ON COMPLEMENTED VERSIONS OF JAMES'S DISTORTION THEOREMS

WILLIAM B. JOHNSON[†] AND NARCISSE RANDRIANANTOANINA[‡]

ABSTRACT. Examples are given to show that two natural questions asked in [5] about complemented versions of James's distortion theorems have negative answers.

1. INTRODUCTION

The James's distortion theorem for ℓ_1 (respectively, for c_0) states that whenever a Banach space contains a subspace isomorphic to ℓ_1 (respectively, c_0) then the Banach space contains subspaces that are almost isometric to ℓ_1 (respectively, c_0). In [5], complemented versions of James's distortion theorems were considered in the following senses:

Theorem 1. Let X be a Banach space whose dual unit ball is weak*-sequentially compact and $\varepsilon > 0$. If X contains a subspace isomorphic to c_0 , then there exists a subspace Z of X and a projection P from X onto Z such that Z is $(1 + \varepsilon)$ -isometric to c_0 and $||P|| \le 1 + \varepsilon$. Moreover, if X contains a subspace isometric to c_0 , then there exists a subspace Z of X and a projection P from X onto Z such that Z is isometric to c_0 and ||P|| = 1.

Theorem 2. Let X be a Banach space which contains a complemented subspace isomorphic to ℓ_1 and $\varepsilon > 0$. Then there exists a subspace Y of X and a projection P from X onto Y such that Y is $(1 + \varepsilon)$ -isometric to ℓ_1 and $||P|| \le 1 + \varepsilon$.

While Theorem 2 can be viewed as the exact analogue of the James's distortion theorem for complemented copies of ℓ_1 , Theorem 1 may be interpreted as combination of the James's distortion theorem for c_0 and the classical Sobczyk Theorem. These led to the following natural questions (see [5, Question 1, Question 2]):

Question 1. If a Banach space X contains a complemented copy of c_0 and if $\varepsilon > 0$, does there exist a subspace Z of X and a projection P from X onto Z such that Z is $(1 + \varepsilon)$ -isometric to c_0 and $||P|| \le 1 + \varepsilon$?

¹⁹⁹¹ Mathematics Subject Classification. [2000]Primary: 46B20, 46B25. Secondary: 46B03, 46B45.

Key words and phrases. ℓ_1 , c_0 , renorming, James's distortion theorems.

[†]Research partially supported by NSF DMS-0503688.

[‡]Research partially supported by NSF DMS-0456781.

January 31, 2007.

Question 2. If a Banach space X contains a complemented subspace isometric to ℓ_1 , does there exists a subspace Z of X and a projection P from X onto Z such that Z is isometric to ℓ^1 and ||P|| = 1?

The aim of this note is to provide examples showing that, as expected, the answers to both questions are negative.

2. The examples

2.1. The c_0 -case. In this subsection, we exhibit a Banach space X with the property that any complemented subspace of X that is almost isometric to c_0 has large projection constant, thus answering Question 1 negatively. The space X is a renorming of $\ell_{\infty} \oplus_{\infty} c_0$.

We denote by $\|\cdot\|$ the usual norm on $\ell_{\infty} \oplus_{\infty} c_0$. In order to define the new norm on X, let $J: \ell_1 \to \ell_{\infty}$ be an isometric embedding of ℓ_1 into ℓ_{∞} and $Q: \ell_1 \to c_0$ be a quotient map. For $\delta > 0$, a norm $|||\cdot|||$ on X is defined by fixing its unit ball:

$$B_{(X,|||\cdot|||)} := \left\{ (Jf, Qf); f \in \ell_1, ||f||_1 \le 1 \right\} + \delta B_{(X,||\cdot||)}.$$

It is clear that $||| \cdot |||$ and $|| \cdot ||$ are equivalent norms on X and X contains a complemented subspace isomorphic to c_0 .

