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SOME 20+ YEAR OLD PROBLEMS ABOUT BANACH
SPACES AND OPERATORS ON THEM

William B. Johnson

Abstract

In the last few years numerous 20+ year old problems in the geometry of Ba-
nach spaces were solved. Some are described herein.

1 Introduction

In this note I describe some problems in Banach space theory from the 1970s and 1980s
that were solved after they had been opened for 20+ years. The problems are mostly
not connected to one another, so each section is independent from the other sections.
I use standard Banach space notation and terminolgy, as is contained e.g. in Linden-
strauss and Tzafriri [1977] or Albiac and N. J. Kalton [2006]. In this introduction I just
recall some definitions that are used repeatedly. Other possibly unfamilar definitions
are introduced in the sections in which they are used.
All spaces are Banach spaces and subspaces are closed linear subspaces. An operator is
a bounded linear operator between Banach spaces. An isomorphism is a not necessarly
surjective linear homeomorphism. L(X; Y ) denotes the space of operators from X to
Y . This is abbreviated to L(X) when X = Y . BX denotes the closed unit ball of
the space X . An operator T with domain X is compact if TBX has compact closure
and is weakly compact if TBX has weakly compact closure. An operator T is strictly
singular if the restriction of T to any infinite dimensional subspace of its domain is not
an isomorphism. If Y is a Banach space and T is an operator, T is said to be Y -singular
if the restriction of T to any subspace of its domain that is isomorphic to Y is not an
isomorphism. So T is strictly singular if T is Y -singular for every infinite dimensional
space Y . The isomorphism constant or Banach-Mazur distance between Banach spaces
X1 and X2 is defined as

d (X1; X2) = inf kT k � kT �1
k

where the infimum is taken over all isomorphisms from X1 onto X2. So d (X1; X2) =

1 if X1 is not isomorphic to X2.
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2 The diameter of the isomorphism class of a Banach space

Given a Banach space X , define

D(X) = supfd (X1; X2) : X1; X2 are isomorphic toXg:

J. J. Schäffer considered the following question to be well-known when he included it
in his 1976 book Schäffer [1976]:

Is D(X) = 1 for all infinite dimensional X?
My first PhD student, E. Odell (who died much too young) and I gave an affirmative
answer for separable X W. B. Johnson and E. Odell [2005]. A new definition helped:
Call a Banach space X K-elastic provided every isomorph of X K-embeds into X .
Call X elastic if X is K-elastic for some K < 1.
Ted and I proved the following, which easily implies that D(X) = 1 if X is separable
and infinite dimensional.

Theorem 2.1. If X is a separable Banach space so that for some K, every isomorph
of X is K-elastic, then X is finite dimensional.

The only “obvious” example of a separable elastic space is C [0; 1]. It is 1-elastic
because Mazur proved that every separable Banach space is isometrically isomorphic
to a subspace of C [0; 1]. Odell and I suspected that isomorphs of C [0; 1] are the only
elastic separable spaces and remarked that our proof of Theorem 2.1 could be stream-
lined a lot if this is true. We could not prove this but were able to use Bourgain’s `1

index theory Bourgain [1980] to prove that a separable elastic space contains a sub-
space that is isomorphic to c0 and used that information in the proof of Theorem 2.1.
Ten years later my third PhD student, D. Alspach, and B. Sari created a new index that
they used to verify that our suspicion was correct. Their proof is rather complicated,
but even more recently Beanland and Causey [n.d.] simplified the proof somewhat by
using more descriptive set theory. It looks likely that the Alspach-Sari index will be
used more down the road.
Schäffer’s problem remains open for non separable spaces. In somemodels of set theory
(GCH) there are spaces of every density character that are 1-elastic by virtue of being
universal, but some tools that were used in the separable setting are not available when
the spaces are non separable. Godefroy [2010] proved that under Martin’s Maximum
Axiom Schäffer’s problem has an affirmative answer for subspaces of `1.

