Non-linear factorization of linear operators *

William B. Johnson \dagger Bernard Maurey and Gideon Schechtman ${ }^{\ddagger}$

Abstract

We show, in particular, that a linear operator between finite dimensional normed spaces, which factors through a third Banach space Z via Lipschitz maps, factors linearly through the identity from $L_{\infty}([0,1], Z)$ to $L_{1}([0,1], Z)$ (and thus, in particular, through each $\left.L_{p}(Z), 1 \leq p \leq \infty\right)$ with the same factorization constant. It follows that, for each $1 \leq p \leq \infty$, the class of \mathcal{L}_{p} spaces is closed under uniform (and even coarse) equivalences. The case $p=1$ is new and solves a problem raised by Heinrich and Mankiewicz in 1982. The proof is based on a simple local-global linearization idea.

1 Introduction

Let X be a pointed metric space with distinguished point, $0 . X^{\#}$ denotes the Banach space of real valued Lipschitz functions f on X for which $f(0)=0$ under the norm $\operatorname{Lip}(f)=\sup _{x \neq y} \frac{|f(x)-f(y)|}{\|x-y\|}$. The evaluation map $K_{X}: X \rightarrow X^{\# *}$ is then an isometric isomorphism. If X is a Banach space, then by [5], $X^{* *}$ is norm one complemented in $X^{\# *}$ via a projection P that satisfies the identity $P K_{X}=J_{X}$, where J_{X} is the canonical embedding of X into $X^{* *}$.

Given a Lipschitz function $T: X \rightarrow Y$ with X and Y pointed metric spaces and $1 \leq p \leq \infty$, we define the Lipschitz L_{p} factorization norm $\gamma_{p}^{L}(T)$ by

$$
\gamma_{p}^{L}(T):=\inf \left\{\operatorname{Lip}(F) \operatorname{Lip}(G): K_{Y} \circ T=G \circ F\right\}
$$

where the infimum is over all Lipschitz factorizations of $K_{Y} \circ T$ through an arbitrary L_{p} space. By the result of Lindenstrauss mentioned in the previous paragraph, if Y is a normed space this is the same as taking the infimum over all Lipschitz factorizations of $J_{Y} \circ T$ through an L_{p} space.

[^0]The main result, Theorem 2, of this paper is that if T is a linear operator between Banach spaces and $1 \leq p \leq \infty$, then $\gamma_{p}^{L}(T)=\gamma_{p}(T)$. (Recall that $\gamma_{p}(T)$ is defined to be the infimum of $\|F\|\|G\|$ where the infimum is taken over all linear factorizations $J_{Y} \circ T=G \circ F$ of $J_{Y} \circ T$ through arbitrary L_{p} spaces.) The case $p=1$ of this theorem uses new ideas and gives as a corollary that a Banach space that is uniformly (or even coarsely) equivalent to a \mathcal{L}_{1} space is again a \mathcal{L}_{1} space. This answers a question Heinrich and Mankiewicz asked in their 1982 paper [3]. The main result is dealt with in section 3. The proof uses a local-global approach reminiscent of a method recently employed in [4]. Although the proof is fairly simple, easier special cases of Theorem 2 resisted for some time attacks by several experts; for example, it is not completely straightforward to show that if $f_{n}: \ell_{2}^{n} \rightarrow L_{1}, g_{n}: L_{1} \rightarrow \ell_{2}^{n}$ are such that $g_{n} f_{n}$ is the identity on ℓ_{2}^{n}, then $\operatorname{Lip}\left(f_{n}\right) \operatorname{Lip}\left(g_{n}\right) \rightarrow \infty$ as $n \rightarrow \infty$, and, indeed, understanding this example led us to Theorem 2.

In section 2 we present another factorization result the proof of which is based on much older and well known ideas but still produces some new information on the invariance of some classes of \mathcal{L}_{1} spaces under Lipschitz isomorphisms.

