Spring 2012 Math 151

Week in Review \# 1

sections: Review, Appendix D, 1.1
courtesy: Joe Kahlig

Review and Appendix D

1. Find the domain of these functions.
(a) $f(x)=\frac{x+1}{x^{7 / 3}-3 x^{4 / 3}-10 x^{1 / 3}}$
(b) $g(x)=\frac{\sqrt{x^{2}-4}}{\sqrt{x+5}}$
2. If $\tan (\theta)=\frac{9}{12}$ and θ is in Quadrant III, find the exact values of

$$
\sin (\theta)=\ldots \quad \cos (\theta)=\square \quad \sec (\theta)=
$$

$$
\csc (\theta)=
$$

Trig. Identities

$$
\begin{aligned}
& \sin (2 x)=2 \sin (x) \cos (x) \\
& \cos (2 x)=2 \cos ^{2}(x)-1 \\
& \cos (x+y)=\cos (x) \cos (y)-\sin (x) \sin (y)
\end{aligned}
$$

$$
\begin{aligned}
& \sin (x+y)=\sin (x) \cos (y)+\cos (x) \sin (y) \\
& \sin (x-y)=\sin (x) \cos (y)-\cos (x) \sin (y) \\
& \cos (x-y)=\cos (x) \cos (y)+\sin (x) \sin (y)
\end{aligned}
$$

Law of Sines

$$
\frac{\sin A}{a}=\frac{\sin B}{b}=\frac{\sin C}{c}
$$

Law of Cosines

$a^{2}=b^{2}+c^{2}-2 b c \cos A$

3. If $\sin (x)=\frac{1}{6}$ and $\sec (y)=\frac{17}{15}$, where x and y lie between 0 and $\frac{\pi}{2}$, evaluate the expression using trigonometric identities.
(a) $\sin (2 x)=$ \qquad
(b) $\cos (x+y)=$ \qquad
(c) $\sin (x-y)=$ \qquad
4. The triangle below has the following values: $c=4, a=5$ and $B=25^{\circ}$. Find b.

5. Solve for x where $0 \leq x \leq 2 \pi$.
(a) $2 \cos ^{2}(x)-\cos (x)-1=0$
(b) $\sin (x) \cos (x)=\frac{1}{4}$

Section 1.1

6. Given $A(1,6)$ and $B(5,-3)$, find the vector $\overrightarrow{B A}$.
7. Given $\mathbf{a}=2 \mathbf{i}+5 \mathbf{j}$ and $\mathbf{b}=\langle 4,1\rangle$. Find the following.
(a) $|\mathbf{a}|$
(b) $3 \mathbf{b}-2 \mathbf{a}$
(c) Find scalars s and t so that $s \mathbf{a}+t \mathbf{b}=\mathbf{c}$ where $\mathbf{c}=\langle 24,-3\rangle$
(d) Find the unit vector that is in the same direction of \mathbf{b}.
(e) Find a vector of length 3 in the opposite direction of \mathbf{b}.
8. Two forces T and S with magnitudes 4 pounds and 2 pounds act on an object at a point P as shown in the picture. Find the resultant force as well as it's magnitude and direction. (Indicate the direction by finding the angle between the vector and the positive x -axis.)

9. Two tug boats are towing a large ship into port. The larger tug exerts a force of 4500 pounds on its cable, and the smaller tug exerts a force of 2700 pounds on its cable. If the ship is to travel in a straight line, find the angle θ that the larger tug must make if the smaller tug makes an angle of 30°.

Ship
10. A pilot wishes to set a course so that his ground speed is northeast $\left(\mathrm{N} 45^{\circ} \mathrm{E}\right)$ at 180 mph . The wind is blowing in the direction of $\mathrm{S} 30^{\circ} \mathrm{E}$ at 40 mph . What course (speed and bearing) should the pilot set in order to achieve his desired ground speed?

