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Abstract

We show, in particular, that a linear operator between finite dimensional normed
spaces, which factors through a third Banach space Z via Lipschitz maps, factors
linearly through the identity from L∞([0, 1], Z) to L1([0, 1], Z) (and thus, in par-
ticular, through each Lp(Z), 1 ≤ p ≤ ∞) with the same factorization constant. It
follows that, for each 1 ≤ p ≤ ∞, the class of Lp spaces is closed under uniform
(and even coarse) equivalences. The case p = 1 is new and solves a problem raised
by Heinrich and Mankiewicz in 1982. The proof is based on a simple local-global
linearization idea.

1 Introduction

Let X be a pointed metric space with distinguished point, 0. X# denotes the Banach
space of real valued Lipschitz functions f on X for which f(0) = 0 under the norm

Lip(f) = supx6=y
|f(x)−f(y)|
‖x−y‖ . The evaluation map KX : X → X#∗ is then an isometric

isomorphism. If X is a Banach space, then by [5], X∗∗ is norm one complemented in
X#∗ via a projection P that satisfies the identity PKX = JX , where JX is the canonical
embedding of X into X∗∗.

Given a Lipschitz function T : X → Y with X and Y pointed metric spaces and
1 ≤ p ≤ ∞, we define the Lipschitz Lp factorization norm γL

p (T ) by

γL
p (T ) := inf{Lip(F )Lip(G) : KY ◦ T = G ◦ F},

where the infimum is over all Lipschitz factorizations of KY ◦ T through an arbitrary
Lp space. By the result of Lindenstrauss mentioned in the previous paragraph, if Y is a
normed space this is the same as taking the infimum over all Lipschitz factorizations of
JY ◦ T through an Lp space.
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The main result, Theorem 2, of this paper is that if T is a linear operator between
Banach spaces and 1 ≤ p ≤ ∞, then γL

p (T ) = γp(T ). (Recall that γp(T ) is defined
to be the infimum of ‖F‖‖G‖ where the infimum is taken over all linear factorizations
JY ◦ T = G ◦ F of JY ◦ T through arbitrary Lp spaces.) The case p = 1 of this theorem
uses new ideas and gives as a corollary that a Banach space that is uniformly (or even
coarsely) equivalent to a L1 space is again a L1 space. This answers a question Heinrich
and Mankiewicz asked in their 1982 paper [3]. The main result is dealt with in section
3. The proof uses a local-global approach reminiscent of a method recently employed in
[4]. Although the proof is fairly simple, easier special cases of Theorem 2 resisted for
some time attacks by several experts; for example, it is not completely straightforward
to show that if fn : `n2 → L1, gn : L1 → `n2 are such that gnfn is the identity on `n2 ,
then Lip(fn)Lip(gn)→∞ as n→∞, and, indeed, understanding this example led us to
Theorem 2.

In section 2 we present another factorization result the proof of which is based on much
older and well known ideas but still produces some new information on the invariance of
some classes of L1 spaces under Lipschitz isomorphisms.

Although our research was motivated by problems concerning the classification of
Banach spaces under non-linear equivalences, no specialized knowledge of Banach space
theory is required for reading this paper. Let us just mention that one equivalence for a
Banach space X to be a Lp space is that the canonical injection JX : X → X∗∗ factor
(linearly) through Lp(µ) for some measure µ (and, if 1 < p 6= 2 < ∞, that X not be
isomorphic to a Hilbert space); see [6].

We thank M. Csörnyei, T. Figiel, O. Maleva, and D. Preiss for discussions on the
problems treated here and the referee for several suggestions.

2 The classical argument

Here we prove

Theorem 1 Assume T : X → Y is a linear operator from a Banach space X to a
dual Banach space Y . Assume T factors through a third Banach space Z via Lipschitz
mappings: T = g ◦ f , f : X → Z, g : Z → Y and assume in addition that f has a point
of Gâteaux differentiability. Then there are linear operators A : X → Z, B : Z → Y with
T = BA and ‖A‖‖B‖ ≤ Lip(f)Lip(g).