Proposition 3. Let $\varepsilon > 0$ and Z be a subspace of $(X, ||| \cdot |||)$ that is $(1 + \varepsilon)$ -isometric to c_0 and is complemented in X. If P is a projection from X onto Z then

$$|||P||| \ge \frac{1+\delta}{4\delta(1+\varepsilon)^3}.$$

Proof. Throughout, we also denote by $||| \cdot |||$ the corresponding dual norm on X^* . Let $(V_n)_{n\geq 1}$ be a basic sequence $(1 + \varepsilon)$ -equivalent to the unit vector basis of c_0 and whose closed linear span is Z. Let P be a projection from X onto Z. Then P is of the form

$$P = \sum_{n=1}^{\infty} V_n^* \otimes V_n$$

where $(V_n^*)_{n\geq 1}$ is a weak*-null sequence in X^* and the sum can be taken with respect to the strong operator topology. Observe that $X^* = (\ell_{\infty})^* \oplus_1 \ell_1$ isomorphically and thus for every $n \geq 1$, $V_n^* = (x_n^*, a_n^*)$ where $(x_n^*)_{n\geq 1}$ (respectively, $(a_n^*)_{n\geq 1}$) is a weak*null sequence in $(\ell_{\infty})^*$ (respectively, ℓ_1). Since weak*-null sequences are weakly-null in $(\ell_{\infty})^*$ (see for instance [1, Theorem 15, p.103]), we have

weak
$$-\lim_{n \to \infty} x_n^* = 0.$$

There exists a convex block $(y_n^*)_{n\geq 1}$ of $(x_n^*)_{n\geq 1}$ with

(2.1.1) $\lim_{n \to \infty} \|y_n^*\| = 0.$

There exists a strictly increasing sequence of integers $(k_n)_{n\geq 0}$ and positive scalars $\alpha_j^{(n)}$, where $k_{n-1} + 1 \leq j \leq k_n$, $\sum_{j=k_{n-1}+1}^{k_n} \alpha_j^{(n)} = 1$ for $n \geq 1$, and

$$y_n^* = \sum_{j=k_{n-1}+1}^{k_n} \alpha_j^{(n)} x_j^*.$$

For $n \geq 1$, consider the corresponding block sequences:

(2.1.2)
$$W_{n} = \sum_{j=k_{n-1}+1}^{k_{n}} V_{j}$$
$$W_{n}^{*} = \sum_{j=k_{n-1}+1}^{k_{n}} \alpha_{j}^{(n)} V_{j}^{*}$$

Then $(W_n)_{n\geq 1}$ is equivalent to the unit vector basis of c_0 . Moreover, for every $n, k \geq 1$, $\langle W_n^*, W_k \rangle = \delta_n^k, W_n^* = (y_n^*, b_n^*)$ where $b_n^* = \sum_{j=k_{n-1}+1}^{k_n} \alpha_j^{(n)} a_j^*$, and $|||W_n||| \leq 1 + \varepsilon$. The latter implies that for $n \geq 1$, W_n can be decomposed as

$$(2.1.3) W_n = (Jf_n, Qf_n) + (x_n, a_n)$$

with

(i)
$$f_n \in \ell_1$$
 satisfying $||f_n||_1 \le 1 + \varepsilon$;
(ii) $||(x_n, a_n)|| \le \delta(1 + \varepsilon)$.

Since $(f_n)_{n\geq 1}$ is a bounded sequence in ℓ_1 , we may assume (by passing to a subsequence if necessary) that for every $n\geq 1$,

$$f_n = f_0 + g_n + h_n$$

where

(a)
$$\lim_{n\to\infty} \|f_n\|_1$$
 exists;
(b) weak* $-\lim_{n\to\infty} f_n = f_0$;
(c) $(g_n)_{n\geq 1}$ is a disjointly supported sequence in ℓ_1 ;
(d) $\lim_{n\to\infty} \|h_n\|_1 = 0$.

We claim that

(2.1.4)
$$\lim_{n \to \infty} \|f_n\|_1 \le 3\delta(1+\varepsilon).$$

To see this claim, let $N \ge 1$, then

$$\frac{1}{N}\sum_{n=1}^{N} \|f_n\|_1 \le \|f_0\|_1 + \frac{1}{N}\sum_{n=1}^{N} \|g_n\|_1 + \frac{1}{N}\sum_{n=1}^{N} \|h_n\|_1$$
$$= \|f_0\|_1 + \frac{1}{N} \|\sum_{n=1}^{N} g_n\|_1 + \frac{1}{N}\sum_{n=1}^{N} \|h_n\|_1$$
$$\le 2\|f_0\|_1 + \frac{1}{N} \|\sum_{n=1}^{N} f_n\|_1 + \frac{2}{N}\sum_{n=1}^{N} \|h_n\|_1.$$