Although our research was motivated by problems concerning the classification of Banach spaces under non-linear equivalences, no specialized knowledge of Banach space theory is required for reading this paper. Let us just mention that one equivalence for a Banach space X to be a \mathcal{L}_{p} space is that the canonical injection $J_{X}: X \rightarrow X^{* *}$ factor (linearly) through $L_{p}(\mu)$ for some measure μ (and, if $1<p \neq 2<\infty$, that X not be isomorphic to a Hilbert space); see [6].

We thank M. Csörnyei, T. Figiel, O. Maleva, and D. Preiss for discussions on the problems treated here and the referee for several suggestions.

2 The classical argument

Here we prove
Theorem 1 Assume $T: X \rightarrow Y$ is a linear operator from a Banach space X to a dual Banach space Y. Assume T factors through a third Banach space Z via Lipschitz mappings: $T=g \circ f, f: X \rightarrow Z, g: Z \rightarrow Y$ and assume in addition that f has a point of Gâteaux differentiability. Then there are linear operators $A: X \rightarrow Z, B: Z \rightarrow Y$ with $T=B A$ and $\|A\|\|B\| \leq \operatorname{Lip}(f) \operatorname{Lip}(g)$.

Proof: The proof uses a combination of an argument from [3] and a result from [5].
By making suitable translations in the domain and range we may assume that the point of differentiability of f is 0 and that $f(0)=0$. Define f_{n}, g_{n} by $f_{n}(x)=n f\left(\frac{x}{n}\right)$, $g_{n}(z)=n g\left(\frac{z}{n}\right)$. Since $g \circ f=T$ is linear, we have that $g_{n} \circ f_{n}=T$. By hypothesis, $\left\|f_{n}(x)-A x\right\| \rightarrow 0$ for all $x \in X$, for some linear operator $A: X \rightarrow Z$. Let $\tilde{g}(x)$ be the weak* limit of $g_{n}(x)$ through some fixed free ultrafilter of natural numbers. Using the
norm convergence of $f_{n}(x)$ to $A x$, we deduce that $\tilde{g} \circ A=T$. Of course, $\|A\| \leq \operatorname{Lip}(f)$ and $\operatorname{Lip}(\tilde{g}) \leq \operatorname{Lip}(g)$. So we have linear A and Lipschitz \tilde{g} such that

$$
T=\tilde{g} \circ A
$$

and $\|A\| \operatorname{Lip}(\tilde{g}) \leq \operatorname{Lip}(f) \operatorname{Lip}(g)$. Also, \tilde{g} is linear on $A X$, so, by [5], there is a linear operator $B: Z \rightarrow Y$ with $\|B\| \leq \operatorname{Lip}(\tilde{g})$ so that $B A=T$. A softer proof of the result we used from [5] is contained in [7]; see also [1, Theorem 7.2]

As a corollary we get,
Corollary 1 Assume $T: X \rightarrow Y$ is a linear operator between a separable Banach space X and a Banach space Y. Assume T factors through a third Banach space Z having the Radon-Nikodym property (RNP) via Lipschitz mappings: $T=g \circ f, f: X \rightarrow Z$, $g: Z \rightarrow Y$. Then there are linear operators $A: X \rightarrow Z, B: Z \rightarrow Y^{* *}$ with $J T=B A$ and $\|A\|\|B\| \leq \operatorname{Lip}(f) \operatorname{Lip}(g)$. Here J is the canonical embedding of Y into its second dual.

Recall [1, section 6.4] that one equivalence to Z having the RNP is that every Lipschitz mapping from \mathbb{R} (or even from a general separable Banach space) into Z has a point of Gâteaux differentiability. Reflexive spaces and separable conjugate spaces, including ℓ_{1}, have the RNP, while, for example, c_{0} and $L_{1}[0,1]$ fail the RNP.