Proof: The proof uses a combination of an argument from [3] and a result from [5].
By making suitable translations in the domain and range we may assume that the

point of differentiability of f is 0 and that f(0) = 0. Define fn, gn by fn(x) = nf(x
n
),

gn(z) = ng( z
n
). Since g ◦ f = T is linear, we have that gn ◦ fn = T . By hypothesis,

‖fn(x) − Ax‖ → 0 for all x ∈ X, for some linear operator A : X → Z. Let g̃(x) be the
weak∗ limit of gn(x) through some fixed free ultrafilter of natural numbers. Using the
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norm convergence of fn(x) to Ax, we deduce that g̃ ◦ A = T . Of course, ‖A‖ ≤ Lip(f)
and Lip(g̃) ≤ Lip(g). So we have linear A and Lipschitz g̃ such that

T = g̃ ◦ A

and ‖A‖Lip(g̃) ≤ Lip(f)Lip(g). Also, g̃ is linear on AX, so, by [5], there is a linear
operator B : Z → Y with ‖B‖ ≤ Lip(g̃) so that BA = T . A softer proof of the result we
used from [5] is contained in [7]; see also [1, Theorem 7.2]

As a corollary we get,

Corollary 1 Assume T : X → Y is a linear operator between a separable Banach space
X and a Banach space Y . Assume T factors through a third Banach space Z having
the Radon–Nikodym property (RNP) via Lipschitz mappings: T = g ◦ f , f : X → Z,
g : Z → Y . Then there are linear operators A : X → Z, B : Z → Y ∗∗ with JT = BA
and ‖A‖‖B‖ ≤ Lip(f)Lip(g). Here J is the canonical embedding of Y into its second
dual.

Recall [1, section 6.4] that one equivalence to Z having the RNP is that every Lipschitz
mapping from R (or even from a general separable Banach space) into Z has a point of
Gâteaux differentiability. Reflexive spaces and separable conjugate spaces, including `1,
have the RNP, while, for example, c0 and L1[0, 1] fail the RNP.

Applying this to the case where Z = `1 and to the case where Z is a general separable
L1 space with the Radon–Nikodym property and using the fact that a Banach space X
is L1 whenever the canonical injection of X into its second dual factors through a L1

space [6], we get

Corollary 2 The following two families are preserved under Lipschitz isomorphisms:

1. The L1-subspaces of `1.

2. The separable L1 spaces that have the Radon–Nikodym property.

3 The local–global argument

Recall that any n-dimensional normed space X admits a normalized basis x1, . . . , xn such
that

n‖
n∑

i=1

aixi‖ ≥
n∑

i=1

|ai| (1)

for all a1, . . . , an ∈ R. Indeed, any Auerbach basis satisfies this. (See e.g. [1, page 432]
for the definition and proof of the existence of an Auerbach basis; alternatively, use any
basis for X and replace n on the left side of (1) by a constant which can depend on X
and adjust (2) below appropriately.)

The next proposition is the main new tool in the proof of the main Theorem.
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Proposition 1 Let X be an n-dimensional normed space, Y a Banach space and T : X → Y
a bounded linear map. Let S : X → Y be Gâteaux differentiable everywhere and Lipschitz.
Let x1, . . . , xn be a basis for X which satisfies (1), let ε > 0, and assume that

||Sx− Tx‖ ≤ ε/2n (2)

for all x ∈ C = {
∑n

i=1 tixi ; 0 ≤ ti ≤ 1, 1 ≤ i ≤ n}. Then

‖
∫

C

S ′(x) dx− T‖ ≤ ε,

where S ′(x) is the Gâteaux derivative of S at x and dx is the measure induced on C from
the natural map, g, from [0, 1]n onto C and Lebesgue measure on [0, 1]n.

Proof: The conclusion follows from inequality (3), which is valid for every Lipschitz
function from [0, 1]n into a Banach space which is almost everywhere differentiable
(Gâteaux or Fréchet; it is the same for Lipschitz functions from finite dimensional spaces
[1, Proposition 4.3]) and every y in Rn:

‖
∫

[0,1]n
f ′(t)(y) dt‖ ≤ 2 max

t∈∂[0,1]n
‖f(t)‖‖y‖1 (3)

(apply (3) to the function f := (S − T )g).
To prove (3), let {ei}ni=1 denote the unit vector basis for Rn and consider the following

divergence theorem-like formula∫
[0,1]n

f ′(t)(ei) dt =
∫ 1

0

∫ 1

0
. . .

∫ 1

0
f ′(Σj 6=itjej + sei)(ei) dsdt1 . . . dtn

=
∫ 1

0

∫ 1

0
. . .

∫ 1

0
f(

∑
j 6=i tjej + ei)− f(

∑
j 6=i tjej) dt1 . . . dtn.

(4)

Multiply (4) by yi and sum over i to get

‖
∫

[0,1]n
f ′(t)(y) dt‖ = ‖

∑n
i=1

∫ 1

0

∫ 1

0
. . .

∫ 1

0
yi(f(

∑
j 6=i tjej + ei)− f(

∑
j 6=i tjej)) dt1 . . . dtn‖

≤
∑n

i=1

∫ 1

0

∫ 1

0
. . .