Note that $||f_0||_1 \leq \underline{\lim}_{N \to \infty} N^{-1} ||\sum_{n=1}^N f_n||_1$ and $\lim_{N \to \infty} N^{-1} \sum_{n=1}^N ||h_n||_1 = 0$. We deduce that

$$\lim_{n \to \infty} \left\| f_n \right\|_1 \le 3 \overline{\lim}_{N \to \infty} \frac{1}{N} \left\| \sum_{n=1}^N f_n \right\|_1$$

We observe that

$$\frac{1}{N} \left\| \sum_{n=1}^{N} f_n \right\|_1 = \frac{1}{N} \left\| \sum_{n=1}^{N} Jf_n \right\|_{\infty}$$

$$\leq \frac{1}{N} \left\| \sum_{n=1}^{N} \left(Jf_n, Qf_n \right) \right\|$$

$$\leq \frac{1}{N} \left\| \sum_{n=1}^{N} W_n \right\| + \frac{1}{N} \left\| \sum_{n=1}^{N} \left(x_n, a_n \right) \right\|$$

$$\leq \frac{1}{N} \left\| \sum_{n=1}^{N} W_n \right\| + \delta(1 + \varepsilon).$$

Since (W_n) is equivalent to the unit vector basis of c_0 , we have $\lim_{N \to \infty} N^{-1} \|\sum_{n=1}^N W_n\| = 0$

0. Combining all the above estimates, we get inequality (2.1.4).

We now show that if Π is the projection from X onto the closed linear span of $(W_n)_{n\geq 1}$ defined by $\Pi = \sum_{n=1}^{\infty} W_n^* \otimes W_n$, then

(2.1.5)
$$|||\Pi||| \ge \frac{1+\delta}{4\delta(1+\varepsilon)^2}.$$

To see this, we first observe that for every $y^* \in \ell_1$,

(2.1.6)
$$|||(0, y^*)||| = ||y^*||_1(1+\delta).$$

For every $n \ge 1$, we have

$$1 = \langle W_n^*, W_n \rangle$$

= $\langle (y_n^*, b_n^*), (Jf_n + x_n, Qf_n + a_n) \rangle$
= $\langle y_n^*, Jf_n + x_n \rangle + \langle b_n^*, Qf_n + a_n \rangle$
 $\leq (||y_n^*|| + ||b_n^*||) (||f_n||_1 + \delta(1 + \varepsilon)).$

Taking limits as $n \to \infty$, we deduce that

(2.1.7)
$$\underline{\lim}_{n \to \infty} \|b_n^*\|_1 \ge \frac{1}{4\delta(1+\varepsilon)}.$$

We can estimate $|||\Pi|||$ as follows:

$$\begin{split} ||\Pi||| &\ge \sup_{n\ge 1} \frac{|||W_n^*|||}{1+\varepsilon} \\ &= \sup_{n\ge 1} \frac{|||(y_n^*, b_n^*)|||}{1+\varepsilon} \\ &\ge \underline{\lim}_{n\to\infty} \frac{|||(y_n^*, b_n^*)|||}{1+\varepsilon} \\ &= \underline{\lim}_{n\to\infty} \frac{|||(0, b_n^*)|||}{1+\varepsilon}. \end{split}$$

Thus (2.1.5) follows by combining (2.1.7) and (2.1.6). We conclude the proof by observing that $|||\Pi||| \le (1 + \varepsilon)|||P|||$.

2.2. The ℓ_1 -case. Now we provide an example showing that Theorem 2 does not extend to the isometric case. In particular, the answer to Question 2 is negative.

First, recall that a norm $\|\cdot\|$ on a Banach space E is said to be *strictly convex* if $\text{Ext}(B_E) = S_E$. This is equivalent to the following property (see for instance [6, p. 246]):

(2.2.1) If
$$x, y \in S_E$$
 satisfy $||x + y|| = 2$, then $x = y$

It is clear from (2.2.1) that if $\|\cdot\|$ is strictly convex then $(E, \|\cdot\|)$ does not contain any ℓ_{∞}^2 (the two dimensional ℓ_{∞}) isometrically. Indeed, if $e_1 = (1, 0)$ and $e_2 = (0, 1)$ are the unit vector basis of ℓ_{∞}^2 then $x = e_1$ and $y = e_1 + e_2$ fail to satisfy (2.2.1).

