

n=1

Wn

∥∥ +
1

N

∥∥
N∑

n=1

(
xn, an

)∥∥

≤ 1

N

∥∥
N∑

n=1

Wn

∥∥ + δ(1 + ε).

Since (Wn) is equivalent to the unit vector basis of c0, we have lim
N→∞

N−1‖
N∑

n=1

Wn‖ =

0. Combining all the above estimates, we get inequality (2.1.4).
We now show that if Π is the projection from X onto the closed linear span of

(Wn)n≥1 defined by Π =
∑∞

n=1 W ∗
n ⊗ Wn, then

|||Π||| ≥ 1 + δ

4δ(1 + ε)2
.(2.1.5)

To see this, we first observe that for every y∗ ∈ �1,

|||(0, y∗)||| = ‖y∗‖1(1 + δ).(2.1.6)
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For every n ≥ 1, we have

1 = 〈W ∗
n , Wn〉

= 〈(y∗
n, b

∗
n

)
,
(
Jfn + xn, Qfn + an

)〉
= 〈y∗

n, Jfn + xn〉 + 〈b∗n, Qfn + an〉
≤ (‖y∗

n‖ + ‖b∗n‖
)(‖fn‖1 + δ(1 + ε)

)
.

Taking limits as n → ∞, we deduce that

lim n→∞‖b∗n‖1 ≥ 1

4δ(1 + ε)
.(2.1.7)

We can estimate |||Π||| as follows:

|||Π||| ≥ sup
n≥1

|||W ∗
n |||

1 + ε

= sup
n≥1

|||(y∗
n, b

∗
n)|||

1 + ε

≥ lim n→∞
|||(y∗

n, b
∗
n)|||

1 + ε

= lim n→∞
|||(0, b∗n)|||

1 + ε
.

Thus (2.1.5) follows by combining (2.1.7) and (2.1.6). We conclude the proof by
observing that |||Π||| ≤ (1 + ε)|||P |||.
2.2. The �1-case. Now we provide an example showing that Theorem 2 does not
extend to the isometric case. In particular, the answer to Question 2 is negative.

First, recall that a norm ‖ · ‖ on a Banach space E is said to be strictly convex
if Ext(BE) = SE. This is equivalent to the following property (see for instance [6,
p. 246]):

If x, y ∈ SE satisfy ‖x + y‖ = 2, then x = y.(2.2.1)

It is clear from (2.2.1) that if ‖ · ‖ is strictly convex then (E, ‖ · ‖) does not contain
any �2

∞ (the two dimensional �∞) isometrically. Indeed, if e1 = (1, 0) and e2 = (0, 1)
are the unit vector basis of �2

∞ then x = e1 and y = e1 + e2 fail to satisfy (2.2.1).
Define a norm | · | on �1 that is equivalent to the usual norm and such that its dual

norm | · |∗ is strictly convex. Such a dual norm on �∞ can be taken by setting:

|(ai)|∗ :=
(‖(ai)‖2

∞ +

∞∑

i=1

2−i|ai|2
)1/2

.

Details on the existence of the norm | · | can be found in [6, pp. 241–254]. We define
a Banach space Y by setting:

Y := (C[0, 1], ‖ · ‖∞) ⊕∞ (�1, | · |).
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Proposition 4. The Banach space Y contains a complemented subspace that is iso-
metric to �1 but �1 is not isometric to a quotient of Y .

Let (en) be the unit vector basis of �1 and for n ≥ 1, set vn := en/|en|. Fix a
sequence (fn)n≥1 in C[0, 1] that is isometrically equivalent to the unit vector basis of
�1 and for n ≥ 1, define Un := (fn, vn) ∈ Y . We claim that (Un)n≥1 is isometrically
equivalent to the unit vector basis of �1 and its closed linear span is complemented.
In fact, for any finite sequence (an)n≥1 of scalars,

∑

n≥1

|ai| =
∥∥ ∑

n≥1

anfn

∥∥
∞

≤ ∥∥ ∑

n≥1

anUn

∥∥
Y

≤
∑

n≥1

|ai|,

therefore,
∑

n≥1 |ai| =
∥∥ ∑

n≥1 anUn

∥∥
Y
. Moreover, if we denote by Z the closed linear

span of (Un)n≥1 then Z is a complemented subspace of Y . Indeed, let T : (�1, |·|) → Y
be defined by setting T (vn) = Un for all n ≥ 1 and Π be the second projection from
Y onto (�1, | · |) then T ◦ Π is a projection from Y onto Z.

The fact that �1 is not isometric to a quotient of Y follows from the next lemma,
which we assume is well known.