3 Commutators

The commutator of two elements A and B in a Banach algebra is given by

[A; B] = AB � BA:

A natural problem that arises in the study of derivations on a Banach algebra A is to
classify the commutators in the algebra. Probably the most natural non commutative
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Banach algebras other than C � algebras are the spaces L(X) of bounded linear oper-
ators on a Banach space X. When X is n < 1 dimensional, L(X) can be identified
with the n by n matrices of scalars, and it is classical that such a matrix is a commutator
if and only if it has trace zero. There is generally no trace on L(X) when X is infinite
dimensional, and the only general obstruction to an operator being a commutator is due
to Wintner [1947], who proved that the identity in a unital Banach algebra is not a com-
mutator. It follows immediately by passing to the quotient algebra L(X)/I(X) that no
element of the form �I + K, where K belongs to a proper norm closed ideal I(X) of
L(X) and � ¤ 0, can be a commutator. With this in mind we call a Banach space X
aWintner space provided the only non commutators in L(X) are elements of the form
�I + K with � 6= 0 and K in a proper closed ideal.
Here is Wielandt’s elegant proof Wielandt [1949] of Wintner’s theorem that I is not a
commutator:
If I = AB � BA then by induction

8n AnB � BAn = nAn�1:

So A cannot be nilpotent and

nkAn�1
k � 2kAk � kBk � kAn�1

k:

To determine whether a Banach space X is a Wintner space, the first thing one most
know is what elements in L(X) lie in a proper closed ideal, so one needs to know what
are the maximal ideals in L(X) (maximal ideals in a unital Banach algebra are automat-
ically closed because the invertible elements are open). In certain classical spaces, such
as `p for 1 � p < 1, and c0, there is only one proper closed ideal; namely, the ideal
of compact operators on X, (Gohberg, Markus, and Feldman [1960], see also Whitley
[1964, Theorem 6.2]), so it is not surprising that these spaces received themost attention
early on. After a decade of so research on commutators by numerous people, in 1965
Brown and Pearcy [1965]) made a breakthrough by proving that `2 is a Wintner space.
In 1972, Apostol [1972a] verified that `p for 1 < p < is a Wintner space and a year
later Apostol [1973] he proved that c0 is aWintner space. Apostol obtained information
about commutators on `1 and `1, and there was also research done around the same
time about commutators on Lp , but it was only 30 years later that another classification
theorem was proved. In 2009, my student D. Dosev showed in his dissertation that `1
is a Wintner space. In D. Dosev and W. B. Johnson [2010], he and I codified what is
needed for the technology developed by Brown–Pearcy, Apostol, and him in order to
prove that an operator is a commutator in spaces that have a Pełczyński decomposition.
(The spaceX is said to have a Pełczyński decomposition ifX is isomorphic to

� P
X

�
p

with 1 � p � 1 or p = 0.) Notice that if X has a Pełczyński decomposition then one
can define right and left shifts of infinite multiplicity on X. Such shifts can be used
to show that certain operators on X are commutators. In D. Dosev and W. B. Johnson
[ibid.] the following theorem was proved (but it was only stated in D. Dosev, W. B.
Johnson, and Schechtman [2013]).
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Theorem 3.1. Let X be a Banach space such that X is isomorphic to
� P

X
�

p
, where

1 � p � 1 or p = 0. Let T 2 L(X) be such that there exists a subspace X �

X such that ' X, TjX is an isomorphism, X + T (X) is complemented in X, and
d (X; T (X)) > 0. Then T is a commutator.

In practice, Theorem 3.1 allows one to avoid operator theoretic arguments when
trying to check whether a space X is a Wintner space and concentrate on the geometry
of X. This is particularly important when K(X) is not the only closed ideal in L(X),
as is the case in all classical spaces other than `p , 1 � p < 1 and c0. In D. Dosev and
W. B. Johnson [2010] Dosev and I used Theorem 3.1 to prove that `1 is aWintner space
and in D. Dosev, W. B. Johnson, and Schechtman [2013] together with Schechtman we
used it to prove that Lp := Lp(0; 1) is a Wintner space. In `1 the unique maximal
ideal is not too bad–it is the ideal of strictly singular operators. However, in Lp , the
unique maximal ideal is horrendously large and hard to deal with–it is the ideal of Lp-
singular operators. Theorem 3.1 also was used in Chen, W. B. Johnson, and Zheng
[2011] and Zheng [2014].
Here is a wild conjecture that was made in D. Dosev and W. B. Johnson [2010]:
If X has a Pełczyński decomposition then X is a Wintner space.
The most interesting classical spaces not known to be Wintner spaces are the spaces
C (K) where K is an infinite compact metric space with C (K) not isomorphic to c0–
all of these have a .Pełczyński decomposition. The best partial results on these spaces
is contained in Dosev’s paper D. T. Dosev [2015]. There are other recent papers that
prove that some simpler spaces are Wintner spaces, including Zheng [2014] and Chen,
W. B. Johnson, and Zheng [2011].
After D. Dosev and W. B. Johnson [2010] was written it was proved by Tarbard [2012]
that not every infinite dimensional Banach space is a Wintner space. Building on the
work of his advisor, R. Haydon, and S. Argyros that solved a famous 40+ year old
problem that they will discuss at their 2018 ICM lecture, Tarbard constructed a Banach
space X such that every operator on X has the form �I +˛S +K with � and ˛ scalars,
K is compact, and S is special non compact operator whose square is compact. The
strictly singular operators form the unique maximal ideal in L(X) and it is clear that S