∫ 1

0
|yi|(‖f(

∑
j 6=i tjej + ei)‖+ ‖f(

∑
j 6=i tjej)‖) dt1 . . . dtn

which clearly implies (3).

Theorem 2 Let X be a finite dimensional normed space, Y a Banach space with the
RNP and T : X → Y a linear operator. Let Z be a separable Banach space and assume
there are Lipschitz maps F1 : X → Z and F2 : Z → Y with F2 ◦ F1 = T . Then for every
λ > 1 there are linear maps T1 : X → L∞(Z) and T2 : L1(Z)→ Y with T2 ◦ i∞,1 ◦T1 = T
and ‖T1‖ · ‖T2‖ ≤ λLip (F1)Lip(F2).
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Proof: Here L∞(Z) and L1(Z) are the Z-valued measurable functions on [0, 1] under
the essential sup and L1 norms, respectively. However, it is equivalent to replace [0, 1]
with any other separable, purely non atomic measure space, and in fact we use [0, 1]m for
a suitable m instead of [0, 1]. It would of course be better to factor T through Z itself,
but it remains open whether this can be done even when Y is also finite dimensional and
λ is replaced by any numerical constant.

Set n = dim(X), let {xi}ni=1 be a basis for X which satisfies (1), and let δ > 0. First
note that there are everywhere Gâteaux differentiable maps F̃1 : X → Z and F̃2 : Z → Y
with Lip(F̃i) ≤ Lip(Fi) and ‖Fi(x) − F̃i(x)‖ ≤ δ for all x in the domain of Fi, i = 1, 2.
The existence of F̃1 is classical: regard X as Rn under some norm, let f be a non negative
C1 function supported on a small neighborhood of 0 in X for which

∫
X
f(x) dx = 1, and

set F̃1 = f ∗ F1. The function F̃2 exists because Y has the RNP; see, for example, [1,
Corollary 6.43].

Define S = F̃2 ◦ F̃1. Then ‖Sx− Tx‖ ≤ δ(1 + Lip(F2)) for all x. By Proposition 1,

‖
∫

C

F̃ ′2(F̃1(x)) ◦ F̃ ′1(x)− T‖ = ‖
∫

C

S ′(x) dx− T‖ ≤ 2nδ(1 + Lip(F2)), (5)

where C = {
∑n

i=1 tixi ; 0 ≤ ti ≤ 1, 1 ≤ i ≤ n}. Define now H1 : X → L∞([0, 1]n, Z) by

H1x(t) = F̃ ′1(t1x1 + · · ·+ tnxn)(x)

and H2 : L1([0, 1]n, Z)→ Y by

H2f =

∫
[0,1]n

F̃ ′2(F̃1(t1x1 + · · ·+ tnxn))f(t) dt.

Then,
‖H1u‖ ≤ sup

[0,1]n
‖F̃ ′1(t1x1 + · · ·+ tnxn)(u)‖ ≤ Lip(F̃1)‖u‖

and

‖H2f‖ ≤
∫

[0,1]n
‖F̃ ′2(F̃1(t1x1 + · · ·+ tnxn))f(t)‖ dt ≤ Lip(F̃2)

∫
[0,1]n
‖f(t)‖ dt

so that
‖H1‖ · ‖H2‖ ≤ Lip(F1)Lip(F2).

Also,

H2(H1u) =

∫
[0,1]n

F̃ ′2(F̃1(t1x1 + · · ·+ tnxn))(F̃ ′1(t1x1 + · · ·+ tnxn)(u)) dt =

∫
C

S ′(x)(u) dx.

We thus have found linear H1 : X → L∞([0, 1]n, Z) and H2 : L1([0, 1]n, Z) → Y with
H :=

∫
C
S ′(x) dx = H2 ◦ i∞,1 ◦H1, ‖H1‖ · ‖H2‖ ≤ Lip(F1)Lip(F2) and, by (5), ‖H−T‖ ≤

2nδ(1 + Lip(F2)). This implies that, if δ is small enough, a similar factorization holds

