ON COMPLEMENTED VERSIONS OF JAMES'S DISTORTION THEOREMS

WILLIAM B. JOHNSON ${ }^{\dagger}$ AND NARCISSE RANDRIANANTOANINA ${ }^{\ddagger}$

Abstract

Examples are given to show that two natural questions asked in [5] about complemented versions of James's distortion theorems have negative answers.

1. Introduction

The James's distortion theorem for ℓ_{1} (respectively, for c_{0}) states that whenever a Banach space contains a subspace isomorphic to ℓ_{1} (respectively, c_{0}) then the Banach space contains subspaces that are almost isometric to ℓ_{1} (respectively, c_{0}). In [5], complemented versions of James's distortion theorems were considered in the following senses:

Theorem 1. Let X be a Banach space whose dual unit ball is weak*-sequentially compact and $\varepsilon>0$. If X contains a subspace isomorphic to c_{0}, then there exists a subspace Z of X and a projection P from X onto Z such that Z is $(1+\varepsilon)$-isometric to c_{0} and $\|P\| \leq 1+\varepsilon$. Moreover, if X contains a subspace isometric to c_{0}, then there exists a subspace Z of X and a projection P from X onto Z such that Z is isometric to c_{0} and $\|P\|=1$.

Theorem 2. Let X be a Banach space which contains a complemented subspace isomorphic to ℓ_{1} and $\varepsilon>0$. Then there exists a subspace Y of X and a projection P from X onto Y such that Y is $(1+\varepsilon)$-isometric to ℓ_{1} and $\|P\| \leq 1+\varepsilon$.

While Theorem 2 can be viewed as the exact analogue of the James's distortion theorem for complemented copies of ℓ_{1}, Theorem 1 may be interpreted as combination of the James's distortion theorem for c_{0} and the classical Sobczyk Theorem. These led to the following natural questions (see [5, Question 1, Question 2]):

Question 1. If a Banach space X contains a complemented copy of c_{0} and if $\varepsilon>0$, does there exist a subspace Z of X and a projection P from X onto Z such that Z is $(1+\varepsilon)$-isometric to c_{0} and $\|P\| \leq 1+\varepsilon$?

[^0]Question 2. If a Banach space X contains a complemented subspace isometric to ℓ_{1}, does there exists a subspace Z of X and a projection P from X onto Z such that Z is isometric to ℓ^{1} and $\|P\|=1$?

The aim of this note is to provide examples showing that, as expected, the answers to both questions are negative.

2. The examples

2.1. The c_{0}-case. In this subsection, we exhibit a Banach space X with the property that any complemented subspace of X that is almost isometric to c_{0} has large projection constant, thus answering Question 1 negatively. The space X is a renorming of $\ell_{\infty} \oplus_{\infty} c_{0}$.

We denote by $\|\cdot\|$ the usual norm on $\ell_{\infty} \oplus_{\infty} c_{0}$. In order to define the new norm on X, let $J: \ell_{1} \rightarrow \ell_{\infty}$ be an isometric embedding of ℓ_{1} into ℓ_{∞} and $Q: \ell_{1} \rightarrow c_{0}$ be a quotient map. For $\delta>0$, a norm $\|\|\cdot\| \mid$ on X is defined by fixing its unit ball:

$$
B_{(X,\| \| \cdot \|)}:=\left\{(J f, Q f) ; f \in \ell_{1},\|f\|_{1} \leq 1\right\}+\delta B_{(X,\|\cdot\|)}
$$

It is clear that $\|\|\cdot\|\|$ and $\|\cdot\|$ are equivalent norms on X and X contains a complemented subspace isomorphic to c_{0}.

Proposition 3. Let $\varepsilon>0$ and Z be a subspace of $(X,\| \| \cdot\| \|)$ that is $(1+\varepsilon)$-isometric to c_{0} and is complemented in X. If P is a projection from X onto Z then

$$
\|\|P\|\| \geq \frac{1+\delta}{4 \delta(1+\varepsilon)^{3}}
$$

Proof. Throughout, we also denote by $\left\|\|\cdot\| \mid\right.$ the corresponding dual norm on X^{*}. Let $\left(V_{n}\right)_{n \geq 1}$ be a basic sequence $(1+\varepsilon)$-equivalent to the unit vector basis of c_{0} and whose closed linear span is Z. Let P be a projection from X onto Z. Then P is of the form

