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Abstract

The main result is that a Banach space X is not super-reflexive if and only if
the diamond graphs Dn Lipschitz embed into X with distortions independent of
n. One of the consequences of that and previously known results is that dimension
reduction a-la Johnson–Lindenstrauss fails in any non super reflexive space with
non trivial type.

We also introduce the concept of Lipschitz (p, r)-summing map and prove that
every Lipschitz mapping is Lipschitz (p, r)-summing for every 1 ≤ r < p.

1 Introduction

In [BC] Brinkman and Charikar proved that the diamond graphs Dn, which were known
([GNRS]) to Lipschitz embed into `1 with distortion independent of n, can be used to give
a lower bound on dimension reduction in `1; precisely, for each n there are subsets An of `1

of cardinality An = n so that if α > 0 and fn : An → `
dnαe
1 , then Lip(fn)Lip(f−1

n ) ≥ cα−1

for some universal c > 0. Lee and Naor [LN] substantially simplified the proof of this
fact. In Corollary 2 we give an even simpler proof, modelled on the proof of [LN] but
substituting an easy inductive argument for the magical telescoping series inequality
there.

Recall that a Banach space X is super reflexive iff whenever a Banach space Y is
finitely represented in X (which means that for every ε > 0, every finite dimensional
subspace E of Y linearly embeds into X with distortion less than 1 + ε), then Y is
reflexive. Enflo [E] (see also [P]) proved that X is super reflexive iff X has an equivalent
uniformly convex norm.

Our main focus in this paper is to show (in Theorem 1) that the diamond graphs
give a metric characterization of super reflexivity; that is, a Banach space X is not super
reflexive if and only if the diamond graphs Dn Lipschitz embed into X with distortion
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independent of n. The proof is, in our opinion, simpler than Bourgain’s proof [BOU2]
that a Banach space X is not super reflexive if and only if the diadic trees Tn Lipschitz
embed into X with distortion independent of n. As far as we see neither of these non
linear characterizations of super reflexivity directly implies the other.

As a by-product we get that dimension reduction as in Hilbert space (embedding any
n points into a O(log n)-dimensional Euclidean space, [JL]) is not possible in any non
super reflexive space with non trivial type.

In [FJ] an appropriate definition of Lipschitz p-summing map was introduced and
there it was shown that the (linear) p-summing norm of a linear operator is the same as
its Lipschitz p-summing norm. In section 5 we give an analogous definition of Lipschitz
(p, r)-summing map (so that, e.g., the Lipschitz (p, p)-summing norm of a Lipschitz map
is the same as its Lipschitz p-summing norm). However, it turns out that the (linear)
(p, r)-summing norm of a linear operator can be much larger than its Lipschitz (p, r)-
summing norm. In fact, the Lipschitz (p, r)-summing norm of any Lipschitz map is finite
for every 1 ≤ r < p! An equivalent formulation of this is that every metric space satisfies
a family of inequalities which look to us non trivial. This will be explained in detail in
Section 5. As we shall also explain there we were led to this family of inequalities by an
interpretation of Theorem 1 coming from the linear theory of Banach spaces.

In Section 6 we indicate the validity of the analog statement to Theorem 1 applied to
the sequence of Laakso graphs. This is a family of graphs very similar to the diamond
graphs but with the additional property that they are uniformly doubling.

2 Preliminaries

We begin by describing the inductive construction of the diamond graph Dn whose ver-
tex set will be a subset of {0, 1}2n

and the edge set will be a subset of the edge set
of the Hamming cube {0, 1}2n

. The exposition follows closely that in [BC] but there
will be an important change in the way we index the vertices of the graph. D0 is the
graph with two vertices, labelled 0 and 1 and one edge connecting them. Giving Di−1

whose vertex set is a subset of {0, 1}2i−1
we replace each vertex (a1, a2, . . . , a2i−1) with

(a1, a1, a2, a2, . . . , a2i−1 , a2i−1) ∈ {0, 1}2i
(this is where the indexing differs from that in