is not a commutator, so X is not a Wintner space.
Two other well-known open problems about commutators are worth mentioning.
Problem 1. If X is infinite dimensional, then is every compact operator on X a com-
mutator?
I suspect that, to the contrary, there is an infinite dimensional space X such that every
finite rank commutator on X has zero trace.
The following problem is open for every infinite dimensional space.
Problem 2. Is every compact operator the commutator of two compact operators?

4 Counting Ideals in L(Lp)

After C � algebras, probably the most natural non commutative Banach algebras are the
spaces of bounded linear operators on such classical Banach spaces as Lp := Lp(0; 1).
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In order to study any Banach algebra one must understand something about the closed
ideals in the algebra. For L(`p), the space of bounded linear operators on `p , 1 � p <

1, the situation is the same as for `2. The only non trivial closed ideal is the ideal
of compact operators (see Gohberg, Markus, and Feldman [1960] and Whitley [1964]).
The situation for L(Lp), 1 � p 6= 2 < 1, is much more complicated. Let’s call an
ideal I small if I is contained in the ideal of strictly singular operators. Call an ideal
large if it is not small. The most natural way to construct a large ideal in L(X) is to
find a complemented subspace Y of X and consider the closed ideal IY generated by
a bounded linear projection from X onto Y . If, as is usually the case, Y is isomorphic
to Y ˚ Y , this ideal is the closure of the collection of all operators on X that factor
through Y . Then IY is a proper ideal as long as X is not isomorphic to a comple-
mented subspace of Y . Schechtman [1975] proved that L(Lp), 1 < p 6= 2 < 1,
has at least @0 ideals by constructing @0 isomorphically different complemented sub-
spaces of Lp . With Bourgain and Rosenthal, he Bourgain, Rosenthal, and Schechtman
[1981] improved this to @1 by constructing @1 isomorphically different complemented
subspaces of Lp . It is still open whether in ZFC L(Lp) has a continuum of large ideals.
Only recently was it proved that L(Lp), 1 < p 6= 2 < 1, has infinitely many closed
small ideals. In fact, building on some other recent work, Schlumprecht and Zsák
[2018] show that L(Lp) has a continuum of small closed ideals, solving in the pro-
cess a problem in Pietsch’s 1978 book Pietsch [1978]. It remains open whether L(Lp),
1 < p 6= 2 < 1, has more than a continuum of closed ideals.
For L(L1), the situation was stagnant for an even longer time. In 1978 Pietsch [ibid.]
recorded the well-known problem whether there are infinitely many closed ideals in
L(L1). At that time the only non trivial ideals in L(L1) known were the ideal of
compact operators, the ideal of strictly singular operators, the ideal of operators that
factor through `1, and the unique maximal ideal. It is easy to write down candidates for
other ideals, but many turn out to be one of these four. For example, if 1 < p � 1, the
closure of the operators on L1 that factor through Lp is the ideal of weakly compact
operators, and on L1 an operator is weakly compact if and only if it is strictly singular.
Just in the past year, W. B. Johnson, Pisier, and G. [n.d.] proved that there are other
closed ideals. We constructed a continuum of closed small ideals in L(L1). For 2 <

p < 1 we take a Λ(p) sequence (xp
n ) of characters that has certain extra properties

(“Λ(p)” means that the Lp and L2 norms are equivalent on the linear span of the set of
characters). Let Jp be the bounded linear operator from `1 into L1 that maps the nth
unit basis vector to x

p
n and let I(p) be the closure of the operators on L1 that factor

through Jp . It turns out that I(p) 6= I(q) when p 6= q.
It is open whether L(L1) has more than two large ideals. This is closely connected to
the famous problem whether every infinite dimensional complemented subspace of L1

is isomorphic either to `1 or to L1.
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5 Spaces that are uniformly homeomorphic to L1 spaces

Banach spaces X and Y are said to be uniformly homeomorphic if there is an injective
uniformly continuous function from X onto Y whose inverse is uniformly continuous.
B. Maurey, G. Schechtman, and I gave an affirmative answer to the 1982 question of
Heinrich and Mankiewicz [1982]:

