Spring 2012 Math 151

Sample Problems for Exam 1

sections: Chapter 1, 2,2, 2,3, 2.5, 2.6, 2.7, and 3.1 courtesy: Joe Kahlig

1. Use $\lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$ to compute the derivative.

(a)
$$f'(x) = \frac{6}{(x+3)^2}$$

(b) $f'(x) = \frac{1}{\sqrt{2x+1}}$

- 2. $f'(x) = 3x^2 2x + 7$ and f'(2) = 15
- 3. $f'(x) = \frac{1}{\sqrt{2x+1}}$, so $m_{tan} = f'(4) = \frac{1}{3}$ $y - 3 = \frac{1}{3}(x-4)$

4.
$$\lim_{x \to 3} \frac{f(x) - 5}{x - 3} = f'(3) = 5$$

5. (a)
$$\lim_{x \to -2} f(x) = 3$$

(b)
$$\lim_{x \to 4} f(x) = \text{DNE}$$

- (c) not continuous at x = -2 and x = 2 (from either side). not conitinuous at x = 4 (is continuous from the right)
- (d) not differentiable at x = -5, x = -2, x = 2, x = 4, and x = 6
- 6. Answers will vary.

$$y = \frac{7x(x-5)}{(x-5)(x+3)} \text{ or } y = \frac{7x(x-5)(x+3)}{(x-5)(x+3)^2}$$
7. $\frac{6}{250}$
8. ∞
9. DNE
10. $\frac{4}{7}$
11. $\frac{2}{5}$
12. (a) $\frac{6}{5}$
(b) $-\infty$
13. not continuous at $x = -3$ since $f(-3)$ DNE not continuous at $x = 1$ since $\lim_{x \to 1} f(x)$ DNE.

14.
$$A = \frac{5}{2}$$
 and $B = 19$

- 15. (a) scalar projection: comp_n $\mathbf{m} = \frac{15}{\sqrt{10}}$ vector projection: proj_n $\mathbf{m} = \left\langle \frac{15}{10}, \frac{-45}{10} \right\rangle$ (b) $\theta = \arccos\left(\frac{3}{\sqrt{10}}\right) = 18.43^{\circ}$
- 16. answers can vary.

$$x(t) = 2 + 5t, \ y(t) = 4 + t$$

17. direction vectors are $\mathbf{v_1} = <-6, 9 > \text{ and } \mathbf{v_2} = <-3, -2 >$ lines are orthogonal if $\mathbf{v_1} \cdot \mathbf{v_2} = 0$ $\mathbf{v_1} \cdot \mathbf{v_2} = -6 * -3 + 9 * -2 = 18 - 18 = 0$

- 18. 21Nm = 21 J
- 19. speed = 21.755mph

direction is $S62.63^{\circ}E$

20. (a) y = (x − 1)² with 0 ≤ x ≤ 2
(b) yes, when t = π/2 + nπ when n is an integer.
(c) see the graph in the written solutions.

21.
$$\frac{-7\sqrt{51}}{50}$$

 $22. \ 49.97^{o}$