[BC]; there the replacement would be (a1, a2, . . . , a2i−1 , a1, a2, . . . , a2i−1)). For each two
new vertices whose Hamming distance is 2 (i.e, coming from an edge in Di−1) we also add
the two points in {0, 1}2i

which are of Hamming distance 1 from each of these two vertices.
If x′ = (x1, . . . , x2i) is a vertex of Di we say that x = (x1, . . . , x1, x2, . . . , x2, . . . , x2i , . . . , x2i) ∈
Dn, where each xj repeats 2n−i times, is the vertex developed from x′ by n − i doubling
operations. If (x1, . . . , x2i) is one of the new vertices of Di (as opposed to one coming from
doubling a vertex of Di−1) we say that x = (x1, . . . , x1, x2, . . . , x2, . . . , x2i , . . . , x2i) ∈ Dn

(the vertex developed from x′ by n− i doubling operations) is a vertex of level i.
Suppose that x′ and y′ are two vertices of Di connected by an edge and x, y are

the two vertices of Dn developed from them by n − i doubling operations, then (unless
i = 0) exactly one of x or y is a vertex of level i. x and y differ exactly in one interval,
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(j − 1)2n−i, j2n−i, where one of them has all 1-s and the other all 0-s (these facts are
easy to prove by induction). The set of vertices of Dn lying pointwise between x and y
will be called a sub-diamond of level i. The one of x and y that has all ones on the said
interval,i.e., x ∨ y, will be called the top vertex of this sub-diamond and the other the
bottom vertex. The vertex which has ones in the left half of the said interval and zeros in
the right half will be called the leftmost vertex of this sub-diamond and the vertex which
has ones in the right half of the said interval and zeros in the left half will be called the
rightmost vertex of this sub-diamond. The vertices of the sub-diamond whose distance
to the bottom vertex is at most their distance to the top one will said to lie below the
diagonal and the rest above the diagonal. The vertices of the sub-diamond whose distance
to the leftmost vertex is at most their distance to the right most one will said to be on
the left of the sub-diamond and the rest on the right.

Note that Dn has 4n edges and 2 + 2
∑n−1

i=0 4i = 2 + 24n−1
3

vertices.
It is easy to prove, by induction, that, given two vertices of Dn, either both lie on a

path connecting the top and bottom vertices of Dn, or one is on the left side and one is
on the right side of some sub-diamond (possibly Dn itself).

3 Embedding the diamonds in non super reflexive

spaces

Proposition 1 Let x1, x2, . . . , x2n be a sequence of norm one points in a Banach space
X with the properties:

(i) ‖∑
i∈A xi‖ ≥ a|A|, for any subset A ⊂ {1, 2, . . . , 2n}

(ii) ‖∑
i∈A aixi‖ ≤ b‖∑2n

i=1 aixi‖, for any interval A ⊂ {1, 2, . . . , 2n} and any real
coefficients a1, . . . , a2n.

Define f : Dn → X by f(a1, . . . , a2n) =
∑2n

i=1 aixi. Then f has distortion at most 4a−1b.

Proof: If u and v lie on a path between the (images of the) original two vertices,
(0, 0, . . . , 0) and (1, 1, . . . , 1) (such a path is a monotone sequence in {0, 1}2n

) then f(u)−
f(v) = ±∑

i∈A xi where |A| = dDn(u, v). By (i), adDn(u, v) ≤ ‖f(u)−f(v)‖ ≤ dDn(u, v).
If u and v do not lie on such a path then there is some sub-diamond, say of level n−k,

such that u is on the left side of it and v on the right (or vice versa). Denote the bottom
and top vertices of this sub-diamond by vB and vT . This means that for some subinterval
A ⊂ {1, 2, . . . , 2n} of size 2k, vT restricted to A is the all 1-s vector, vB restricted to A is
the all 0-s vector, and vT and vB are identical on the complement of A. If u = (u1, . . . , u2n)
and v = (v1, . . . , v2n) lie on the same side of the diagonal of this sub-diamond then their
distance in Dn is min{dDn(u, vB) + dDn(vB, v), dDn(u, vT ) + dDn(vT , v)}. Let us assume
that they both lie on or below the diagonal (the treatment of the other case is similar).
Write A = B ∪C where B (resp. C) is the left (resp. right) half of A. Then u restricted
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to C is the all zero vector and v restricted to B is the all zero vector. u and v are equal
(and equal to vT and vB) on the complement of A. Consequently, since the xi-s are all
norm one,

‖f(u)− f(v)‖ = ‖
∑
i∈B

uixi −
∑
i∈C

vixi‖ ≤ ‖
∑
i∈B

uixi‖+ ‖
∑
i∈C

vixi‖

≤ dDn(u, vB) + dDn(vB, v).