$$
P=\sum_{n=1}^{\infty} V_{n}^{*} \otimes V_{n}
$$

where $\left(V_{n}^{*}\right)_{n \geq 1}$ is a weak*-null sequence in X^{*} and the sum can be taken with respect to the strong operator topology. Observe that $X^{*}=\left(\ell_{\infty}\right)^{*} \oplus_{1} \ell_{1}$ isomorphically and thus for every $n \geq 1$, $V_{n}^{*}=\left(x_{n}^{*}, a_{n}^{*}\right)$ where $\left(x_{n}^{*}\right)_{n \geq 1}$ (respectively, $\left.\left(a_{n}^{*}\right)_{n \geq 1}\right)$ is a weak*null sequence in $\left(\ell_{\infty}\right)^{*}$ (respectively, ℓ_{1}). Since weak*-null sequences are weakly-null in $\left(\ell_{\infty}\right)^{*}$ (see for instance [1, Theorem 15, p.103]), we have

$$
\text { weak }-\lim _{n \rightarrow \infty} x_{n}^{*}=0
$$

There exists a convex block $\left(y_{n}^{*}\right)_{n \geq 1}$ of $\left(x_{n}^{*}\right)_{n \geq 1}$ with

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|y_{n}^{*}\right\|=0 \tag{2.1.1}
\end{equation*}
$$

There exists a strictly increasing sequence of integers $\left(k_{n}\right)_{n \geq 0}$ and positive scalars $\alpha_{j}^{(n)}$, where $k_{n-1}+1 \leq j \leq k_{n}, \sum_{j=k_{n-1}+1}^{k_{n}} \alpha_{j}^{(n)}=1$ for $n \geq 1$, and

$$
y_{n}^{*}=\sum_{j=k_{n-1}+1}^{k_{n}} \alpha_{j}^{(n)} x_{j}^{*} .
$$

For $n \geq 1$, consider the corresponding block sequences:

$$
\begin{align*}
W_{n} & =\sum_{j=k_{n-1}+1}^{k_{n}} V_{j} \tag{2.1.2}\\
W_{n}^{*} & =\sum_{j=k_{n-1}+1}^{k_{n}} \alpha_{j}^{(n)} V_{j}^{*}
\end{align*}
$$

Then $\left(W_{n}\right)_{n \geq 1}$ is equivalent to the unit vector basis of c_{0}. Moreover, for every $n, k \geq 1$, $\left\langle W_{n}^{*}, W_{k}\right\rangle=\delta_{n}^{k}, W_{n}^{*}=\left(y_{n}^{*}, b_{n}^{*}\right)$ where $b_{n}^{*}=\sum_{j=k_{n-1}+1}^{k_{n}} \alpha_{j}^{(n)} a_{j}^{*}$, and $\left\|\left\|W_{n}\right\| \mid \leq 1+\varepsilon\right.$. The latter implies that for $n \geq 1, W_{n}$ can be decomposed as

$$
\begin{equation*}
W_{n}=\left(J f_{n}, Q f_{n}\right)+\left(x_{n}, a_{n}\right) \tag{2.1.3}
\end{equation*}
$$

with
(i) $f_{n} \in \ell_{1}$ satisfying $\left\|f_{n}\right\|_{1} \leq 1+\varepsilon$;
(ii) $\left\|\left(x_{n}, a_{n}\right)\right\| \leq \delta(1+\varepsilon)$.

Since $\left(f_{n}\right)_{n \geq 1}$ is a bounded sequence in ℓ_{1}, we may assume (by passing to a subsequence if necessary) that for every $n \geq 1$,

$$
f_{n}=f_{0}+g_{n}+h_{n}
$$

where
(a) $\lim _{n \rightarrow \infty}\left\|f_{n}\right\|_{1}$ exists;
(b) weak* $-\lim _{n \rightarrow \infty} f_{n}=f_{0}$;
(c) $\left(g_{n}\right)_{n \geq 1}$ is a disjointly supported sequence in ℓ_{1};
(d) $\lim _{n \rightarrow \infty}\left\|h_{n}\right\|_{1}=0$.

