Spring 2012 Math 151

Sample Problems for Exam 1

sections: Chapter 1, 2,2, 2,3, 2.5, 2.6, 2.7, and 3.1
courtesy: Joe Kahlig

1. Use $\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$ to compute the derivative.
(a) $f^{\prime}(x)=\frac{6}{(x+3)^{2}}$
(b) $f^{\prime}(x)=\frac{1}{\sqrt{2 x+1}}$
2. $f^{\prime}(x)=3 x^{2}-2 x+7$ and $f^{\prime}(2)=15$
3. $f^{\prime}(x)=\frac{1}{\sqrt{2 x+1}}$, so $m_{t a n}=f^{\prime}(4)=\frac{1}{3}$
$y-3=\frac{1}{3}(x-4)$
4. $\lim _{x \rightarrow 3} \frac{f(x)-5}{x-3}=f^{\prime}(3)=5$
5. (a) $\lim _{x \rightarrow-2} f(x)=3$
(b) $\lim _{x \rightarrow 4} f(x)=$ DNE
(c) not continuous at $x=-2$ and $x=2$ (from either side). not conitinuous at $x=4$ (is continuous from the right)
(d) not differentiable at $x=-5, x=-2, x=2, x=4$, and $x=6$
6. Answers will vary.

$$
y=\frac{7 x(x-5)}{(x-5)(x+3)} \text { or } y=\frac{7 x(x-5)(x+3)}{(x-5)(x+3)^{2}}
$$

7. $\frac{6}{250}$
8. ∞
9. DNE
10. $\frac{4}{7}$
11. $\frac{2}{5}$
12. (a) $\frac{6}{5}$
(b) $-\infty$
13. not continuous at $x=-3$ since $f(-3)$ DNE not continuous at $x=1$ since $\lim _{x \rightarrow 1} f(x)$ DNE.
14. $A=\frac{5}{2}$ and $B=19$
15. (a) scalar projection: $\operatorname{comp}_{\mathbf{n}} \mathbf{m}=\frac{15}{\sqrt{10}}$

$$
\text { vector projection: } \operatorname{proj}_{\mathbf{n}} \mathbf{m}=\left\langle\frac{15}{10}, \frac{-45}{10}\right\rangle
$$

(b) $\theta=\arccos \left(\frac{3}{\sqrt{10}}\right)=18.43^{\circ}$
16. answers can vary.
$x(t)=2+5 t, y(t)=4+t$
17. direction vectors are $\mathbf{v}_{\mathbf{1}}=<-6,9>$ and $\left.\mathbf{v}_{\mathbf{2}}=<-3,-2\right\rangle$
lines are orthogonal if $\mathbf{v}_{\mathbf{1}} \cdot \mathbf{v}_{\mathbf{2}}=0$
$\mathbf{v}_{\mathbf{1}} \cdot \mathbf{v}_{\mathbf{2}}=-6 *-3+9 *-2=18-18=0$
18. $21 \mathrm{Nm}=21 \mathrm{~J}$
19. speed $=21.755 \mathrm{mph}$
direction is $\mathrm{S} 62.63^{\circ} \mathrm{E}$
20. (a) $y=(x-1)^{2}$ with $0 \leq x \leq 2$
(b) yes, when $t=\frac{\pi}{2}+n \pi$ when n is an integer.
(c) see the graph in the written solutions.
21. $\frac{-7 \sqrt{51}}{50}$
22. 49.97°