On the other hand, by (ii) then (i),

‖f(u)− f(v)‖ ≥ b−1 max{‖
∑
i∈B

uixi‖, ‖
∑
i∈C

vixi‖} = ab−1 max{dDn(u, vB), dDn(vB, v)}

≥ a

2b
(dDn(u, vB) + dDn(vB, v)).

If u and v are not on the same side of the diagonal of the sub-diamond determined by
vT and vB, let us assume for example that u is above the diagonal (and on the left) and
v below the diagonal (and on the right). In this case it is easy to see that the distance
between u and v in Dn is between 2k−1 and 2k. Also u restricted to B is the all 1-s vector
(while v restricted to B is zero), so

2k ≥ ‖f(u)− f(v)‖ = ‖
∑
i∈B

uixi −
∑
i∈C

vixi‖ ≥ b−1‖
∑
i∈B

xi‖

≥ ab−12k−1.

Remark 1 Note that we have only used assumption (ii) for ±1, 0 coefficients.

One of the characterization of super-reflexivity says that any non super reflexive
Banach space contains for every a < 1 and b > 4 and any n a sequence as in Proposition
1. By the definition of super-reflexivity, it is enough to have this statement for any non-
reflexive space. It is not easy to trace the origin of this statement. It explicitly appear
in [Ja1, Theorem 8] and partially attributed there to PeÃlczyński. Vitali Milman told us
that Ptak and PeÃlczyński are probably the origin and Milman and Milman also proved
the same a bit earlier than James’ paper.

Corollary 1 For each λ > 1, each n ∈ N and each non-super-reflexive space X, Dn

Lipschitz embeds into X with distortion at most 16λ.
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4 Non embedability of the diamonds in uniformly

convex spaces

Recall that the modulus of uniform convexity of a normed space X is the function δ :
(0, 2) → [0, 1] defined by

δ(ε) = δX(ε) = inf{1− ‖x + y

2
‖ ; ‖x‖, ‖y‖ ≤ 1, ‖x− y‖ ≥ ε}.

Lemma 1 Let X be a normed space and f : D1 → X with Lip(f−1) ≤ 1 and Lip(f) ≤
M . Then ‖f(1, 1)− f(0, 0)‖ ≤ 2M(1− δ( 2

M
))

Proof: Without loss of generality we may assume f(0, 0) = 0. Denote x = f(1, 1) and
x1 = x − f(1, 0), x2 = f(1, 0), x3 = x − f(0, 1), x4 = f(0, 1). Then, 1 ≤ ‖xi‖ ≤ M for
i = 1, 2, 3, 4. Since ‖x2

M
− x4

M
‖ ≥ 2

M
, we get that

1− ‖x2 + x4‖
2M

≥ δ(
2

M
).

Similarly,

1− ‖x1 + x3‖
2M

≥ δ(
2

M
).

Consequently,

2(1− δ(
2

M
)) ≥ ‖x1 + x2 + x3 + x4‖

2M
=
‖x‖
M

.

Applying the lemma we get that if Mn is the best constant M such that there is
an embedding f of Dn into X with dDn(x, y) ≤ ‖f(x) − f(y)‖ ≤ MdDn(x, y), then
Mn−1 ≤ Mn(1− δX( 2

Mn
)). Indeed, by the Lemma the distance between the images of the

top and the bottom vertices of any sub diamond of level n−1 is at most 2Mn(1−δX( 2
Mn

))
(and at least 2). The collection of all top and bottom vertices of level n − 1 of Dn

is isometric to Dn−1: The distance between any two points of that subset of Dn is
exactly twice the distance of the vertices of Dn−1 they developed from. This implies that
Mn−1 ≤ Mn(1− δX( 2

Mn
)).

Passing to the limit as n →∞ we easily get that the Dn do not embed with a uniform
distortion in any uniformly convex space. This fact was basically known, although we
could not find an explicit reference. Its analog for the Laakso graphs (see Section 6) was
proved in [La] (see also [Ty]). Also, [LN] (and [LMN] for the Laakso graphs) contains
the result under the additional assumption that the modulus of convexity dominates cε2

for some c > 0. However, for some of the applications we shall need a finer estimate of
the distortion. Notice that the exact dependence on the constant c will be important for
us later. [MN] essentially contains this result with a different, more involved proof.
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Proposition 2 Let X be a normed space whose modulus of uniform convexity is of power
type p, for some 2 ≤ p < ∞; i.e, δX(ε) ≥ cεp. Let Mn denote the best distortion of an
embedding of Dn into X. Then Mn ≥ 2c1/pn1/p.