We claim that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|f_{n}\right\|_{1} \leq 3 \delta(1+\varepsilon) \tag{2.1.4}
\end{equation*}
$$

To see this claim, let $N \geq 1$, then

$$
\begin{aligned}
\frac{1}{N} \sum_{n=1}^{N}\left\|f_{n}\right\|_{1} & \leq\left\|f_{0}\right\|_{1}+\frac{1}{N} \sum_{n=1}^{N}\left\|g_{n}\right\|_{1}+\frac{1}{N} \sum_{n=1}^{N}\left\|h_{n}\right\|_{1} \\
& =\left\|f_{0}\right\|_{1}+\frac{1}{N}\left\|\sum_{n=1}^{N} g_{n}\right\|_{1}+\frac{1}{N} \sum_{n=1}^{N}\left\|h_{n}\right\|_{1} \\
& \leq 2\left\|f_{0}\right\|_{1}+\frac{1}{N}\left\|\sum_{n=1}^{N} f_{n}\right\|_{1}+\frac{2}{N} \sum_{n=1}^{N}\left\|h_{n}\right\|_{1}
\end{aligned}
$$

Note that $\left\|f_{0}\right\|_{1} \leq \underline{\lim }_{N \rightarrow \infty} N^{-1}\left\|\sum_{n=1}^{N} f_{n}\right\|_{1}$ and $\lim _{N \rightarrow \infty} N^{-1} \sum_{n=1}^{N}\left\|h_{n}\right\|_{1}=0$. We deduce that

$$
\lim _{n \rightarrow \infty}\left\|f_{n}\right\|_{1} \leq 3 \varlimsup_{N \rightarrow \infty} \frac{1}{N}\left\|\sum_{n=1}^{N} f_{n}\right\|_{1} .
$$

We observe that

$$
\begin{aligned}
\frac{1}{N}\left\|\sum_{n=1}^{N} f_{n}\right\|_{1} & =\frac{1}{N}\left\|\sum_{n=1}^{N} J f_{n}\right\|_{\infty} \\
& \leq \frac{1}{N}\left\|\sum_{n=1}^{N}\left(J f_{n}, Q f_{n}\right)\right\| \\
& \leq \frac{1}{N}\left\|\sum_{n=1}^{N} W_{n}\right\|+\frac{1}{N}\left\|\sum_{n=1}^{N}\left(x_{n}, a_{n}\right)\right\| \\
& \leq \frac{1}{N}\left\|\sum_{n=1}^{N} W_{n}\right\|+\delta(1+\varepsilon)
\end{aligned}
$$

Since $\left(W_{n}\right)$ is equivalent to the unit vector basis of c_{0}, we have $\lim _{N \rightarrow \infty} N^{-1}\left\|\sum_{n=1}^{N} W_{n}\right\|=$
0 . Combining all the above estimates, we get inequality (2.1.4).
We now show that if Π is the projection from X onto the closed linear span of $\left(W_{n}\right)_{n \geq 1}$ defined by $\Pi=\sum_{n=1}^{\infty} W_{n}^{*} \otimes W_{n}$, then

$$
\begin{equation*}
\left\|\|\Pi\| \left\lvert\, \geq \frac{1+\delta}{4 \delta(1+\varepsilon)^{2}}\right.\right. \tag{2.1.5}
\end{equation*}
$$

To see this, we first observe that for every $y^{*} \in \ell_{1}$,

$$
\begin{equation*}
\left\|\left\|\left(0, y^{*}\right)\right\|\right\|=\left\|y^{*}\right\|_{1}(1+\delta) \tag{2.1.6}
\end{equation*}
$$

For every $n \geq 1$, we have

$$
\begin{aligned}
1 & =\left\langle W_{n}^{*}, W_{n}\right\rangle \\
& =\left\langle\left(y_{n}^{*}, b_{n}^{*}\right),\left(J f_{n}+x_{n}, Q f_{n}+a_{n}\right)\right\rangle \\
& =\left\langle y_{n}^{*}, J f_{n}+x_{n}\right\rangle+\left\langle b_{n}^{*}, Q f_{n}+a_{n}\right\rangle \\
& \leq\left(\left\|y_{n}^{*}\right\|+\left\|b_{n}^{*}\right\|\right)\left(\left\|f_{n}\right\|_{1}+\delta(1+\varepsilon)\right) .
\end{aligned}
$$

Taking limits as $n \rightarrow \infty$, we deduce that

$$
\begin{equation*}
\underline{\lim }_{n \rightarrow \infty}\left\|b_{n}^{*}\right\|_{1} \geq \frac{1}{4 \delta(1+\varepsilon)} \tag{2.1.7}
\end{equation*}
$$