Applying this to the case where $Z=\ell_{1}$ and to the case where Z is a general separable \mathcal{L}_{1} space with the Radon-Nikodym property and using the fact that a Banach space X is \mathcal{L}_{1} whenever the canonical injection of X into its second dual factors through a \mathcal{L}_{1} space [6], we get

Corollary 2 The following two families are preserved under Lipschitz isomorphisms:

1. The \mathcal{L}_{1}-subspaces of ℓ_{1}.
2. The separable \mathcal{L}_{1} spaces that have the Radon-Nikodym property.

3 The local-global argument

Recall that any n-dimensional normed space X admits a normalized basis x_{1}, \ldots, x_{n} such that

$$
\begin{equation*}
n\left\|\sum_{i=1}^{n} a_{i} x_{i}\right\| \geq \sum_{i=1}^{n}\left|a_{i}\right| \tag{1}
\end{equation*}
$$

for all $a_{1}, \ldots, a_{n} \in \mathbb{R}$. Indeed, any Auerbach basis satisfies this. (See e.g. [1, page 432] for the definition and proof of the existence of an Auerbach basis; alternatively, use any basis for X and replace n on the left side of (1) by a constant which can depend on X and adjust (2) below appropriately.)

The next proposition is the main new tool in the proof of the main Theorem.

Proposition 1 Let X be an n-dimensional normed space, Y a Banach space and $T: X \rightarrow Y$ a bounded linear map. Let $S: X \rightarrow Y$ be Gâteaux differentiable everywhere and Lipschitz. Let x_{1}, \ldots, x_{n} be a basis for X which satisfies (1), let $\varepsilon>0$, and assume that

$$
\begin{equation*}
\|S x-T x\| \leq \varepsilon / 2 n \tag{2}
\end{equation*}
$$

for all $x \in C=\left\{\sum_{i=1}^{n} t_{i} x_{i} ; 0 \leq t_{i} \leq 1,1 \leq i \leq n\right\}$. Then

$$
\left\|\int_{C} S^{\prime}(x) d x-T\right\| \leq \varepsilon
$$

where $S^{\prime}(x)$ is the Gâteaux derivative of S at x and $d x$ is the measure induced on C from the natural map, g, from $[0,1]^{n}$ onto C and Lebesgue measure on $[0,1]^{n}$.

Proof: The conclusion follows from inequality (3), which is valid for every Lipschitz function from $[0,1]^{n}$ into a Banach space which is almost everywhere differentiable (Gâteaux or Fréchet; it is the same for Lipschitz functions from finite dimensional spaces [1 , Proposition 4.3]) and every y in \mathbb{R}^{n} :

$$
\begin{equation*}
\left\|\int_{[0,1]^{n}} f^{\prime}(t)(y) d t\right\| \leq 2 \max _{t \in \partial[0,1]^{n}}\|f(t)\|\|y\|_{1} \tag{3}
\end{equation*}
$$

(apply (3) to the function $f:=(S-T) g$).
To prove (3), let $\left\{e_{i}\right\}_{i=1}^{n}$ denote the unit vector basis for \mathbb{R}^{n} and consider the following divergence theorem-like formula

$$
\begin{align*}
\int_{[0,1]^{n}} f^{\prime}(t)\left(e_{i}\right) d t & =\int_{0}^{1} \int_{0}^{1} \ldots \int_{0}^{1} f^{\prime}\left(\sum_{j \neq i} t_{j} e_{j}+s e_{i}\right)\left(e_{i}\right) d s d t_{1} \ldots d t_{n} \tag{4}\\
& =\int_{0}^{1} \int_{0}^{1} \cdots \int_{0}^{1} f\left(\sum_{j \neq i} t_{j} e_{j}+e_{i}\right)-f\left(\sum_{j \neq i} t_{j} e_{j}\right) d t_{1} \ldots d t_{n} .
\end{align*}
$$

Multiply (4) by y_{i} and sum over i to get

$$
\begin{aligned}
\left\|\int_{[0,1]^{n}} f^{\prime}(t)(y) d t\right\| & =\left\|\sum_{i=1}^{n} \int_{0}^{1} \int_{0}^{1} \ldots \int_{0}^{1} y_{i}\left(f\left(\sum_{j \neq i} t_{j} e_{j}+e_{i}\right)-f\left(\sum_{j \neq i} t_{j} e_{j}\right)\right) d t_{1} \ldots d t_{n}\right\| \\
& \leq \sum_{i=1}^{n} \int_{0}^{1} \int_{0}^{1} \ldots \int_{0}^{1}\left|y_{i}\right|\left(\left\|f\left(\sum_{j \neq i} t_{j} e_{j}+e_{i}\right)\right\|+\left\|f\left(\sum_{j \neq i} t_{j} e_{j}\right)\right\|\right) d t_{1} \ldots d t_{n}
\end{aligned}
$$

which clearly implies (3).