Proof: By the Lemma and the remark following it, for all k ≥ 1, Mk − Mk−1 ≥
Mkc(

2
Mk

)p = c2p

Mp−1
k

. So,

Mn ≥ c2p

n∑

k=1

M−p+1
k + M0 ≥ c2pnM−p+1

n ,

implying Mn ≥ 2c1/pn1/p.

Since a Banach space is super reflexive if and only if it has an equivalent norm which is
uniformly convex with modulus of uniform convexity of power type p for some 2 ≤ p < ∞
(see [P]), we get as a corollary of the last proposition and of Corollary 1 the following
main theorem of this paper.

Theorem 1 A Banach space X is not super reflexive if and only if the diamond graphs
Dn Lipschitz embed into X with distortions independent of n.

We now state some more corollaries of Proposition 2. The first is a proof of the main
result of [BC] which combined with the above is even simpler than the simple proof in
[LN]. The deduction of the result from Proposition 2 is identical to that in [LN].

Corollary 2 (BC) If Dn Lipschitz embeds into `k
1 with distortion K then k ≥ Dn

β/K2

,
for a universal β > 0.

Proof: For any p > 1, the (Lipschitz) distance between `k
1 and `k

p is at most k(p−1)/p.
δLp(ε) ≥ α(p−1)ε2, for all 1 < p < 2 and for a universal α > 0 (see e.g. [Fi] or [BCL]). It
thus follows from Lemma 1 that K ≥ 2k−(p−1)/pα1/2(p− 1)1/2n1/2. Choosing p = 1+ 1

log k

we get log k ≥ βn/K2 for a universal β > 0.

There are non super reflexive spaces that have non trivial type ([Ja2]; see also [PX]).
These provide interesting examples of spaces in which the Johnson–Lindenstrauss dimen-
sion reduction result cannot occur.

Corollary 3 If X is a non super reflexive space with non trivial type p then

(i) The Dn-s uniformly Lipschitz embed in X, but

(ii) for any sequence kn with kn = O(n), if Xn are subspaces of X of dimensions kn

then the distortion of embedding Dn into Xn tends to infinity.
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Proof: (i) follows from Corollary 1. Since X has non trivial type, by [MW], d(Y, `dim Y
2 ) =

o((dim Y )1/2) for every subspace Y of X. If dim Y = kn with kn = O(n), and Dn embeds

into Y with distortion D, then it embeds into `kn
2 with distortion Do(k

1/2
n ) = Do(n1/2).

By the previous proposition, since δ`2(ε) > ε2/8, D ≥ 2−1/2n1/2/o(k
1/2
n ) →∞.

Remark 2 There are also non super reflexive spaces X in which d(Y, `dim Y
2 ) = O(log(dim Y ))

for every subspace Y of X [PX]. In a similar way to the proof of the previous corol-
lary we get that if Dn Lipschitz embeds into a kn-dimensional subspace of X then
kn ≥ 2c(log Dn)1/2/D, for a universal c > 0.

Remark 3 The summing operator S : `1 → `∞ is defined to be the continuous linear
extension of the mapping en 7→

∑n
i=1 ei, where {en}∞n=1 is the unit vector basis. Lin-

denstrauss and PeÃlczyński [LiP] proved that a Banach space X is non reflexive iff S
factors through X, which means that there are bounded linear operators A : `1 → X
and B : X → `∞ so that S = BA. Moreover, if X is non reflexive then A and B can
be chosen so that ‖A‖ · ‖B‖ < C for some absolute constant C. Now {ei}2n

i=1 in `1 and
{Sei}2n

i=1 in `∞ both satisfy the conditions on {xi}2n

i=1 in Proposition 1 (with constants
a, b independent of n), so there are mappings Fn of Dn into `1 with uniformly bounded
distortion so that SFn have uniformly bounded distortion. This implies Theorem 1, in
view of the result in [LiP].

5 (p, r)-summing Lipschitz maps

We begin with explaining our motivation for the main result of this section, Proposition
4. This motivation depends on some non trivial facts from the linear theory which the
(unmotivated) reader may prefer to skip. Such a reader should skip to Definition 1 below.