Define a norm $|\cdot|$ on ℓ_1 that is equivalent to the usual norm and such that its dual norm $|\cdot|^*$ is strictly convex. Such a dual norm on ℓ_{∞} can be taken by setting:

$$|(a_i)|^* := (||(a_i)||_{\infty}^2 + \sum_{i=1}^{\infty} 2^{-i} |a_i|^2)^{1/2}.$$

Details on the existence of the norm $|\cdot|$ can be found in [6, pp. 241–254]. We define a Banach space Y by setting:

$$Y := (C[0,1], \|\cdot\|_{\infty}) \oplus_{\infty} (\ell_1, |\cdot|).$$

Proposition 4. The Banach space Y contains a complemented subspace that is isometric to ℓ_1 but ℓ_1 is not isometric to a quotient of Y.

Let (e_n) be the unit vector basis of ℓ_1 and for $n \ge 1$, set $v_n := e_n/|e_n|$. Fix a sequence $(f_n)_{n\ge 1}$ in C[0,1] that is isometrically equivalent to the unit vector basis of ℓ_1 and for $n \ge 1$, define $U_n := (f_n, v_n) \in Y$. We claim that $(U_n)_{n\ge 1}$ is isometrically equivalent to the unit vector basis of ℓ_1 and its closed linear span is complemented. In fact, for any finite sequence $(a_n)_{n\ge 1}$ of scalars,

$$\sum_{n\geq 1} |a_i| = \left\| \sum_{n\geq 1} a_n f_n \right\|_{\infty}$$
$$\leq \left\| \sum_{n\geq 1} a_n U_n \right\|_Y$$
$$\leq \sum_{n\geq 1} |a_i|,$$

therefore, $\sum_{n\geq 1} |a_i| = \|\sum_{n\geq 1} a_n U_n\|_Y$. Moreover, if we denote by Z the closed linear span of $(U_n)_{n\geq 1}$ then Z is a complemented subspace of Y. Indeed, let $T: (\ell_1, |\cdot|) \to Y$ be defined by setting $T(v_n) = U_n$ for all $n \geq 1$ and Π be the second projection from Y onto $(\ell_1, |\cdot|)$ then $T \circ \Pi$ is a projection from Y onto Z.

The fact that ℓ_1 is not isometric to a quotient of Y follows from the next lemma, which we assume is well known.

Lemma 5. Let E and F be Banach spaces and $T : c_0 \to E \oplus_1 F$ be an isometry. Then there exists $c_j \ge 0$, j = 1, 2 with:

- (a) $c_1 + c_2 = 1$;
- (b) if $T = (T_1, T_2)$ then $||T_j(e)|| = c_j ||e||$ for j = 1, 2 and all $e \in c_0$.

In particular, if $E \oplus_1 F$ contains an isometric copy of c_0 then either E or F contains an isometric copy of c_0 .

Proof. Denote by c_{00} the space of finitely supported sequences of scalars and let $(e_n)_{n\geq 1}$ be the unit vector basis of c_0 . Write $T = (T_1, T_2)$ with $T_1 : c_0 \to E$ and $T_2 : c_0 \to F$. We shall verify that for every $x \in c_{00}$ with ||x|| = 1,

$$||T_j(x)|| = ||T_j(e_1)||$$
 for $j = 1, 2$.

To see this, we will show first that if x and y are disjointly supported unit vectors then

(2.2.2)
$$||T_j(x)|| = ||T_j(y)||$$
 for $j = 1, 2$.

Write 2x = (x - y) + (x + y). Then

$$2 = ||T(2x)|| = ||T_1(2x)|| + ||T_2(2x)||$$

$$\leq (||T_1(x-y)|| + ||T_1(x+y)||) + (||T_2(x-y)|| + ||T_2(x+y)||)$$

$$= ||T(x-y)|| + ||T(x+y)|| = 2.$$

For j = 1, 2, set $a_j = ||T_j(x-y)|| + ||T_j(x+y)|| - 2||T_j(x)||$. Then (a_1, a_2) is a positive element of ℓ_1^2 whose norm is equal to zero so

$$2||T_j(x)|| = ||T_j(x-y)|| + ||T_j(x+y)||, \quad j = 1, 2.$$

By reversing the role of x and y, we get (2.2.2).

Now, let $x \in c_{00}$ with ||x|| = 1. Choose, n > 1 so that e_n and x are disjointly supported. From (2.2.2),

$$||T_j(x)|| = ||T_j(e_n)|| = ||T_j(e_1)||, \quad j = 1, 2.$$

Setting $c_j = ||T_j(e_1)||$ for j = 1, 2 proves the lemma.