We can estimate |||П||| as follows:

$$
\begin{aligned}
\|\|\Pi \mid\| & \geq \sup _{n \geq 1} \frac{\left\|\mid W_{n}^{*}\right\| \|}{1+\varepsilon} \\
& =\sup _{n \geq 1} \frac{\left\|\left|\left(y_{n}^{*}, b_{n}^{*}\right)\right|\right\|}{1+\varepsilon} \\
& \geq \underline{\lim }_{n \rightarrow \infty} \frac{\| \|\left(y_{n}^{*}, b_{n}^{*}\right)| | \mid}{1+\varepsilon} \\
& =\underline{\lim }_{n \rightarrow \infty} \frac{\left\|\mid\left(0, b_{n}^{*}\right)\right\| \|}{1+\varepsilon} .
\end{aligned}
$$

Thus (2.1.5) follows by combining (2.1.7) and (2.1.6). We conclude the proof by observing that $\||\Pi|\| \leq(1+\varepsilon)\|\mid P\| \|$.
2.2. The ℓ_{1}-case. Now we provide an example showing that Theorem 2 does not extend to the isometric case. In particular, the answer to Question 2 is negative.

First, recall that a norm $\|\cdot\|$ on a Banach space E is said to be strictly convex if $\operatorname{Ext}\left(B_{E}\right)=S_{E}$. This is equivalent to the following property (see for instance [6, p. 246]):

$$
\begin{equation*}
\text { If } x, y \in S_{E} \text { satisfy }\|x+y\|=2 \text {, then } x=y \tag{2.2.1}
\end{equation*}
$$

It is clear from (2.2.1) that if $\|\cdot\|$ is strictly convex then $(E,\|\cdot\|)$ does not contain any ℓ_{∞}^{2} (the two dimensional ℓ_{∞}) isometrically. Indeed, if $e_{1}=(1,0)$ and $e_{2}=(0,1)$ are the unit vector basis of ℓ_{∞}^{2} then $x=e_{1}$ and $y=e_{1}+e_{2}$ fail to satisfy (2.2.1).

Define a norm $|\cdot|$ on ℓ_{1} that is equivalent to the usual norm and such that its dual norm $|\cdot|^{*}$ is strictly convex. Such a dual norm on ℓ_{∞} can be taken by setting:

$$
\left|\left(a_{i}\right)\right|^{*}:=\left(\left\|\left(a_{i}\right)\right\|_{\infty}^{2}+\sum_{i=1}^{\infty} 2^{-i}\left|a_{i}\right|^{2}\right)^{1 / 2}
$$

Details on the existence of the norm $|\cdot|$ can be found in [6, pp. 241-254]. We define a Banach space Y by setting:

$$
Y:=\left(C[0,1],\|\cdot\|_{\infty}\right) \oplus_{\infty}\left(\ell_{1},|\cdot|\right) .
$$

Proposition 4. The Banach space Y contains a complemented subspace that is isometric to ℓ_{1} but ℓ_{1} is not isometric to a quotient of Y.

Let $\left(e_{n}\right)$ be the unit vector basis of ℓ_{1} and for $n \geq 1$, set $v_{n}:=e_{n} /\left|e_{n}\right|$. Fix a sequence $\left(f_{n}\right)_{n \geq 1}$ in $C[0,1]$ that is isometrically equivalent to the unit vector basis of ℓ_{1} and for $n \geq 1$, define $U_{n}:=\left(f_{n}, v_{n}\right) \in Y$. We claim that $\left(U_{n}\right)_{n \geq 1}$ is isometrically equivalent to the unit vector basis of ℓ_{1} and its closed linear span is complemented. In fact, for any finite sequence $\left(a_{n}\right)_{n \geq 1}$ of scalars,

$$
\begin{aligned}
\sum_{n \geq 1}\left|a_{i}\right| & =\left\|\sum_{n \geq 1} a_{n} f_{n}\right\|_{\infty} \\
& \leq\left\|\sum_{n \geq 1} a_{n} U_{n}\right\|_{Y} \\
& \leq \sum_{n \geq 1}\left|a_{i}\right|
\end{aligned}
$$

therefore, $\sum_{n \geq 1}\left|a_{i}\right|=\left\|\sum_{n \geq 1} a_{n} U_{n}\right\|_{Y}$. Moreover, if we denote by Z the closed linear span of $\left(U_{n}\right)_{n \geq 1}$ then Z is a complemented subspace of Y. Indeed, let $T:\left(\ell_{1},|\cdot|\right) \rightarrow Y$ be defined by setting $T\left(v_{n}\right)=U_{n}$ for all $n \geq 1$ and Π be the second projection from Y onto $\left(\ell_{1},|\cdot|\right)$ then $T \circ \Pi$ is a projection from Y onto Z.