Remark 3 says that the summing operator, S, preserves with bounded distortion a
sequence of metric spaces that are fairly complicated. This led us to wonder whether or
not S is finitely strictly singular, which means that S does not preserve with bounded
distortion any sequence of finite dimensional subspaces of `1 whose dimensions tend to
infinity. It turned out that S is finitely strictly singular; in fact,

Proposition 3 There exists a constant C such that if E is an n-dimensional subspace
of `1, then

α(SE) := inf
x∈E; ‖x‖1=1

‖Sx‖∞ ≤ Cn−1/2. (1)

Proof: This proposition is not really needed to understand the main result in this
section, so we use without further reference tools that are standard in Banach space
theory. The interested non expert can find everything we use in [MS] or [DJT].

Since there is a constant δ > 0 so that every n-dimensional subspace of `1 contains
a further subspace that has dimension at least δn and is 2-isomorphic to a Euclidean
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space, it is enough to verify (1) when E is 2-isomorphic to `n
2 . Let Y be a non reflexive

space that has type 2 (see [Ja2] or [PX]) and let A : `1 → Y , B : Y → `∞ be bounded
linear operators so that S = BA and ‖B‖ = 1. Clearly α(AE) ≥ α(SE). That is, letting
U be the inverse of the restriction of A to E, we have that ‖U‖ ≤ α(SE)−1. Since U
is mapping into a space that is 2-isomorphic to a Hilbert space, we have that U has an
extension to a linear operator Ũ : X → E with ‖U‖ ≤ 2T2(X)α(SE)−1 (here T2(X) is
the (gausian) type 2 constant of X). Thus ŨA is a projection from `1 onto a 2-isomorph
of `n

2 and hence
(1/8)

√
n ≤ ‖ŨA‖ ≤ 2T2(X)α(SE)−1.

After we discovered Proposition 3, PeÃlczyński reminded us that he and Kwapień [KP]
proved that S is (p, r)-summing for every p > r ≥ 1. This immediately implies that
S is finitely strictly singular (but without the precise estimate given by Proposition 3).
Now, one can modify the definition of (p, r)-summing to define a concept of Lipschitz
(p, r)-summing in the same way that the definition of p-summing was modified in [FJ] to
define the concept of Lipschitz p-summing. Since the summing operator preserves copies
of of the diamond graphs, it follows that the identity operators on the diamond graphs
Dn are Lipschitz (p, r)-summing, with constants independent of n, for all p > r ≥ 1.
This means that the diamond graphs satisfy a family of inequalities that look non trivial.
We were surprised when further investigation yielded that all metric spaces satisfy these
inequalities.

We begin with the definition of Lipschitz (p, r)-summing function.

Definition 1 A function F from a metric spaces (M,d) into a metric space (N, ρ) is
said to be Lipschitz (p, r)-summing with constant at most K if for all finite sequences of
pairs of points {xi, yi}n

i=1 in M and all positive numbers {ci}n
i=1

(
n∑

i=1

cp
i ρ(F (xi), F (yi))

p)1/p ≤ K sup(
n∑

i=1

cr
i |f(xi)− f(yi)|r)1/r, (2)

where the sup is taken over all real Lipschitz functions f on M of Lipschitz constant 1.
The smallest possible K is denoted πL

p,r(F ). (The superscript L stands for Lipschitz.)

For a linear operator F , the definition of (p, r)-summing is the same except that the
supremum in the right side of (2) is taken over all linear functionals f whose norm is at
most one. Of course, linearity of F allows the definition in the linear case to be written
more succinctly.

The definition of Lipschitz (p, p)-summing is the same as the definition of Lipschitz
p-summing given in [FJ] and πL

p,p(F ) is the same as the quantity πL
p (F ) defined there.

It is quite easy to show that if p ≥ r, q ≥ s and 1
s
− 1

q
≤ 1

r
− 1

p
then any (q, s)-summing

function F is also (p, r)-summing and πL
p,r(F ) ≤ πL

q,s(F ). (The proof is very similar to
the simple proof in the linear setting see e.g. page 198 in [DJT].)

We now state the main result in this section.

8



Proposition 4 For any p > 1, any Lipschitz function is (p, 1)-summing with constant at
most its Lipschitz constant times a constant Cp which is O((p−1)−1) for p → 1 and O(1)
for p →∞ . Consequently, it is also (p, r)-summing for any p > r > 1 with constant at
most its Lipschitz constant times a constant depending only on p and r.