Theorem 2 Let X be a finite dimensional normed space, Y a Banach space with the $R N P$ and $T: X \rightarrow Y$ a linear operator. Let Z be a separable Banach space and assume there are Lipschitz maps $F_{1}: X \rightarrow Z$ and $F_{2}: Z \rightarrow Y$ with $F_{2} \circ F_{1}=T$. Then for every $\lambda>1$ there are linear maps $T_{1}: X \rightarrow L_{\infty}(Z)$ and $T_{2}: L_{1}(Z) \rightarrow Y$ with $T_{2} \circ i_{\infty, 1} \circ T_{1}=T$ and $\left\|T_{1}\right\| \cdot\left\|T_{2}\right\| \leq \lambda \operatorname{Lip}\left(F_{1}\right) \operatorname{Lip}\left(F_{2}\right)$.

Proof: Here $L_{\infty}(Z)$ and $L_{1}(Z)$ are the Z-valued measurable functions on $[0,1]$ under the essential sup and L_{1} norms, respectively. However, it is equivalent to replace $[0,1]$ with any other separable, purely non atomic measure space, and in fact we use $[0,1]^{m}$ for a suitable m instead of $[0,1]$. It would of course be better to factor T through Z itself, but it remains open whether this can be done even when Y is also finite dimensional and λ is replaced by any numerical constant.

Set $n=\operatorname{dim}(X)$, let $\left\{x_{i}\right\}_{i=1}^{n}$ be a basis for X which satisfies (1), and let $\delta>0$. First note that there are everywhere Gâteaux differentiable maps $\tilde{F}_{1}: X \rightarrow Z$ and $\tilde{F}_{2}: Z \rightarrow Y$ with $\operatorname{Lip}\left(\tilde{F}_{i}\right) \leq \operatorname{Lip}\left(F_{i}\right)$ and $\left\|F_{i}(x)-\tilde{F}_{i}(x)\right\| \leq \delta$ for all x in the domain of $F_{i}, i=1,2$. The existence of \tilde{F}_{1} is classical: regard X as \mathbb{R}^{n} under some norm, let f be a non negative C^{1} function supported on a small neighborhood of 0 in X for which $\int_{X} f(x) d x=1$, and set $\tilde{F}_{1}=f * F_{1}$. The function \tilde{F}_{2} exists because Y has the RNP; see, for example, [1, Corollary 6.43].

Define $S=\tilde{F}_{2} \circ \tilde{F}_{1}$. Then $\|S x-T x\| \leq \delta\left(1+\operatorname{Lip}\left(F_{2}\right)\right)$ for all x. By Proposition 1 ,

$$
\begin{equation*}
\left\|\int_{C} \tilde{F}_{2}^{\prime}\left(\tilde{F}_{1}(x)\right) \circ \tilde{F}_{1}^{\prime}(x)-T\right\|=\left\|\int_{C} S^{\prime}(x) d x-T\right\| \leq 2 n \delta\left(1+\operatorname{Lip}\left(F_{2}\right)\right) \tag{5}
\end{equation*}
$$

where $C=\left\{\sum_{i=1}^{n} t_{i} x_{i} ; 0 \leq t_{i} \leq 1,1 \leq i \leq n\right\}$. Define now $H_{1}: X \rightarrow L_{\infty}\left([0,1]^{n}, Z\right)$ by

$$
H_{1} x(t)=\tilde{F}_{1}^{\prime}\left(t_{1} x_{1}+\cdots+t_{n} x_{n}\right)(x)
$$

and $H_{2}: L_{1}\left([0,1]^{n}, Z\right) \rightarrow Y$ by

$$
H_{2} f=\int_{[0,1]^{n}} \tilde{F}_{2}^{\prime}\left(\tilde{F}_{1}\left(t_{1} x_{1}+\cdots+t_{n} x_{n}\right)\right) f(t) d t
$$