Are the L1 spaces are preserved under uniform homeomorphisms?
A Banach space X is said to be L1 if its dual X� is isomorphic to C (K) for some com-
pact Hausdorff space K. That is really a theorem Lindenstrauss and Rosenthal [1969].
The definition Lindenstrauss and Pełczyński [1968] is that X is the increasing union
of finite dimensional subspaces that are uniformly isomorphic to finite dimensional L1

spaces.
Subsequently N. J. Kalton [2012] proved that this theorem is optimal by constructing
two separable L1 spaces that are uniformly homeomorphic but not isomorphic.
At the heart of the question is a recurring problem:
Suppose a linear mapping T : X ! Y admits a Lipschitz factorization through a
Banach space Z; i.e., we have Lipschitz F1 : X ! Z and F2 : Z ! Y and F2 ı F1 =

T . What extra is needed to guarantee that T admits a linear factorization through Z?
Something extra is needed because the identity on C [0; 1] Lipschitz factors through c0
Aharoni [1974], Lindenstrauss [1964].
The main result in W. B. Johnson, Maurey, and Schechtman [2009] is

Theorem 5.1. Let X be a finite dimensional normed space, Y a Banach space with
the Radon-Nikodym property (which means that every Lipschitz mapping from the real
line into Y is differentiable almost everywhere) and T : X ! Y a linear operator. Let
Z be a separable Banach space and assume there are Lipschitz maps F1 : X ! Z

and F2 : Z ! Y with F2 ı F1 = T . Then for every � > 1 there are linear maps
T1 : X ! L1(Z) and T2 : L1(Z) ! Y with T2 ı i1;1 ı T1 = T and kT1k � kT2k �

�Lip (F1)Lip (F2).

If Z is L1 then so is L1(Z) and hence T linearly factors through a L1 space.
This and fairly standard tools in non linear geometric functional analysis give an af-
firmative answer to the Heinrich–Mankiewicz problem. The proof of Theorem 5.1 is
based on a rather simple local-global linearization idea. For the application we need
only the case where Y is finite dimensional.

6 Weakly null sequences in L1

The first weakly null normalized sequences (WNNS)with no unconditional sub-sequence
were constructed by Maurey and Rosenthal [1977]. Their technique was incorporated
into the famous paper of Gowers and Maurey [1993] that contains an example of an
infinite dimensional Banach space that contains NO unconditional sequence, but the ex-
amples in Maurey and Rosenthal [1977] are still interesting because the ambient spaces
were C (K) with K countable. These C (K) spaces are hereditarily c0 and so have
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unconditional sequences all over the place. Every subsequence of the WNNS they con-
structed reproduces the (conditional) summing basis on blocks.
In 1977 Maurey and Rosenthal [ibid.] asked whether every WNNS sequence in L1 :=

L1(0; 1) has an unconditional subsequence. Like the C (K) spaces with K countable,
every infinite dimensional subspace ofL1 contains an unconditional sequence. InW. B.
Johnson, Maurey, and Schechtman [2007] we constructed a WNNS in L1 such that
every subsequence contains a block basis that is 1 + �–equivalent to the (conditional)
Haar basis for L1, which implies that the WNNS has no unconditional subsequence. In
fact, the theorem stated this way extends to rearrangement invariant spaces which (in
some appropriate sense) are not to the right of L2 (e.g. Lp , 1 < p < 2) and which are
not too close to L1.