Proof: It is enough to prove the proposition for the identity map on (M, d). Let
{xi, yi}n

i=1 be any points in the metric space (M,d) and let {ci}n
i=1 be any positive numbers

with
∑n

i=1 cp
i d(xi, yi)

p = 1. Put σj = {i; (cid(xi, yi))
p−1 ∈ (2−j, 2−j+1]}, j = 1, 2, . . . .

As was mentioned in [Fa] (or see [FJ]), Bourgain [BOU1] really proved that πL
1 (IZ) ≤

C log n for all n point metric spaces Z. This implies that for some universal C and for
each j there is a real Lipschitz function fj on M with Lipschitz constant 1 satisfying

∑
i∈σj

cp
i d(xi, yi)

p ≤ C log σj

∑
i∈σj

(cid(xi, yi))
p−1ci|fj(xi)− fj(yi)|

≤ C21−j log σj

∑
i∈σj

ci|fj(xi)− fj(yi)|. (3)

Given a sequence ε of εj = ±1, let fε =
∑

j εj2
1−j log σjfj.

Note that for each ε the Lipschitz constant of fε is at most
∑

j 21−j log σj. To evaluate

this sum note that σj2
−jp/(p−1) ≤ 1 so that

∑
j

21−j log σj ≤ p

p− 1

∞∑
j=1

j21−j ≤ Cp.

Where Cp = O((p− 1)−1) when p approaches 1 and O(1) when p approaches infinity.
Note also that for each i and j such that i ∈ σj,

E|fε(xi)− fε(yi)| ≥ 21−j log σj|fj(xi)− fj(yi)|,
where the expectation E is the average over all ε ∈ {−1, 1}n. Consequently, using (3),

1 =
n∑

i=1

cp
i d(xi, yi)

p =
∑

j

∑
i∈σj

cp
i d(xi, yi)

p

≤ C
∑

j

∑
i∈σj

ci2
1−j log σj|fj(xi)− fj(yi)|

≤ CE
n∑

i=1

ci|fε(xi)− fε(yi)|. (4)

Remark 4 In [FJ] it was proved that πp(T ) = πL
p (T ), 1 ≤ p < ∞, for every linear

operator T . Proposition 4 shows that there is no analogous result for the (p, r)-summing
norms.
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Remark 5 The order O((p − 1)−1) for the constant Cp when p approaches 1 is best
possible. This can be seen by considering the examples of n point metric spaces whose
best embedding into a Hilbert space have distortion of order log n (see [LLR], expanders
with a fix degree can serve as such examples). If (M, d) is such an n-point metric space
then the identity on M satisfies πL

1 (IM) ≥ c log n, for a universal c > 0 (see [FJ]). Also,
in the definition of πL

p,1(IM) it is clearly enough to consider at most n2 couples of points
(xi, yi) ∈ M2 (no repetitions are needed). Consequently, for all such couples of points
and all coefficients ci,

∑
cid(xi, yi) ≤ n2(1−1/p)(

∑
cp
i d(xi, yi)

p)1/p ≤ n2(1−1/p)πL
p,1(IM) sup

∑
ci|f(xi)− f(yi)|.

We thus get n2(1−1/p)πL
p,1(IM) ≥ c log n. Given 1 < p < 2 choose n so that log n is of

order (p− 1)−1 to get that πL
p,1(IM) is at least of order (p− 1)−1.

Clearly, also the order O(1) for the constant Cp when p approaches ∞ is best possible.

We conclude this section with a possible measure of the complexity of a metric space.
Saying that πL

1 (IX) ≤ K is the same as saying that you can situate X isometrically in
L∞(µ) for some probability µ so that the L∞(µ) and L1(µ) norms are K-equivalent on
X (see [FJ]). In some sense, then, πL

1 (IX) < ∞ says that X is reasonably simple, and
the size of πL

1 (IX) for, say, a finite metric space X provides one measure of the simplicity
of X. Perhaps here it is worth mentioning that πL

1 (I`n
2
) is of order

√
n and that if X is

an infinite metric space such that the distance between any two distinct points is one,
then πL

1 (IX) = 2 (see [FJ]). When πL
1 (IX) = ∞, a related measure of the complexity of

X is provided by the asymptotics of πL
p,1(IX) = ∞ as p ↓ 1.