Then,

$$
\left\|H_{1} u\right\| \leq \sup _{[0,1]^{n}}\left\|\tilde{F}_{1}^{\prime}\left(t_{1} x_{1}+\cdots+t_{n} x_{n}\right)(u)\right\| \leq \operatorname{Lip}\left(\tilde{F}_{1}\right)\|u\|
$$

and

$$
\left\|H_{2} f\right\| \leq \int_{[0,1]^{n}}\left\|\tilde{F}_{2}^{\prime}\left(\tilde{F}_{1}\left(t_{1} x_{1}+\cdots+t_{n} x_{n}\right)\right) f(t)\right\| d t \leq \operatorname{Lip}\left(\tilde{F}_{2}\right) \int_{[0,1]^{n}}\|f(t)\| d t
$$

so that

$$
\left\|H_{1}\right\| \cdot\left\|H_{2}\right\| \leq \operatorname{Lip}\left(F_{1}\right) \operatorname{Lip}\left(F_{2}\right)
$$

Also,
$H_{2}\left(H_{1} u\right)=\int_{[0,1]^{n}} \tilde{F}_{2}^{\prime}\left(\tilde{F}_{1}\left(t_{1} x_{1}+\cdots+t_{n} x_{n}\right)\right)\left(\tilde{F}_{1}^{\prime}\left(t_{1} x_{1}+\cdots+t_{n} x_{n}\right)(u)\right) d t=\int_{C} S^{\prime}(x)(u) d x$.
We thus have found linear $H_{1}: X \rightarrow L_{\infty}\left([0,1]^{n}, Z\right)$ and $H_{2}: L_{1}\left([0,1]^{n}, Z\right) \rightarrow Y$ with $H:=\int_{C} S^{\prime}(x) d x=H_{2} \circ i_{\infty, 1} \circ H_{1},\left\|H_{1}\right\| \cdot\left\|H_{2}\right\| \leq \operatorname{Lip}\left(F_{1}\right) \operatorname{Lip}\left(F_{2}\right)$ and, by $(5),\|H-T\| \leq$ $2 n \delta\left(1+\operatorname{Lip}\left(F_{2}\right)\right)$. This implies that, if δ is small enough, a similar factorization holds
for T. To see this, we regard $L_{\infty}\left([0,1]^{n}, Z\right)$ as being those functions in $L_{\infty}\left([0,1]^{2 n}, Z\right)$ which depend only on the first n coordinates and similarly for L_{1}. Define the operator $\tilde{H}_{2}: L_{1}\left([0,1]^{2 n}, Z\right) \rightarrow Y$ to be the composition of H_{2} with the (norm one) conditional expectation projection P from $L_{1}\left([0,1]^{2 n}, Z\right)$ onto $L_{1}\left([0,1]^{n}, Z\right)$. Of course, the kernel of P contains the mean zero Z valued integrable functions on $[0,1]^{2 n}$ which depend only on the last n components. In order to get a factorization of $T: X \rightarrow Y$ through the injection $L_{\infty}\left([0,1]^{2 n}, Z\right) \rightarrow L_{1}\left([0,1]^{2 n}, Z\right)$ it is enough to show that for all $\epsilon>0$, if $U: X \rightarrow Y$ is a linear operator with sufficiently small norm, then there are operators A from X into the mean zero functions in $L_{\infty}\left([0,1]^{2 n}, Z\right)$ which depend only on the last n coordinates and B from $L_{1}\left([0,1]^{2 n}, Z\right)$ into Y so that $\|A\|,\|B\|<\epsilon$ and $U=B i_{\infty, 1} A$. Indeed, setting $U:=T-\tilde{H}_{2} H_{1}$, we see that the pair $H_{1}+A$ and $\tilde{H}_{2}+B(I-P)$ provides a factorization of T through $L_{\infty}\left([0,1]^{2 n}, Z\right) \rightarrow L_{1}\left([0,1]^{2 n}, Z\right)$, and obviously $\left\|H_{1}+A\right\| \leq\left\|H_{1}\right\|+\epsilon$ and $\left\|\tilde{H}_{2}+B(I-P)\right\| \leq\left\|H_{2}\right\|+2 \epsilon$.

