Random ε-nets and embeddings in ℓ^N_{∞}

Alexander Litvak

We show that, given an n-dimensional normed space X, a sequence of $N = (8/\varepsilon)^{2n}$ independent random vectors $(X_i)_{i=1}^N$, uniformly distributed in the unit ball of X^*, with high probability forms an ε-net for this unit ball. Thus the random linear map $\Gamma : \mathbb{R}^n \to \mathbb{R}^N$ defined by $\Gamma x = (\langle x, X_i \rangle)_{i=1}^N$ embeds X in ℓ^N_{∞} with at most $(1 + \varepsilon)$-norm distortion. In the case $X = \ell^n_2$ we obtain a random $(1+\varepsilon)$-embedding into ℓ^N_{∞} with asymptotically best possible relation between N, n, and ε.

This is joint work with Y. Gordon, A. Pajor, and N. Tomczak-Jaegermann.