6 The Laakso graphs

In this final section we indicate how to prove a theorem similar to Theorem 1 for another
interesting sequence of graphs. These are graphs introduced by Laakso [La]. They have
similar properties to those of the diamond graphs but in addition are doubling: every
ball in each of these graphs can be covered by a union of 6 balls of half the radius of the
original ball. See [LaP] for a simple proof of this fact, originally proved (with a different
constant) in [La]. We prefer to introduce these graphs as subgraphs of the Hamming
cubes, with all edges of length 1; consequently our distance function is a multiple of the
ones used in [La], [LiP] and [LMN]. As for the diamond graphs, the actual embedding
into the Hamming cubes will be important for us.

The vertex set of the graph Ln will be a subset of {0, 1}4n
and the edge set will be a

subset of the edge set of the Hamming cube {0, 1}4n
. L0 is the graph with two vertices,

labelled 0 and 1 and one edge connecting them. Given Li−1 whose vertex set is a subset
of {0, 1}4i−1

we replace each vertex (a1, a2, . . . , a2i−1) with

(a1, a1, a1, a1, a2, a2, a2, a2, . . . , a2i−1 , a2i−1 , a2i−1 , a2i−1) ∈ {0, 1}4i

.
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For each two new vertices whose Hamming distance is 4 (i.e, coming from an edge in
Li−1) we now add four new vertices in the following way: the two new vertices differ only
in four consecutive coordinates in which one of them has all ones and the other all zeros,
the four additional new vertices will be identical to these two in all coordinates except
these four, and the restriction of these four new vertices to these four coordinates will
be: ((1, 1, 0, 1), (1, 1, 0, 0), (0, 1, 0, 1) and (0, 1, 0, 0). So, for example, L1 will be

(1, 1, 1, 1)

(1, 1, 0, 1)

(1, 1, 0, 0) (0, 1, 0, 1)

(0, 1, 0, 0)

(0, 0, 0, 0)

with an edge connecting any vertex to the one(s) immediately below it. We shall term
these six vertices as: very top, top, leftmost, rightmost, bottom, and very bottom. In
analogy to the notations of the diamond graphs, we can also talk about sub-Laakso
graphs of level i, on top, very top, etc in sub-Laasko graphs and so on.

In a very similar way to the proofs presented, we can prove

Theorem 2 A Banach space X is not super reflexive if and only if the Laakso graphs
Ln Lipschitz embed into X with distortions independent of n.

We only indicate briefly the outline of the proof. As we already indicated the fact
that the Laakso graphs do not uniformly Lipschitz embed in a uniformly convex space
was known ([La], [Ty] and [LMN] for a somewhat more restrictive statement). We shall
however indicate the simple proof as it gives a somewhat more quantitative statement
(the analog of Proposition 2). So to prove that Ln do not uniformly embed in a uniformly
convex Banach space we first prove

Lemma 2 Let X be a normed space and f : L1 → X with Lip(f−1) ≤ 1 and Lip(f) ≤ M .
Then ‖f(1, 1, 1, 1)− f(0, 0, 0, 0)‖ ≤ 4M(1− δ( 2

M
))

The proof of the lemma is almost identical with the proof of Lemma 1: Start with
the assumption that f(0, 0, 0, 0) = 0 and put x = f(1, 1, 1, 1), x1 = x − f(1, 1, 0, 0),
x2 = f(1, 1, 0, 0), x3 = x− f(0, 1, 0, 1), x4 = f(0, 1, 0, 1). Now continue as in the proof of
Lemma 1 to get exactly the same statement as in Proposition 2 (for Ln instead of Dn).

To prove that the Ln-s uniformly embed in any non super reflexive space use an
embedding similar to the one in the statement of Proposition 1: Let x1, x2, . . . , x4n be
a sequence satisfying the assumptions of Proposition 1 (with 4n replacing 2n) and let
f : Ln → X be defined by f(a1, . . . , a4n) =

∑4n

i=1 aixi. If u, v ∈ Ln lie on a path from the
very top to the very bottom then f acts as an isometry on them. If not, we look at the
smallest sub-Laakso graph u and v belong to and then necessarily they both lie between
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the top and bottom (as opposed to the very top and the very bottom) vertices of this
sub graph and they lie on opposite sides there. The rest of the argument is very similar
to the one in the proof of Proposition 1 and we omit it.

Remark 6 In light of [BKL], It might very well be that Theorem 1 extends to any series
parallel graph. We didn’t pursue this farther.
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