5



for T . To see this, we regard L∞([0, 1]n, Z) as being those functions in L∞([0, 1]2n, Z)
which depend only on the first n coordinates and similarly for L1. Define the operator
H̃2 : L1([0, 1]2n, Z) → Y to be the composition of H2 with the (norm one) conditional
expectation projection P from L1([0, 1]2n, Z) onto L1([0, 1]n, Z). Of course, the kernel of
P contains the mean zero Z valued integrable functions on [0, 1]2n which depend only on
the last n components. In order to get a factorization of T : X → Y through the injection
L∞([0, 1]2n, Z)→ L1([0, 1]2n, Z) it is enough to show that for all ε > 0, if U : X → Y is a
linear operator with sufficiently small norm, then there are operators A from X into the
mean zero functions in L∞([0, 1]2n, Z) which depend only on the last n coordinates and
B from L1([0, 1]2n, Z) into Y so that ‖A‖, ‖B‖ < ε and U = Bi∞,1A. Indeed, setting
U := T − H̃2H1, we see that the pair H1 +A and H̃2 +B(I −P ) provides a factorization
of T through L∞([0, 1]2n, Z) → L1([0, 1]2n, Z), and obviously ‖H1 + A‖ ≤ ‖H1‖ + ε and
‖H̃2 +B(I − P )‖ ≤ ‖H2‖+ 2ε.

To define A, let z be any norm one vector in Z, let r := 1(0,1/2) − 1(1/2,1) and for
1 ≤ j ≤ n let rj be the function on [0, 1]2n defined by rj(t1, . . . , t2n) = r(tn+j). Set
Axj = (ε/n)rj ⊗ z so that ‖A‖ ≤ ε. Let Q be a projection of norm at most

√
n from

L1([0, 1]2n, Z) onto the span W of rj ⊗ z; 1 ≤ j ≤ n. Define B̃ from W into Y by setting
B̃(rj ⊗ z) = (n/ε)Uxj and define B := B̃Q. Clearly ‖B‖ ≤ (n/ε)

√
nmax{‖Uxj‖ : 1 ≤

j ≤ n}, so we just need ‖U‖ < ε2n−3/2.

As Corollaries we get

Corollary 3 Let X and Y be Banach spaces, T a linear operator from X into Y . Then

γ1(T ) = γL
1 (T ). (6)

Proof: To verify (6), it is enough to show for each finite dimensional subspace E of X
and each finite codimensional subspace F of Y that

γ1(QFTiE) ≤ γL
1 (T ), (7)

where iE is the injection from E into X and QF is the quotient mapping from Y onto
Y/F , because γ1(T ) is the supremum over all such E and F of the left side of (7) (see
[2, Theorem 9.1]). Now if JY T = G ◦H is a factorization of JY T through an L1 space,
then Q∗∗F G ◦ HiE is a factorization of QFTiE through the same L1 space, which yields
that γL

1 (QFTiE) ≤ γL
1 (T ). Thus it suffices to check that γ1(QFTiE) ≤ γL

1 (QFTiE); that
is, it is enough to verify (6) when X and Y are finite dimensional.

So in the sequel we assume that X and Y are finite dimensional. In this case the
desired conclusion follows from Theorem 2. Indeed, if T = G ◦ H is a Lipschitz factor-
ization of T through some (possibly non separable) L1 space Z, then we can replace Z
with the (separable) L1 subspace of Z generated by HX, and then apply Theorem 2.
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Corollary 4 Let X be a Banach space and assume that for some L1 space there are maps
F : X → L1 and G : L1 → X∗∗ which are Lipschitz for large distances with G ◦ F = I
(the canonical embedding). Then γ1(I) < ∞; i.e., For some L1 space there are linear
T1 : X → L1 and T2 : L1 → X∗∗ with T2 ◦ T1 = I. Consequently, if X is uniformly or
coarsely equivalent to a L1 space then it is a L1 space.

Proof: Before starting the proof we recall that a map F is Lipschitz for large distances
provided for all d > 0 there is Kd < ∞ so that d(F (x), F (y)) ≤ Kdd(x, y) whenever
d(x, y) ≥ d. Uniformly continuous mappings whose domain is convex (or sufficiently
close to being convex) are Lipschitz for large distances [1, Proposition 1.11]. A coarse
equivalence between Banach spaces is just a biLipschitz equivalence between a pair of
nets in the respective spaces; it is clear that such a map can be extended to a mapping
that is Lipschitz for large distances.

We now turn to the proof. A standard ultraproduct argument shows that we may
assume that F and G are Lipschitz. (Assume, without loss of generality, that F (0) = 0.

Let U be a free ultrafilter on the natural numbers and define Fn : X → Y by Fn(x) = F (nx)
n

and let F̃ : X → (L1)U be the ultraproduct of the maps Fn into the ultrapower (L1)U
of L1, which is another L1 space. Define Gn : L1 → Y by Gn(z) = Gn(x) = G(nz)

n
and

define G̃ : (L1)U → Y ∗∗ by setting G̃(z1, z2, . . . ) = w∗ − lim
n∈U

Gn(zn). The maps F̃ and G̃

are Lipschitz.)
Now use the previous corollary to get that γ1(I) <∞. By [6], X is an L1 space.
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