7 Subspaces of spaces that have an uncondtional basis

A problem that goes back to the 1970s is to give an intrinsic characterization of Ba-
nach spaces that isomorphically embed into a space that has an unconditional basis. It
was shown that every space with an unconditional expansion of the identity (in particu-
lar, every space with an unconditional finite dimensional decompostion) embeds into a
space with unconditional basis Pełczyński and Wojtaszczyk [1971], Lindenstrauss and
Tzafriri [1977]. However for spaces that lack such a strong approximation property the
only apparently useful invariant is that in a subspace of a space with unconditional basis,
every weakly null normalized sequence (WNNS) has an unconditional subsequence. A
quotient of a space with shrinking unconditional basis has this desirable property W. B.
Johnson [1977], E. Odell [1992]. (A basis is shrinking provided the linear function-
als biorthogonal to the basis vectors are a basis for the dual space. Every basis for a
reflexive space is shrinking.) But this condition is not suffiencient even for reflexive
spaces: in W. B. Johnson and Zheng [2008] my student B. Zheng and I used a variation
of a construction of E. W. Odell and Schlumprecht [2006] to build a separable reflexive
space that does not embed into a space with unconditional basis, yet every WNNS in
the space has an unconditional subsequence. On the other hand, Feder [1980] proved
that a reflexive quotient X of a space with shrinking unconditional basis embeds into
a space with unconditional basis as long as X has the approximation property. Unfor-
tunately, all classical reflexive spaces other than Hilbert spaces have quotients that fail
the approximation property.
So there were two problems
1. Give an intrinsic characterization of Banach spaces that embed into a space that has
an unconditional basis.
2. Does every quotient of a space with shrinking unconditional basis embed into a space
with unconditional basis?
Much research centered around reflexive spaces. For example, in addition to the result
of Feder mentioned above, it was proved that every reflexive subspace of a space with
unconditional basis embeds into a reflexive spacewith unconditional basis Davis, Figiel,
W. B. Johnson, and Pełczyński [1974], Figiel, W. B. Johnson, and Tzafriri [1975].
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In W. B. Johnson and Zheng [2008] Zheng and I answered both problems in the affir-
mative for reflexive spaces. Our later paper W. B. Johnson and Zheng [2011] gives an
affirmative answer to (2) in general and to (1) for spaces that have a separable dual. The
answer to (1) for spaces with non separable dual must be completely different because
of the space `1, which has an unconditional basis but also has the Schur property–every
WNNS converges in norm to zero.
The answers for reflexive spaces follow from the following omnibus theorem, which
basically says that every condition that might be equivalent to “the reflexive space X

embeds into a space with an unconditional basis” actually is equivalent to it.

Theorem 7.1. Let X be a separable reflexive Banach space. Then the following are
equivalent.

(a) X has the UTP.

(b) X is isomorphic to a subspace of a Banach space with an unconditional basis.

(c) X is isomorphic to a subspace of a reflexive space with an unconditional basis.

(d) X is isomorphic to a quotient of a Banach space with a shrinking unconditional
basis.

(e) X is isomorphic to a quotient of a reflexive space with an unconditional basis.

(f) X is isomorphic to a subspace of a quotient of a reflexive space with an uncon-
ditional basis.

(g) X is isomorphic to a subspace of a reflexive quotient of a Banach space with a
shrinking unconditional basis.

(h) X is isomorphic to a quotient of a subspace of a reflexive space with an uncon-
ditional basis.

(i) X is isomorphic to a quotient of a reflexive subspace of a Banach space with a
shrinking unconditional basis.

(j) X� has the UTP.

The UTP is a strengthening of the property “every WNNS has an unconditional sub-
sequence”. The weaker property for a reflexive space does NOT imply embeddability
into a space with unconditional basis W. B. Johnson and Zheng [2008]. The definition
of the UTP is due to E. W. Odell and Schlumprecht [2006]:

Definition 7.2. A branch of a tree is a maximal linearly ordered subset of the tree
under the tree order. We say X has the C -unconditional tree property (C -UTP) if every
normalized weakly null infinitely branching tree in X has a C -unconditional branch.
X has the UTP if X has the C -UTP for some C > 0.
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The proof of the theorem uses some new tricks, blocking methods developed in the
1970s W. B. Johnson and Zippin [1972], W. B. Johnson and Zippin [1974], W. B. John-
son and E. Odell [1974], W. B. Johnson and E. Odell [1981], W. B. Johnson [1977],
and the Odell-Schlumprecht analysis E.W. Odell and Schlumprecht [2006] relating tree
properties to embeddability into spaces that have a finite dimensional decomposition
with the corresponding skipped blocking property.
For Banach spaces with a separable dual, there is a similar theorem W. B. Johnson and
Zheng [2011], but the characterization involves the weak� UTP. A Banach space X is
said to have the weak� UTP provided every normalized weak� null infinitely branching
tree inX� has a branch that is an unconditional basic sequence. The main new technical
feature in W. B. Johnson and Zheng [ibid.] is that blocking and “killing the overlap”
techniques originally developed for finite dimensional decompositions are adapted to
work for blockings of shrinkingM -bases (that is, biorthogonal sequences fxn; x�

ngwith
span xn dense in X and span x�

n dense in X�). Shrinking M -bases are known to exist
in every Banach space that has a separable dual. These technical advances provide
some simplifications of the argument in the reflexive case presented in W. B. Johnson
and Zheng [2008] and likely will be used in the future to study the structure of Banach
spaces that lack a good approximation property.