To define A, let z be any norm one vector in Z, let $r:=1_{(0,1 / 2)}-1_{(1 / 2,1)}$ and for $1 \leq j \leq n$ let r_{j} be the function on $[0,1]^{2 n}$ defined by $r_{j}\left(t_{1}, \ldots, t_{2 n}\right)=r\left(t_{n+j}\right)$. Set $A x_{j}=(\epsilon / n) r_{j} \otimes z$ so that $\|A\| \leq \epsilon$. Let Q be a projection of norm at most \sqrt{n} from $L_{1}\left([0,1]^{2 n}, Z\right)$ onto the span W of $r_{j} \otimes z ; 1 \leq j \leq n$. Define \tilde{B} from W into Y by setting $\tilde{B}\left(r_{j} \otimes z\right)=(n / \epsilon) U x_{j}$ and define $B:=\tilde{B} Q$. Clearly $\|B\| \leq(n / \epsilon) \sqrt{n} \max \left\{\left\|U x_{j}\right\|: 1 \leq\right.$ $j \leq n\}$, so we just need $\|U\|<\epsilon^{2} n^{-3 / 2}$.

As Corollaries we get
Corollary 3 Let X and Y be Banach spaces, T a linear operator from X into Y. Then

$$
\begin{equation*}
\gamma_{1}(T)=\gamma_{1}^{L}(T) \tag{6}
\end{equation*}
$$

Proof: To verify (6), it is enough to show for each finite dimensional subspace E of X and each finite codimensional subspace F of Y that

$$
\begin{equation*}
\gamma_{1}\left(Q_{F} T i_{E}\right) \leq \gamma_{1}^{L}(T) \tag{7}
\end{equation*}
$$

where i_{E} is the injection from E into X and Q_{F} is the quotient mapping from Y onto Y / F, because $\gamma_{1}(T)$ is the supremum over all such E and F of the left side of (7) (see [2, Theorem 9.1]). Now if $J_{Y} T=G \circ H$ is a factorization of $J_{Y} T$ through an L_{1} space, then $Q_{F}^{* *} G \circ H i_{E}$ is a factorization of $Q_{F} T i_{E}$ through the same L_{1} space, which yields that $\gamma_{1}^{L}\left(Q_{F} T i_{E}\right) \leq \gamma_{1}^{L}(T)$. Thus it suffices to check that $\gamma_{1}\left(Q_{F} T i_{E}\right) \leq \gamma_{1}^{L}\left(Q_{F} T i_{E}\right)$; that is, it is enough to verify (6) when X and Y are finite dimensional.

So in the sequel we assume that X and Y are finite dimensional. In this case the desired conclusion follows from Theorem 2. Indeed, if $T=G \circ H$ is a Lipschitz factorization of T through some (possibly non separable) L_{1} space Z, then we can replace Z with the (separable) L_{1} subspace of Z generated by $H X$, and then apply Theorem 2 .

Corollary 4 Let X be a Banach space and assume that for some L_{1} space there are maps $F: X \rightarrow L_{1}$ and $G: L_{1} \rightarrow X^{* *}$ which are Lipschitz for large distances with $G \circ F=I$ (the canonical embedding). Then $\gamma_{1}(I)<\infty$; i.e., For some L_{1} space there are linear $T_{1}: X \rightarrow L_{1}$ and $T_{2}: L_{1} \rightarrow X^{* *}$ with $T_{2} \circ T_{1}=I$. Consequently, if X is uniformly or coarsely equivalent to a \mathcal{L}_{1} space then it is a \mathcal{L}_{1} space.