End of the proof of Proposition 4. If ℓ_1 is isometric to a quotient of Y then the dual space $Y^* = C[0,1]^* \oplus_1 (\ell_{\infty}, |\cdot|^*)$ contains an isometric copy of $\ell_{\infty} = \ell_1^*$ and hence of c_0 . But since $|\cdot|^*$ is strictly convex and $C[0,1]^*$ is a L_1 -space, this is in contradiction with Lemma 5 and thus completes the proof.

3. Concluding remarks

The notion of asymptotically isometric copies of ℓ_1 (respectively, c_0) is closely related to James's distortion theorems. We recall that a Banach space E is said to contain an asymptotically isometric copy of ℓ_1 (respectively, c_0) if there exist a null sequence $(\varepsilon_n)_{n\geq 1}$ in (0,1) and a sequence $(x_n)_{n\geq 1}$ in E such that for all finite sequence $(t_n)_n$ of scalars:

$$\sum_{n} (1 - \varepsilon_n) |t_n| \le \left\| \sum_{n} t_n x_n \right\| \le \sum_{n} |t_n|,$$

respectively,

$$\sup_{n} (1 - \varepsilon_n) |t_n| \le \left\| \sum_{n} t_n x_n \right\| \le \sup_{n} |t_n|,$$

The norm introduced in the definition of the Banach space Y can be used to provide examples confirming the optimality of the James's distortion theorems. We refer to [4] for earlier examples.

Proposition 6. (a) $(\ell_1, |\cdot|)$ does not contain any subspace asymptotically isometric to ℓ_1 .

(b) $(\ell_{\infty}, |\cdot|^*)$ does not contain any subspace asymptotically isometric to c_0 .

Proof. These statements follow from the norm $|\cdot|^*$ being strictly convex and some known results. First, containing an asymptotically isometric copy of c_0 and containing an isometric copy of c_0 is equivalent in a dual space ([3]). Second, according to [2], a Banach space contains an asymptotically isometric copy of ℓ_1 if and only if its dual contains an isometric copy of $L_1[0, 1]$. But since $(\ell_{\infty}, |\cdot|^*)$ is strictly convex, it does not contain any isometric copy of ℓ_1 and therefore it can not contain any isometric copy of ℓ_1 and therefore it can not contain any isometric copy of $\iota_1[0, 1]$. Part (a) was already observed in [2] where an explicit formula for $|\cdot|$ was given (see [2, Corollary 12]).

JOHNSON AND RANDRIANANTOANINA

The proof of Proposition 4 yields that the last part of the conclusion of Proposition 4 can be strengthened to " c_0 is not isometric to a subspace of Y^* ". However, in [3] Dowling proved that ℓ_1 is a quotient of X if and only if c_0 embeds isometrically into X^* , so the more natural statement involving ℓ_1 is only formally weaker.

References

- J. Diestel, Sequences and series in Banach spaces, Graduate Text in Mathematics, 92, Springer-Verlag, New York, 1984. MR 85i:46020
- [2] S. Dilworth, M. Girardi, and J. Hagler, Dual Banach spaces which contain an isometric copy of L₁, Bull. Polish Acad. Sci. Math. 48 (2000), 1–12. MR 2001e:46016
- [3] P. N. Dowling, Isometric copies of c₀ and l[∞] in duals of Banach spaces, J. Math. Anal. Appl. 244 (2000), no. 1, 223–227. MR 2000m:46036
- [4] P. N. Dowling, W. B. Johnson, C. J. Lennard, and B. Turett, The optimality of James's distortion theorems, Proc. Amer. Math. Soc. 125 (1997), no. 1, 167–174. MR 97d:46010
- [5] P. N. Dowling, N. Randrianantoanina, and B. Turett, *Remarks on James's distortion theorems*. II, Bull. Austral. Math. Soc. 59 (1999), no. 3, 515–522. MR 2000c:46022
- [6] M. Fabian, P. Habala, P. Hájek, V. Montesinos Santalucía, J. Pelant, and V. Zizler, Functional analysis and infinite-dimensional geometry, CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC, 8, Springer-Verlag, New York, 2001. MR 2002f:46001

DEPARTMENT OF MATHEMATICS, TEXAS A&M UNIVERSITY, COLLEGE STATION, TX 77843 *E-mail address*: johnson@math.tamu.edu

Department of Mathematics and Statistics, Miami University, Oxford, OH 45056 E-mail address: randrin@muohio.edu