The fact that ℓ_{1} is not isometric to a quotient of Y follows from the next lemma, which we assume is well known.

Lemma 5. Let E and F be Banach spaces and $T: c_{0} \rightarrow E \oplus_{1} F$ be an isometry. Then there exists $c_{j} \geq 0, j=1,2$ with:
(a) $c_{1}+c_{2}=1$;
(b) if $T=\left(T_{1}, T_{2}\right)$ then $\left\|T_{j}(e)\right\|=c_{j}\|e\|$ for $j=1,2$ and all $e \in c_{0}$.

In particular, if $E \oplus_{1} F$ contains an isometric copy of c_{0} then either E or F contains an isometric copy of c_{0}.

Proof. Denote by c_{00} the space of finitely supported sequences of scalars and let $\left(e_{n}\right)_{n \geq 1}$ be the unit vector basis of c_{0}. Write $T=\left(T_{1}, T_{2}\right)$ with $T_{1}: c_{0} \rightarrow E$ and $T_{2}: c_{0} \rightarrow F$. We shall verify that for every $x \in c_{00}$ with $\|x\|=1$,

$$
\left\|T_{j}(x)\right\|=\left\|T_{j}\left(e_{1}\right)\right\| \text { for } j=1,2
$$

To see this, we will show first that if x and y are disjointly supported unit vectors then

$$
\begin{equation*}
\left\|T_{j}(x)\right\|=\left\|T_{j}(y)\right\| \text { for } j=1,2 \tag{2.2.2}
\end{equation*}
$$

Write $2 x=(x-y)+(x+y)$. Then

$$
\begin{aligned}
2 & =\|T(2 x)\|=\left\|T_{1}(2 x)\right\|+\left\|T_{2}(2 x)\right\| \\
& \leq\left(\left\|T_{1}(x-y)\right\|+\left\|T_{1}(x+y)\right\|\right)+\left(\left\|T_{2}(x-y)\right\|+\left\|T_{2}(x+y)\right\|\right) \\
& =\|T(x-y)\|+\|T(x+y)\|=2
\end{aligned}
$$

For $j=1,2$, set $a_{j}=\left\|T_{j}(x-y)\right\|+\left\|T_{j}(x+y)\right\|-2\left\|T_{j}(x)\right\|$. Then $\left(a_{1}, a_{2}\right)$ is a positive element of ℓ_{1}^{2} whose norm is equal to zero so

$$
2\left\|T_{j}(x)\right\|=\left\|T_{j}(x-y)\right\|+\left\|T_{j}(x+y)\right\|, \quad j=1,2
$$

By reversing the role of x and y, we get (2.2.2).
Now, let $x \in c_{00}$ with $\|x\|=1$. Choose, $n>1$ so that e_{n} and x are disjointly supported. From (2.2.2),

$$
\left\|T_{j}(x)\right\|=\left\|T_{j}\left(e_{n}\right)\right\|=\left\|T_{j}\left(e_{1}\right)\right\|, \quad j=1,2 .
$$

Setting $c_{j}=\left\|T_{j}\left(e_{1}\right)\right\|$ for $j=1,2$ proves the lemma.
End of the proof of Proposition 4. If ℓ_{1} is isometric to a quotient of Y then the dual space $Y^{*}=C[0,1]^{*} \oplus_{1}\left(\ell_{\infty},|\cdot|^{*}\right)$ contains an isometric copy of $\ell_{\infty}=\ell_{1}^{*}$ and hence of c_{0}. But since $|\cdot|^{*}$ is strictly convex and $C[0,1]^{*}$ is a L_{1}-space, this is in contradiction with Lemma 5 and thus completes the proof.