8 Operators on `1 with dense range

In http://mathoverflow.net/questions/101253 A. B. Nasseri asked
“Can anyone give me an example of an (sic) bounded and linear operator T : `1 ! `1

(the space of bounded sequences with the usual sup-norm), such that T has dense range,
but is not surjective?”
This question quickly drew two close votes. Nevertheless it took a couple of years for
Nasseri, G. Schechtman, T. Tkocz, and me to resolve it W. Johnson, Nasseri, Schecht-
man, and Tkocz [2015].
On separable infinite dimensional spaces, there are always dense range compact opera-
tors, but compact operators have separable ranges. On a non separable space, even on
a dual to a separable space, it can happen that every dense range operator is surjective:
Argyros, Arvanitakis, and Tolias [2006] constructed a separable space X so that X� is
non separable, hereditarily indecomposable (HI) in the sense of Gowers–Maurey, and
every strictly singular operator on X� is weakly compact. Since X� is HI, every opera-
tor on X� is of the form �I +S with S strictly singular Gowers and Maurey [1993]. If
� 6= 0, then �I + S is Fredholm of index zero by Kato’s classical perturbation theory.
On the other hand, since every weakly compact subset of the dual to a separable space
is norm separable, every strictly singular operator on X� has separable range.
It turns out that Nasseri’s problem is related to Tauberian operators on L1 := L1(0; 1).
An operator T : X ! Y is called Tauberian if T ���1(Y ) = X N. Kalton andWilansky
[1976]. The book of González and Martı́nez-Abejón [2010] on Tauberian operators
contains:

Theorem 8.1. Let T : L1(0; 1) ! Y . The following are equivalent.
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0. T is Tauberian.

1. For all normalized disjoint sequences fxi g, lim infi!1 kT xi k > 0.

2. If fxi g is equivalent to the unit vector basis of `1 then there is an N such that
Tj[xi ]

1
i=N

is an isomorphism.

3. There are "; ı > 0 such that kTf k � "kf k for all f with jsupp(f )j < ı.

What is the connection between Tauberian operators on L1 and dense range, non sur-
jective operators on `1? If T is injective Tauberian, T �� is injective. Thus, if T is a
Tauberian operator on L1 that is injective but does not have closed range, then T � is
a dense range operator on L1 that is not surjective. Since L1 is isomorphic to `1,
having an injective Tauberian, non closed range operator on L1 gives a positive answer
to Nasseri’s question. In fact, we checked that whether there is such an operator on L1

is a priori equivalent to Nasseri’s question.
One of the main open problems mentioned in González and Martı́nez-Abejón [2010],
raised in 1984 by Weis and Wolff [1984], is whether there is a Tauberian operator T

on L1 whose kernel is infinite dimensional. If T satisfies this condition, then you can
play around and get a perturbation S of T that is Tauberian, injective, and has dense,
non closed range (so is not surjective). Taking the adjoint of S and replacing L1 by
its isomorph `1, you would have an injective, dense range, non surjective operator on
`1. (To get S from T , take an injective nuclear operator from the kernel on T that has
dense range in L1, extend it to a nuclear operator on L1, and add it to T . This does not
quite work, but some fiddling produces the desired S .) In fact, without knowing the
solution to either problem, one can check that the Weis—Wolff question is equivalent
to Nasseri’s question. The bottom line is that the question whether there is a dense
range non surjective operator on the non separable space `1 is really a question about
the existence of a Tauberian operator with infinite dimensional kernel on the separable
space L1.
It happened that T satisfying condition (3) in Theorem 8.1 and having an infinite di-
mensional kernel has a known finite dimensional analogue:

Theorem 8.2. [CS result] For each n sufficiently large, putting m = [3n/4], there
is an operator T : `n

1 ! `m
1 such that 1

4
kxk1 � kT xk1 � kxk1 for all x with

]supp(x) � n/400.

This CS result (where “CS” can be interpreted either to mean “Computer Science” or
“Compressed Sensing”) is a very special case of a theorem due to Berinde, Gilbert, In-
dyk, Karloff, and Strauss [2008]. The kernel of Tn has dimension at least n/4, so if you
take the ultraproduct T̃ of the Tn you get an operator with infinite dimensional kernel
on some gigantic L1 space. Let T be the restriction of T̃ to some separable T̃ -invariant
L1 subspace that intersects the kernel of T̃ in an infinite dimensional subspace. As
long as T̃ is Tauberian, the operator T will be a Tauberian operator with infinite dimen-
sional kernel on L1, and we will be done. It remains to isolate a condition implying
Tauberianism that is possessed by all Tn and is preserved under ultraproducts.



SOME 20+ YEAR OLD PROBLEMS ABOUT BANACH SPACES 1679

Say an operator T : X ! Y (X an L1 space) is (r; N )-Tauberian provided whenever
(xn)

N
n=1 are disjoint unit vectors in X , then max1�n�N kT xnk � r .

