1. Definitions.
 (a) Vector space.
 (b) Subspace.
 (c) Well-defined.
 (d) Linear transformation
 (e) Null Space or Kernel
 (f) One to one.
 (g) Onto.
 (h) Self-adjoint.
 (i) Range
 (j) Quotient space
 (k) Projection operator
 (l) Isomorphic
 (m) Inner product.
 (n) M^\perp.
 (o) $Ann(M)$.
 (p) An operator on an inner product space, T, is symmetric ...
 (q) Span
 (r) Linearly independent
 (s) Basis
 (t) Dimension
 (u) Dual space.
 (v) Definition of Adjoint, T^*.
 (w) Linear functional
 (x) Norm
 (y) Trace
 (z) Nilpotent.

2. Theorems.

3. The image of a subspace is a subspace.

4. $M + x = M + y$ if and only if $x - y \in M$.

5. Thm. $\text{Hom}(V, V)$ is a vector space.

6. Thm: $T : V_1 \longrightarrow V_2$. T is 1-1 iff $N(T) = 0$.

7. Thm: If V_1 is isomorphic to V_2, then $\dim(V_1) = \dim(V_2)$.

8. The Isomorphism Theorem.

9. T is 1 – 1 if and only if $\ker(T) = 0$.

10. Corollary. Suppose $T : V \longrightarrow V$. Then $\dim(V) = \dim(R) + \dim(N)$.

11. Corollary. $\dim(V/N) + \dim(N) = \dim(V)$.

12. Cauchy-Schwarz Inequality
13. Theorem: M^\bot is a subspace.

15. Parallelogram Law.

16. If $T : V \rightarrow V$, V is an inner product space and T is self-adjoint (symmetric), then $\ker(T) \cap \mathcal{R}(T) = (0)$.

17. Thm: $V, < , >$, given; M a subspace of V, then $V = M + M^\bot$.

18. Theorem: Given $L : V \rightarrow W$ and T a subspace of W and $L^{-1}(T) = v?V$ s.t. $L(v) ? T$, $L^{-1}(T)$ is a subspace of V.

19. Theorem: Given a basis x_i for V, each point in $v?V$ has a unique representation $v = \sum_{i=1} c_i x_i$.

20. Theorem: All bases of V have the same number of vectors. (Called the dimension of V).

21. Theorem: Given an isomorphism $T : V \rightarrow W$ and \{v_i\} a basis for V, \{T(v_i)\} is a basis for W.

22. Gram-Schmidt procedure.

23. Theorem: Given $T : V \rightarrow V$ and $y?V$ there exists a unique $z?V, < Tx, y >= < x, z >$ for all $x?V$.

24. Theorem: If $f \in V^*$, there $z?V$ s.t. $f(x) = < x, z >$.

25. Theorem: If V has a basis \{b_j\}_{j=1}^n$ and $T : V \rightarrow V$ has the associated $n \times n$ matrix A, then the matrix associated with T^* is A^T.

26. Theorem: The dimension of the column space of A equals the dimension of the row space of A.

27. Theorem: Given $T : V \rightarrow W$, $\dim(\text{Range}(T)) = \dim(\mathcal{R}(T^*))$.

28. Theorem: Given a projection $P : V \rightarrow M, M$ a subspace of V, $P^2 = P$.

31. trace(AB) = trace(BA).

32. trace(ABC) = trace(CAB).

33. trace(A^*) = trace(A).

34. Row space = $\mathcal{R}(T^*)$.

35. Column space = $\mathcal{R}(T)$.

36. $\dim(V^*) = \dim(V)$.

2