3. Concluding Remarks

The notion of asymptotically isometric copies of ℓ_{1} (respectively, c_{0}) is closely related to James's distortion theorems. We recall that a Banach space E is said to contain an asymptotically isometric copy of ℓ_{1} (respectively, c_{0}) if there exist a null sequence $\left(\varepsilon_{n}\right)_{n \geq 1}$ in $(0,1)$ and a sequence $\left(x_{n}\right)_{n \geq 1}$ in E such that for all finite sequence $\left(t_{n}\right)_{n}$ of scalars:

$$
\sum_{n}\left(1-\varepsilon_{n}\right)\left|t_{n}\right| \leq\left\|\sum_{n} t_{n} x_{n}\right\| \leq \sum_{n}\left|t_{n}\right|,
$$

respectively,

$$
\sup _{n}\left(1-\varepsilon_{n}\right)\left|t_{n}\right| \leq\left\|\sum_{n} t_{n} x_{n}\right\| \leq \sup _{n}\left|t_{n}\right|,
$$

The norm introduced in the definition of the Banach space Y can be used to provide examples confirming the optimality of the James's distortion theorems. We refer to [4] for earlier examples.
Proposition 6. (a) $\left(\ell_{1},|\cdot|\right)$ does not contain any subspace asymptotically isometric to ℓ_{1}.
(b) $\left(\ell_{\infty},|\cdot|^{*}\right)$ does not contain any subspace asymptotically isometric to c_{0}.

Proof. These statements follow from the norm $|\cdot|^{*}$ being strictly convex and some known results. First, containing an asymptotically isometric copy of c_{0} and containing an isometric copy of c_{0} is equivalent in a dual space ([3]). Second, according to [2], a Banach space contains an asymptotically isometric copy of ℓ_{1} if and only if its dual contains an isometric copy of $L_{1}[0,1]$. But since $\left(\ell_{\infty},|\cdot|^{*}\right)$ is strictly convex, it does not contain any isometric copy of ℓ_{1} and therefore it can not contain any isometric copy of $L_{1}[0,1]$. Part (a) was already observed in [2] where an explicit formula for $|\cdot|$ was given (see [2, Corollary 12]).

The proof of Proposition 4 yields that the last part of the conclusion of Proposition 4 can be strengthened to " c_{0} is not isometric to a subspace of $Y^{* *}$. However, in [3] Dowling proved that ℓ_{1} is a quotient of X if and only if c_{0} embeds isometrically into X^{*}, so the more natural statement involving ℓ_{1} is only formally weaker.

References

[1] J. Diestel, Sequences and series in Banach spaces, Graduate Text in Mathematics, 92, SpringerVerlag, New York, 1984. MR 85i:46020
[2] S. Dilworth, M. Girardi, and J. Hagler, Dual Banach spaces which contain an isometric copy of L_{1}, Bull. Polish Acad. Sci. Math. 48 (2000), 1-12. MR 2001e:46016
[3] P. N. Dowling, Isometric copies of c_{0} and l^{∞} in duals of Banach spaces, J. Math. Anal. Appl. 244 (2000), no. 1, 223-227. MR 2000m:46036
[4] P. N. Dowling, W. B. Johnson, C. J. Lennard, and B. Turett, The optimality of James's distortion theorems, Proc. Amer. Math. Soc. 125 (1997), no. 1, 167-174. MR 97d:46010
[5] P. N. Dowling, N. Randrianantoanina, and B. Turett, Remarks on James's distortion theorems. II, Bull. Austral. Math. Soc. 59 (1999), no. 3, 515-522. MR 2000c:46022
[6] M. Fabian, P. Habala, P. Hájek, V. Montesinos Santalucía, J. Pelant, and V. Zizler, Functional analysis and infinite-dimensional geometry, CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC, 8, Springer-Verlag, New York, 2001. MR 2002f:46001

Department of Mathematics, Texas A\&M University, College Station, TX 77843 E-mail address: johnson@math.tamu.edu

Department of Mathematics and Statistics, Miami University, Oxford, OH 45056
E-mail address: randrin@muohio.edu

[^0]: 1991 Mathematics Subject Classification. [2000]Primary: 46B20, 46B25. Secondary: 46B03, 46B45.

 Key words and phrases. ℓ_{1}, c_{0}, renorming, James's distortion theorems.
 ${ }^{\dagger}$ Research partially supported by NSF DMS-0503688.
 ${ }^{\ddagger}$ Research partially supported by NSF DMS-0456781.
 January 31, 2007.