Proof: Before starting the proof we recall that a map F is Lipschitz for large distances provided for all $d>0$ there is $K_{d}<\infty$ so that $d(F(x), F(y)) \leq K_{d} d(x, y)$ whenever $d(x, y) \geq d$. Uniformly continuous mappings whose domain is convex (or sufficiently close to being convex) are Lipschitz for large distances [1, Proposition 1.11]. A coarse equivalence between Banach spaces is just a biLipschitz equivalence between a pair of nets in the respective spaces; it is clear that such a map can be extended to a mapping that is Lipschitz for large distances.

We now turn to the proof. A standard ultraproduct argument shows that we may assume that F and G are Lipschitz. (Assume, without loss of generality, that $F(0)=0$. Let \mathcal{U} be a free ultrafilter on the natural numbers and define $F_{n}: X \rightarrow Y$ by $F_{n}(x)=\frac{F(n x)}{n}$ and let $\widetilde{F}: X \rightarrow\left(L_{1}\right)_{\mathcal{U}}$ be the ultraproduct of the maps F_{n} into the ultrapower $\left(L_{1}\right)_{\mathcal{U}}$ of L_{1}, which is another L_{1} space. Define $G_{n}: L_{1} \rightarrow Y$ by $G_{n}(z)=G_{n}(x)=\frac{G(n z)}{\tilde{F}^{n}}$ and define $\widetilde{G}:\left(L_{1}\right)_{\mathcal{U}} \rightarrow Y^{* *}$ by setting $\widetilde{G}\left(z_{1}, z_{2}, \ldots\right)=\mathrm{w}^{*}-\lim _{n \in \mathcal{U}} G_{n}\left(z_{n}\right)$. The maps \widetilde{F} and \widetilde{G} are Lipschitz.)

Now use the previous corollary to get that $\gamma_{1}(I)<\infty$. By [6], X is an \mathcal{L}_{1} space.

References

[1] Y. Benyamini and J. Lindenstrauss, Geometric nonlinear functional analysis, Vol. 1, (Colloquium Publications Vol 48, AMS 2000).
[2] J. Diestel, H. Jarchow and A. Tonge, Absolutely summing operators, (Cambridge studies in advanced mathematics 43, Cambridge University Press, Cambridge 1995).
[3] S. Heinrich and P. Mankiewicz, 'Applications of ultrapowers to the uniform and Lipschitz classification of Banach spaces', Studia Math. 73 (1982), 225-251.
[4] G. Godefroy and N. J. Kalton, 'Lipschitz-free Banach spaces', Studia Math. 159 (2003), 121-141
[5] J. Lindenstrauss, 'On non-linear projections in Banach spaces', Mich. J. Math. 11 (1964) 268-287.
[6] J. Lindenstrauss and H. P. Rosenthal, 'The \mathcal{L}_{p} spaces', Israel J. Math. 7 (1969), 325-349.
[7] A. Pełczyński, 'Linear extensions, linear averagings, and their applications to linear topological classification of spaces of continuous functions', Dissertationes Math. Rozprawy Mat. 58 (1968)

W.B. Johnson
Department of Mathematics
Texas A\&M University
College Station, TX 77843 U.S.A.
johnson@math.tamu.edu
B. Maurey
Laboratoire d'Analyse et de Mathématiques Appliquées
Université de Marne-la-Vallée
77454 Champs-sur-Marne FRANCE
G. Schechtman
Department of Mathematics
Weizmann Institute of Science
Rehovot, Israel
gideon@weizmann.ac.il

[^0]: *AMS subject classification: 46B20,46E30. Key words: Factorization, Lipschitz maps, \mathcal{L}_{p} spaces
 ${ }^{\dagger}$ Supported in part by NSF DMS-0200690 \& DMS-0503688 and U.S.-Israel Binational Science Foundation.
 ${ }^{\ddagger}$ Supported in part by Israel Science Foundation and U.S.-Israel Binational Science Foundation; participant, NSF Workshop in Analysis and Probability, Texas A\&M University.