Lemma 5. Let E and F be Banach spaces and T : c0 → E ⊕1 F be an isometry.
Then there exists cj ≥ 0, j = 1, 2 with:

(a) c1 + c2 = 1;
(b) if T = (T1, T2) then ‖Tj(e)‖ = cj‖e‖ for j = 1, 2 and all e ∈ c0.

In particular, if E⊕1F contains an isometric copy of c0 then either E or F contains
an isometric copy of c0.

Proof. Denote by c00 the space of finitely supported sequences of scalars and let
(en)n≥1 be the unit vector basis of c0. Write T = (T1, T2) with T1 : c0 → E and
T2 : c0 → F . We shall verify that for every x ∈ c00 with ‖x‖ = 1,

‖Tj(x)‖ = ‖Tj(e1)‖ for j = 1, 2.

To see this, we will show first that if x and y are disjointly supported unit vectors
then

‖Tj(x)‖ = ‖Tj(y)‖ for j = 1, 2.(2.2.2)

Write 2x = (x − y) + (x + y). Then

2 = ‖T (2x)‖ = ‖T1(2x)‖ + ‖T2(2x)‖
≤ (‖T1(x − y)‖ + ‖T1(x + y)‖) + (‖T2(x − y)‖ + ‖T2(x + y)‖)
= ‖T (x − y)‖ + ‖T (x + y)‖ = 2.
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For j = 1, 2, set aj = ‖Tj(x−y)‖+‖Tj(x+y)‖−2‖Tj(x)‖. Then (a1, a2) is a positive
element of �2

1 whose norm is equal to zero so

2‖Tj(x)‖ = ‖Tj(x − y)‖ + ‖Tj(x + y)‖, j = 1, 2.

By reversing the role of x and y, we get (2.2.2).
Now, let x ∈ c00 with ‖x‖ = 1. Choose, n > 1 so that en and x are disjointly

supported. From (2.2.2),

‖Tj(x)‖ = ‖Tj(en)‖ = ‖Tj(e1)‖, j = 1, 2.

Setting cj = ‖Tj(e1)‖ for j = 1, 2 proves the lemma.

End of the proof of Proposition 4. If �1 is isometric to a quotient of Y then the dual
space Y ∗ = C[0, 1]∗ ⊕1 (�∞, | · |∗) contains an isometric copy of �∞ = �∗1 and hence of
c0. But since | · |∗ is strictly convex and C[0, 1]∗ is a L1-space, this is in contradiction
with Lemma 5 and thus completes the proof.

3. Concluding remarks

The notion of asymptotically isometric copies of �1 (respectively, c0) is closely
related to James’s distortion theorems. We recall that a Banach space E is said to
contain an asymptotically isometric copy of �1 (respectively, c0) if there exist a null
sequence (εn)n≥1 in (0, 1) and a sequence (xn)n≥1 in E such that for all finite sequence
(tn)n of scalars:

∑

n

(1 − εn)|tn| ≤
∥∥ ∑

n

tnxn

∥∥ ≤
∑

n

|tn|,

respectively,

sup
n

(1 − εn)|tn| ≤
∥∥ ∑

n

tnxn

∥∥ ≤ sup
n

|tn|,

The norm introduced in the definition of the Banach space Y can be used to provide
examples confirming the optimality of the James’s distortion theorems. We refer to
[4] for earlier examples.

Proposition 6. (a) (�1, | · |) does not contain any subspace asymptotically isometric
to �1.

(b) (�∞, | · |∗) does not contain any subspace asymptotically isometric to c0.

Proof. These statements follow from the norm | · |∗ being strictly convex and some
known results. First, containing an asymptotically isometric copy of c0 and containing
an isometric copy of c0 is equivalent in a dual space ([3]). Second, according to [2], a
Banach space contains an asymptotically isometric copy of �1 if and only if its dual
contains an isometric copy of L1[0, 1]. But since (�∞, | · |∗) is strictly convex, it does
not contain any isometric copy of �1 and therefore it can not contain any isometric
copy of L1[0, 1]. Part (a) was already observed in [2] where an explicit formula for
| · | was given (see [2, Corollary 12]).
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The proof of Proposition 4 yields that the last part of the conclusion of Proposition
4 can be strengthened to “c0 is not isometric to a subspace of Y ∗”. However, in [3]
Dowling proved that �1 is a quotient of X if and only if c0 embeds isometrically into
X∗, so the more natural statement involving �1 is only formally weaker.
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Mathématiques de la SMC, 8, Springer-Verlag, New York, 2001. MR 2002f:46001

Department of Mathematics, Texas A&M University, College Station, TX 77843

E-mail address: johnson@math.tamu.edu

Department of Mathematics and Statistics, Miami University, Oxford, OH 45056

E-mail address: randrin@muohio.edu