Lemma 8.3. T : X ! Y is Tauberian iff 9 r > 0 and N such that T is (r; N )-
Tauberian.

Proof: T being (r; N )-Tauberian implies that if (xn) is a disjoint sequence of unit
vectors in X , then lim infn kT xnk > 0, so T is González and Martı́nez-Abejón [2010].
Conversely, suppose there are disjoint collections (xn

k
)n
k=1

, n = 1; 2; : : : with
max1�k�n kT xn

k
k ! 0 as n ! 1. Then the closed sublattice generated by

[1
n=1(x

n
k
)n
k=1

is a separable L1 space, hence is order isometric to L1(�) for some
probability measure � by Kakutani’s theorem. Choose 1 � k(n) � n so that the sup-
port of xn

k(n)
in L1(�) has measure at most 1/n. Since T is Tauberian, necessarily

lim infn kT xn
k(n)

k > 0 González and Martı́nez-Abejón [ibid.], a contradiction.
It is not difficult to prove that the property of being (r; N )-Tauberian is stable under
ultraproducts of uniformly bounded operators, so it is just a matter of observing that the
operators Tn of Berinde, Gilbert, Indyk, Karloff, and Strauss [2008]. are all (1/4; 400)–
Tauberian.
Conclusion: There is a non surjective Tauberian operator on L1 that has dense range.
The operator can be chosen either to be injective or to have infinite dimensional kernel.
Consequently, there is a dense range, non surjective, injective operator on `1.
Conclusion from the proof: Computer science has applications to non separable Banach
space theory!

9 Approximation properties

A Banach space X has the approximation property (AP) provided the identity operator
is the limit of finite rank operators in the topology of uniform convergence on com-
pact sets. If these operators can be taken to be uniformly bounded, we say that X has
the bounded approximation property (BAP) or �-BAP if the uniform bound can be �.
Grothendieck [1955] proved that a reflexive space that has the APmust have the 1-BAP,
but there are non reflexive spaces that have the AP but fail the BAP Figiel and W. B.
Johnson [1973]. Sometimes these properties come up when considering problems that,
on the surface, have nothing to do with approximation. For example, given a family
F of operators between Banach spaces, it is natural to try to find a single (usually sep-
arable) Banach space Z such that all the operators in F factor through Z. If F is the
collection of all operators between separable Banach spaces that have the BAP, there is
such a separable Z; namely, the separable universal basis space of Pełczyński [1969],
Pełczyński [1971], Kadec [1971]. This space, as well as smaller (even reflexive) spaces
W. B. Johnson [1971] have the property that every operator that is uniformly approx-
imable by finite rank operators factors through Z. A. Szankowski and I proved that
there is not a separable space such that every operator between separable spaces (not
even every operator between spaces that have the AP) factors through it W. B. John-
son and Szankowski [1976], but this paper left open the question: Is there a separable
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space such that every compact operator factors through it? 23 years later, in part 2
of W. B. Johnson and Szankowski [1976], we finally managed to proved that no such
space exists W. B. Johnson and Szankowski [2009].

* * * * * * * *
A Banach space has the hereditary approximation property (HAP) provided every sub-
space has the approximation property. There are non Hilbertian spaces that have the
HAP W. B. Johnson [1980], Pisier [1988]. All of these examples are asymptotically
Hilbertian; i.e., for some K and every n, there is a finite codimensional subspace all of
whose n-dimensional subspaces are K-isomorphic to `n

2 . An asymptotically Hilbertian
space must be superreflexive and cannot have a symmetric basis unless it is isomorphic
to a Hilbert space. This led to two problems W. B. Johnson [1980]:
1. Can a non reflexive space have the HAP?
2. Does there exist a non Hilbertian space with a symmetric basis that has the HAP?
TheHAP is very difficult to workwith, partly because it does not have good permanence
properties–there are spaces X and Y that have the HAP such that X ˚ Y fails the HAP
Casazza, Garcı́a, and W. B. Johnson [2001].
The main result of W. B. Johnson and Szankowski [2012] gives an affirmative answer
to problem 2 from W. B. Johnson [1980]:

Theorem 9.1. There is a function f (n) " 1 such that if for infinitely many n we have
Dn(X) � f (n), then X has the HAP.

Here Dn(X) := sup d (E; `n
2), where the sup is over all n-dimensional subspaces of

X . The proof combines the ideas in W. B. Johnson [ibid.] with the argument in Linden-
strauss and Tzafriri [1976].
You can build Banach spaces with a symmetric basis, even Orlicz sequence spaces, that
are not isomorphic to a Hilbert space and yet Dn(X) goes to infinity as slowly as is
desired. Hence problem (2) has an affirmative answer.
It turns out that Theorem 9.1 can be used to give a footnote to the famous theorem of
J. Lindenstrauss and L. Tzafriri Lindenstrauss and Tzafriri [1971] that Hilbert spaces are
the only, up to isomorphism, Banach spaces in which every subspace is complemented.
Timur Oikhberg asked us whether there is a non Hilbertian Banach space in which every
subspace is isomorphic to a complemented subspace.

Theorem 9.2. W. B. Johnson and Szankowski [2012] There is a separable, infinite
dimensional Banach space not isomorphic to `2 that is complementably universal for
all subspaces of all of its quotients.

Let X be any non Hilbertian separable Banach space such that D4n(X) � f (n) for
all n. Let (Ek) be a sequence of finite dimensional spaces that is dense (in the sense
of the Banach-Mazur distance) in the collection of all finite dimensional spaces that
are contained in some quotient of `2(X) and let Y be the `2-sum of the Ek . Then
Dn(Y ) � f (n) for all n. If you are old enough to know the right background, you can
give a short argument to prove that Y is complementably universal for all subspaces of
all of its quotients.
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Problem (1) remains open.
* * * * * * * * *

*
It was a privilege for Tadek Figiel and me to be co-authors on A. Pełczyński’s last
paper Figiel, W. B. Johnson, and Pełczyński [2011]. The solution to a (not especially
important) problem that had eluded Tadek and me in the early 1970s Figiel and W. B.
Johnson [1973] just dropped out, so I have an excuse to include a discussion of part of
Figiel, W. B. Johnson, and Pełczyński [2011] in this note.
Let X be a Banach space, let Y � X be a subspace, let � � 1. The pair (X; Y ) is said
to have the �-BAP if for each �0 > � and each subspace F � X with dimF < 1,
there is a finite rank operator u : X ! X such that jjujj < �0, u(x) = x for x 2 F

and u(Y ) � Y .
If (X; Y ) has the�-BAP thenX/Y has the�-BAP. Thus by a theorem due to Szankowski
[2009], for 1 � p < 2 there are subspaces Y of `p that have the BAP and yet (`p; Y )

fails the BAP.
It is open whether (X; Y ) has the BAP if X , Y , and X/Y all have the BAP, but I don’t
believe it.
If Y is a finite dimensional subspace of X and X has the �-BAP then also (X; Y ) has
the �-BAP and hence also X/Y has the �-BAP. That is, the �-BAP passes to quotients
by finite dimensional subspaces. By duality you get that if X� the �-BAP then every
finite codimensional subspace of X has the �-BAP. In particular, every finite codimen-
sional subspace of an L1 space has the 1-BAP. Easy as this is, I don’t think that anyone
previously had noticed this.
In fact,

Proposition 9.3. X� has the �-BAP iff (X; Y ) has the �-BAP for every finite codimen-
sional subspace Y .

The following proposition turned out to be useful.

Proposition 9.4. Let X be a Banach space and let Y � X be a closed subspace such
that dimX/Y = n < 1 and Y has the ��BAP . Then the pair (X; Y ) has the
3��BAP .

This gives the corollary

Corollary 9.5. If X is a Banach space and Y has the ��BAP for every finite codi-
mensional subspace Y � X , then X� has the 3��BAP .

Consequently, in contradistinction to the case of commutative L1 spaces, for every �

there are finite codimensional subspaces Y of the non commutative L1 space S1 of
trace class operators on `2 that fail the �-BAP because Szankowski [1981] proved that
L(`2) fails the AP and L(`2) is the dual to S1.
The main result in my 1972 paper with Figiel and W. B. Johnson [1973] is that there is
a subspace of c0 that has the AP but fails the BAP. We could not prove the same result
for `1.
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Corollary 9.6. Figiel, W. B. Johnson, and Pełczyński [2011] There is a subspace Y of
`1 that has the AP but fails the BAP.

Proof. Start with a subspace X of `1 that fails the approximation property Szankowski
[1981]. From the existence of such a space it follows W. B. Johnson [1972] that if we
let Z be the `1�sum of a dense sequence (Xn) of finite dimensional subspaces of X ,
then Z� fails the BAP and yet Z has the BAP. Then Y can be the `1� sum of a suitable
sequence of finite codimensional subspaces of Z because of Corollary 9.5.
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